Microbial Applications in Agriculture and the Environment: A Broad Perspective

  • Iqbal Ahmad
  • Mohd Sajjad Ahmad Khan
  • Farrukh Aqil
  • Mahipal SinghEmail author


Microbial diversity is an important component of the overall global biological diversity. Recent technological advances in exploring microbial diversity have revealed that a large proportion of microorganisms are still undiscovered, and their ecological roles are largely unknown. Careful selection of microbes and intelligent design of test assays are the key steps in developing new technologies for effective utilization of microorganisms for sustainable agriculture, environmental protection, and human and animal health. Several microbial applications are widely known in solving major agricultural (i.e., crop productivity, plant health protection, and soil health maintenance) and environmental issues (i.e., bioremediation of soil and water from organic and inorganic pollutants). Wastewater treatment and recycling of agricultural and industrial wastes are other important uses of microbial technology. It is expected that microbes in combination with developments in electronics, software, digital imaging, and nanotechnology will play a significant role in solving global problems of the twenty-first century, including climate change. These advances are expected to enhance sustainability of agriculture and the environment. This chapter provides an overview of recent trends in microbial exploitation in plant growth promotion and sustainable environment mainly through bioremediation, biodegradation, and biosorption processes. Recent uses and application of microbes such as biosensors, synthesis of nanomaterials, and probiotics are also discussed.


Microbial diversity PGPR Degradation of aromatic compounds Heavy metals Probiotics Climate change Biosensors and nanomaterials 


  1. Aeltermann, P., Rabaey, K., Clauwaert, P., and Verstraete, W. 2006. Microbial fuel cells for wastewater treatment. Water Sci Technol 54:9–15.Google Scholar
  2. Ahmad, F. 2006. Diversity and potential bioprospection of certain plant growth promoting rhizobacteria. PhD thesis submitted to Aligarh Muslim University, Aligarh.Google Scholar
  3. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., and Sastry, M. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318.Google Scholar
  4. Ahmad, F., Ahmad, I., and Khan, M.S. 2008a. Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 263:173–181.Google Scholar
  5. Ahmad, F., Ahmad, I., Aqil, F., Khan, M.S., and Hayat, S. 2008b. Diversity and potential of non-symbiotic diazotrophic bacteria in promoting plant growth. In: Plant–bacteria ­interactions: strategies and techniques to promote plant growth, Ahmad, I., Pitchel, J., and Hayat, S. (eds.), pp. 81–109. Wiley-VCH Verlag GmbH &Co. KGa: Weinheim, Germany (ISBN: 978-3-527-31901-5).Google Scholar
  6. Akyilmaz, E. and Dinckaya, E. 2005. An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol. Biosens Bioelectron 20:1263–1269.Google Scholar
  7. Bailey, J.E. 1991. Toward a science of metabolic engineering. Science 252:1668–1675.Google Scholar
  8. Bais, H.P., Park, S.W., Weir, T.L., Callaway, R.M., and Vivanco, J.M. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32.Google Scholar
  9. Bashan, Y. and de-Bashan, L.E. 2005. Bacteria. In: Encyclopaedia of soils in the environment, Hillel, D. (ed.), pp. 103–115. Elsevier: Oxford, UK.Google Scholar
  10. Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212.Google Scholar
  11. Bloemberg, G.V. and Lugtenberg, B.J.J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350.Google Scholar
  12. Boddey, R.M., Urquiaga, S., Alves, B.J.R., and Reis, V. 2003. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149.Google Scholar
  13. Boeckx, P., van Cleemput, O., and Villaralvo, I. 1997. Methane oxidation in soils with different textures and land use. Nutr Cycl Agroecosyst 49:91–95.Google Scholar
  14. Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Borneman, J., and Triplett, E.W. 1997. Molecular microbial diversity in soil from Eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653.Google Scholar
  15. Borneman, J. and Triplett, E.W. 1997. Molecular microbial diversity in soil from Eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653.Google Scholar
  16. Burchiel, S.W. and Luster, M.I. 2001. Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes. Clin Immunol 98:2–10.Google Scholar
  17. Burd, G.I., Dixon, D.G., and Glick, B.R. 1998. A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668.Google Scholar
  18. Burd, G.I., Dixon, D.G., and Glick, B.R. 2000. Plant growth promoting bacteria that decreases heavy metal toxicity in plants. Can J Microbiol 46:237–245.Google Scholar
  19. Carvalho, M.F., Ferreira, J.R., Pacheco, C.C., De Marco, P., Castro, P.M.L. 2005. Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol 7:294–298.Google Scholar
  20. Chan, C., Lehmann, M., Chan, K., Chan, P., Chan, C., Gruendig, B., Kunze, G., and Renneberg, R. 2000. Designing an amperometric thick-film microbial BOD sensor. Biosens Bioelectron 15:343–353.Google Scholar
  21. Chanway, C.P., Shishido, M., Nairn, J., Jungwirth, S., Markham, J., Xiao, G., and Holl, F.B. 2000. Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For Ecol Manage 133:81–88.Google Scholar
  22. Chee, G.J., Nomura, Y., and Karube, I. 1999. Biosensor for the estimation of low biochemical oxygen demand. Anal Chim Acta 379:185–191.Google Scholar
  23. Chin-A-Woeng, T.F., Thomas-Oates, J.E., Lugtenberg, B.J.J., and Bloemberg, G.V. 2001. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14:1006–1015.Google Scholar
  24. Conn, K.L., Nowak, J., and Lazarovits, G. 1997. A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Can J Microbiol 43:801–808.Google Scholar
  25. Cook, J.H., Beyea, J., and Keeler, K.H. 1991. Potential impacts of biomass production in the United States on biological diversity. Annu Rev Energ Environ 16:401–431.Google Scholar
  26. Crowley, T.J. 2000. Causes of climate change over the past 1000 years. Science 289:270–277.Google Scholar
  27. Crueger, W. and Crueger, A. 2003. Biotechnology: a textbook of industrial microbiology. Panima Publishing Corporation: New Delhi.Google Scholar
  28. D’Souza, S.F. 2001. Microbial biosensors. Biosens Bioelectron 16:337–353.Google Scholar
  29. Daniel, M.C. and Astruc, D. 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346.Google Scholar
  30. de Boer, M., van der Sluis, I., van Loon, L.C., and Bakker, P.A.H.M. 1999.Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish. Eur J Plant Pathol 105:201–210.Google Scholar
  31. de Weger, L.A., van der Bij, A.J., Dekkers, L.C., Simons, M., Wijffelman, C.A., and Lugtenberg, B.J.J. 1995. Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol Ecol 17:221–228.Google Scholar
  32. de Wildeman, S. and Verstraete, W. 2003. The quest for microbial reductive dechlorination of C2 to C4 chloroalkanes is warranted. Appl Microbiol Biotechnol 61:94–102.Google Scholar
  33. Dickson, D.P.E. 1999. Nanostructured magnetism in living systems. J Magn Magn Mater 203:46–49.Google Scholar
  34. Duffy, B.K., Simon, A., and Weller, D.M. 1996. Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology 86:188–194.Google Scholar
  35. Feijtel, T.C., Segers, L., and Verstraete, W. 1985. Hydrogen accumulation by H2-uptake negative strains of Rhizobium. Plant Soil 85:77–84.Google Scholar
  36. Fernandez, M., Duque, E., Pizarro-Tobias, P., van Dillewijn, P., Wittich, R.M., and Ramos, J.L. 2009. Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6-trinitrotoluene. Microb Biotechnol 2:287–294.Google Scholar
  37. Fismes, J., Perrin-Ganier, C., Empereur-Bissonnet, P., and Morel, J.L. 2002. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J Environ Qual 31:1649–1656.Google Scholar
  38. Gaberlein, S., Spener, F., and Zaborosch, C. 2000. Microbial and cytoplasmic membrane-based potentiometric biosensors for direct determination of organophosphorus insecticides. Appl Microbiol Biotechnol 54:652–658.Google Scholar
  39. Garbeva, P., Voesenek, K., and van Elsas, J.D. 2004. Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biol Biochem 36:1453–1463.Google Scholar
  40. Garland, J.L. 1996. Patterns of potential C source utilization by rhizosphere communities. Soil Biol Biochem 28:223–230.Google Scholar
  41. Gatesoupe, F.J. 2008. Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol 14:107–114.Google Scholar
  42. Gaur, A.C. 1990. Physiological functions of phosphate solubilizing micro-organisms. In: Phosphate solubilizing micro-organisms as biofertilizers, Gaur, A.C. (ed.), pp. 16–72. Omega Scientific Publishers: New Delhi, India.Google Scholar
  43. Gerhardson, B. 2002. Biological substitutes for pesticides. Trends Biotechnol 20:338–343.Google Scholar
  44. Gieg, L.M., Alumbaugh, R.E., Field, J., Jones, J., Istok, J.D., and Suflita, J.M. 2009. Assessing in situ rates of anaerobic hydrocarbon bioremediation. Microb Biotechnol 2:222–233.Google Scholar
  45. Gilbert, J.A., Hill, P.J., Dodd, C.E.R., and Laybourn-Parry, J. 2004. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180.Google Scholar
  46. Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., and Nelson, K.E. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359.Google Scholar
  47. Glick, B. 1995. The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117.Google Scholar
  48. Glick, B.R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393.Google Scholar
  49. Glick, B.R., Penrose, D.M., and Li, J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68.Google Scholar
  50. Glick, B.R., Patten, C.L., Holguin, G., and Penrose, D.M. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press: London.Google Scholar
  51. Gordon, J.I., Ley, R.E., Wilson, R., Mardis, E.J.X., Fraser, C.M., and Relman, D.A. (2006) Extending our view of self: the Human Gut Microbiome Initiative (HGMI) [WWWdocument]. URL
  52. Gray, E.J. and Smith, D.L. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412.Google Scholar
  53. Haas, D., Blumer, C., and Keel, C. 2000. Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr Opin Biotechnol 11:290–297.Google Scholar
  54. Haas, D., Keel, C., and Reimmann, C. 2002. Signal transduction in plant beneficial rhizobacteria with biocontrol properties. Antonie Van Leeuwenhoek 81:385–395.Google Scholar
  55. Hallman, J., Quadt-Hallman, A., Mahafee, W.F., and Kloepper, J.W. 1997. Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914.Google Scholar
  56. Heur, H., Krsek, M., Baker, P., Smalla, K., and Wellington, E.M.H. 1997. Analysis of actinomycetes communities by specific amplificationof gene encoding 16S rDNA and gel-electrophoretic separation in denaturing gradient. Can J Microbiol 63:3233–3241.Google Scholar
  57. Higuchi, W., Muramatsu, M., Dohmae, S., Takano, T., Isobe, H., Yabe, S., Da, S., Baranovich, T., and Yamamoto, T. 2008. Identification of probiotic lactobacilli used for animal feeds on the basis of 16S ribosomal RNA gene sequence. Microbiol Immunol 52:559–563.Google Scholar
  58. Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and de Long, E.F. 1999. Methane-consuming archaebacteria in sediments. Nature 398:802–805.Google Scholar
  59. Hopper, D.R. 1989. Cleaning up contaminated waste sites. Chem Eng 96:94–110.Google Scholar
  60. Huang, Z., Bonsall, R.F., Mavrodi, D.V., Weller, D.M., and Thomashow, L.S. 2004. Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of rhizoctonia root rot and in situ antibiotic production. FEMS Microbiol Ecol 49:243–251.Google Scholar
  61. Ikeda, T., Kato, K., Maeda, M., Tatsumi, H., Kano, K., and Matsushita, K. 1997. Electrocatalytic properties of Acetobacter aceti cells immobilized on electrodes for the quinone-mediated oxidation of ethanol. J Electroanal Chem 430:197–204.Google Scholar
  62. Imran, M. 2010. Interaction of heavy metals with indigenous isolates of free living rhizospheric fungi and their plant growth promoting potential. PhD thesis submitted to Aligarh Muslim University, Aligarh.Google Scholar
  63. Jackson, T. 1999. Renewable energy. Summary paper for the renewables series. Energy Policy 20:861–883.Google Scholar
  64. Ji, R. and Brune, A. 2005. Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem 37:1648–1655.Google Scholar
  65. Ju, K.S. and Parales, R.E. 2009. Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes. Microb Biotechnol 2:241–252.Google Scholar
  66. Kalliomaki, M., Salminen, S., and Isolauri, E. 2008. Positive interactions with the microbiota: probiotics. Adv Exp Med Biol 635:57–66.Google Scholar
  67. Kanaly, R.A. and Harayama, S. 2010. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechol 3:136–164.Google Scholar
  68. Kawamura, K. and Suzuki, I. 1994. Ice core record of polycyclic aromatic hydrocarbons over the past 400 years. Naturwissenschaften 81:502–505.Google Scholar
  69. Keppler, F., Hamilton, J.T.G., Brass, M., and Rockmann, T. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191.Google Scholar
  70. Khan, M.S, Zaidi, A., and Wani, P.A. 2009. Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. In: Sustainable agriculture, Lichtfouse, E., Navarrete, M., Debaeke, P., Souchere, V., and Alberola, C. (eds.). Springer: Netherlands, pp 551–570.Google Scholar
  71. Kilic-Ekici, O. and Yuen, G.Y. 2004. Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biol Control 30:446–455.Google Scholar
  72. Kitagawa, Y., Ameyama, M., Nakashima, K., Tamiya, E., and Karube, I. 1987. Amperometric alcohol sensor based on an immobilised bacteria cell membrane. Analyst 112:1747–1751.Google Scholar
  73. Kleerebezem, M. and Vaughan, E.E. 2009. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290.Google Scholar
  74. Kloepper, J.W. and Schroth, M.N. 1978. Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Station de pathologie vegetale et phyto-bacteriologie (ed.), vol. II, pp. 879–882. Gilbert-Clarey, Tours, France.Google Scholar
  75. Kloepper, J.W., Rodriguez-Ubana, R., Zehnder, G.W., Murphy, J.F., Sikora, E., and Fernandez, C. 1999. Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26.Google Scholar
  76. Kroger, N., Deutzmann, R., and Sumper, M. 1999. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132.Google Scholar
  77. Krutmann, J. 2009. Pre- and probiotics for human skin. J Dermatol Sci 54:1–5.Google Scholar
  78. Kuiper, I., Lagendijk, E.L., Bloemberg, G.V., and Lugtenberg, B.J. 2004. Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15.Google Scholar
  79. Kumar, A., Mandal, S., Selvakannan, P.R., Parischa, R., Mandale, A.B., and Sastry, M. 2003. Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282.Google Scholar
  80. Kurokawa, K., Itoh, T., Kuwahara, T., Oshima, K., Toh, H., Toyoda, A., Takami, H., Morita, H., Sharma, V.K., Srivastava, T.P., Taylor, T.D., Noguchi, H., Mori, H., Ogura, Y., Ehrlich, D.S., Itoh, K., Takagi, T., Sakaki, Y., Hayashi, T., and Hattori, M. 2007. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181.Google Scholar
  81. Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jorgensen, B.B., Kuenen, J.G., Damste, J.S.S., Strous, M., and Jetten, M.S.M. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611.Google Scholar
  82. Labana, S., Pandey, G., Paul, D., Sharma, N.K., Basu, A., and Jain, R.K. 2005. Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environ Sci Technol 39:3330–3337.Google Scholar
  83. Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., Raina, V., Kohler, H.P.E., Holliger, C., Jackson, C., and Oakeshott, J.G. 2010. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80.Google Scholar
  84. Lang, C., Tao, S., Liu, W., Zhang, Y., and Simonich, S. 2008. Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China. Environ Sci Technol 42:5196–5201.Google Scholar
  85. Lebeer, S., Vanderleyden, J., and De Keersmaecker, S.C. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764.Google Scholar
  86. Leeman, M., Denouden, F.M., van Pelt, J.A., Cornelissen, C., MatamalaGarros, A., Bakker, P.A.H.M., and Schippers, B. 1996. Suppression of fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root-colonizing fungi. Eur J Plant Pathol 102:21–31.Google Scholar
  87. Lei, Y., Chen, W., and Mulchandani, A. 2006. Microbial biosensors. Anal Chim Acta 568:200–210.Google Scholar
  88. Li, Y.R. and Chu, J. 1991. Study of BOD microbial sensors for waste water treatment control. Appl Biochem Biotechnol 28–29:855–863.Google Scholar
  89. Liu, W.T., Marsh, T.L., Cheng, H., and Forney, L.J. 1997. Characterization of microbial diversity by terminal restriction length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522.Google Scholar
  90. Lovley, D.R., Stolz, J.F., Nord, G.L., and Philips, E.J.P. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254.Google Scholar
  91. Lowenstam, H.A. 1981. Minerals formed by organisms. Science 211:1126–1131.Google Scholar
  92. Lugtenberg, B.J.J., Dekkers, L., and Bloemberg, G.V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490.Google Scholar
  93. Lundstedt, S., White, P.A., Lemieux, C.L., Lynes, K.D., Lambert, I.B., Oberg, L., Heglund, P., and Tysklind, M. 2007. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio 36:475–485.Google Scholar
  94. Lutz, M.P., Wenger, S., Maurhofer, M., Defago, G., and Duffy, B. 2004. Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48:447–455.Google Scholar
  95. Mandal, D., Bolander, M.E., Mukhopadhya, D., Sarkar, G., and Mukharjee, P. 2006. The use of microorganism for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492.Google Scholar
  96. Mann, S. 1993. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505.Google Scholar
  97. Mann, S. 1996. Biomimetic materials chemistry. VCH: New York, pp. 1–40.Google Scholar
  98. Margesin, R., Gander, S., Zacke, G., Gounot, A.M., Schinner, F. 2003. Hydrocarbon degradation and enzyme activities of coldadapted bacteria and yeast. Extremophiles 7:451–458.Google Scholar
  99. Massol-Deya, A.A., Odelson, D.A., Hickey, R.F., and Tiedje, J.M. 1995. Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal RNA gene sequences and restriction endonuclease analysis (ARDRA). In: Molecular microbial ecology manual, Akerman, A.D.L., van Elsas, J.D., de Bruijn, F.J. (eds.). Kluwer Academics: Dordrecht, Netherlands.Google Scholar
  100. Matilla, M.A., Espinosa-Urgel, M., Rodriguez-Herva, J.J., Ramos, J.L., and Ramos-Gonzalez, M.I. 2007. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8(9):R179.Google Scholar
  101. McCaig, A.E., Glover, L., and Prosser, J.I. 1999. Molecular analysis of bacterial community structure and diversity in unimproved upland grass pastures. Appl Environ Microbiol 65:1721–1730.Google Scholar
  102. Meador, J.P. 2003. Bioaccumulation of PAHs in marine invertebrates. In: PAHs: an ecotoxicological perspective, Douben, P.E.T. (ed.), pp. 147–171. Wiley: London, UK.Google Scholar
  103. Mehra, R.K. and Winge, D.R. 1991. Metal ions resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40.Google Scholar
  104. Metchnikoff, E. 1907. Essais optimistes. The prolongation of life optimistic studies. Heinemann: London, UK.Google Scholar
  105. Mikkelson, S.R. and Corton, E. 2004. Bioanalytical chemistry. Wiley: Hoboken, NJ.Google Scholar
  106. Mohanty, S.R., Bodelier, P.L.E., Floris, V., and Conrad, R. 2006. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354.Google Scholar
  107. Morrissey, J.P., Walsh, U.F., O’Donnell, A., Moenne-Loccoz, Y., and O’Gara, F. 2002. Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek 81:599–606.Google Scholar
  108. Morrissey, J.P., Dow, J.M., Mark, G.L., and O’Gara, F. 2004. Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926.Google Scholar
  109. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Ramani, R., Parischa, R., Ajayakumar, P.V., Alam, M., Sastry, M., and Kumar, R. 2001a. Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588.Google Scholar
  110. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parischa, R., Ajayakumar, P.V., Alam, M., Kumar, R., and Sastry, M. 2001b. Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519.Google Scholar
  111. Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M.I., Kumar, R., and Sastry, M. 2002. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463.Google Scholar
  112. Mulchandani, A. and Rogers, K.R. 1998. Enzyme and microbial biosensors: techniques and protocols. Humana Press: Totowa, NJ.Google Scholar
  113. Mulchandani, A., Mulchandani, P., Kaneva, I., and Chen, W. 1998. Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode. Anal Chem 70:4140–4145.Google Scholar
  114. Muyzer, G. and Smalla, K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141.Google Scholar
  115. Nam, J.J., Sweetman, A.J., and Jones, K.C. 2009. Polynuclear aromatic hydrocarbons (PAHs) in global background soils. J Environ Monit 11:45–48.Google Scholar
  116. Neff, J.M. 2002. Bioaccumulation in marine organisms: effect of contaminants from oil well produced water. Elsevier Press: Amsterdam, The Netherlands.Google Scholar
  117. Nowak, J. and Shulaev, V. 2003. Priming for transplant stress resistance in in vitro propagation. In Vitro Cell Dev Biol Plant 39:107–124.Google Scholar
  118. Ohki, A., Shinohara, K., Ito, O., Naka, K., Maeda, S., Sato, T., Akano, H., Kato, N., and Kawamura, Y. 1994. A BOD sensor using Klebsiella oxytoca AS1. Int J Environ Anal Chem 56:261–269.Google Scholar
  119. Ohkouchi, N., Kawamura, K., and Kawahata, H. 1999. Distributions of three- to seven-ring polynuclear aromatic hydrocarbons on the deep sea floor in the central pacific. Environ Sci Technol 33:3086–3090.Google Scholar
  120. Okochi, M., Mima, K., Miyata, M., Shinozaki, Y., Haraguchi, S., Fujisawa, M., Kaneko, M., Masukata, T., and Matsunaga, T. 2004. Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant. Biotechnol Bioeng 87:905–911.Google Scholar
  121. Olivain, C., Alabouvette, C., and Steinberg, C. 2004. Production of a mixed inoculum of Fusarium oxysporum Fo47 and Pseudomonas fluorescens C7 to control Fusarium diseases. Biocontrol Sci Technol 14:227–238.Google Scholar
  122. Oliver, S., Kupermann, A., Coombs, N., Lough, A., and Ozin, G.A. 1995. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378:47–50.Google Scholar
  123. Ouwehand, A.C., Salminen, S., and Isolauri, E. 2002. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289.Google Scholar
  124. Ovreas, L. and Torsvik, V. 1998. Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315.Google Scholar
  125. Paul, E.A. 2007. Soil microbiology, ecology, and biochemistry, 3rd ed. Academic Press: San Diego.Google Scholar
  126. Pierson, E.A., Wood, D.W., Cannon, J.A., Blachere, F.M., and Pierson, L.S. 1998. Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078–1084.Google Scholar
  127. Pinton, R., Varanini, Z., and Nannipieri, P. 2001. The rhizosphere as a site of biochemical interactions among soil component, plants and microorganisms. In: The rhizosphere: biochemistry and organic substances at the soil plant interface, Pinton, R., Varanini, Z., and Nannipieri, P. (eds.), pp. 1–18. Marcel Dekker, New York.Google Scholar
  128. Porteous, F., Killham, K., and Meharg, A. 2000. Use of a lux-marked rhizobacterium as a biosensor to assess changes in rhizosphere C flow due to pollutant stress. Chemosphere 41:1549–1554.Google Scholar
  129. Postma, J., Montanari, M., and van den Boogert, P.H.J.F. 2003. Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:157–163.Google Scholar
  130. Pum, D. and Sleytr, U.B. 1999. The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol 17:8–12.Google Scholar
  131. Rabaey, K. and Verstraete, W. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298.Google Scholar
  132. Rajkumar, M., Lee, K.J., Lee, W.H., and Banu, J.R. 2005. Growth of Brassica juncea under chromium stress: influence of siderophores and indole-3-acetic acid producing rhizosphere bacteria. J Environ Biol 26:693–699.Google Scholar
  133. Ramsay, G. 1998. Commercial biosensors: applications to clinical, bioprocess and environmental samples. Wiley: Chichester, UK.Google Scholar
  134. Ranjard, L. and Richaume, A.S. 2001. Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152:707–716.Google Scholar
  135. Rasmussen, L.D., Turner, R.R., and Barkay, T. 1997. Cell-density-dependent sensitivity of a mer-lux bioassay. Appl Environ Microbiol 63:3291–3293.Google Scholar
  136. Raupach, G.S. and Kloepper, J.W. 1998. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164.Google Scholar
  137. Reid, G. 2008. Probiotic lactobacilli for urogenital health in women. J Clin Gastroenterol 42 (Suppl. 3 Part 2): S234–S236.Google Scholar
  138. Rensing, C. and Maier, R.M. 2003. Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol Environ Saf 56:140–147.Google Scholar
  139. Riedel, K., Renneberg, R., Kuhn, M., and Scheller, F. 1988. A fast estimation of biochemical oxygen demand using microbial sensors. Appl Microbiol Biotechnol 28:316–318.Google Scholar
  140. Rojo, F., Pieper, D.H., Engesser, K.-H., Knackmuss, H.J., and Timmis, K.N. 1987. Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398.Google Scholar
  141. Rovira, A.D. 1965. Interactions between plant roots and soil microorganisms. Annu Rev Microbiol 19:241–266.Google Scholar
  142. Samanta, S., Singh, O.V., and Jain, R.K. 2002. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248.Google Scholar
  143. Sastry, M., Ahmad, A., Khan, M.I., and Kumar, R. 2004. Microbial nanoparticle production. In: Nanobiotechnology, Niemeyer, C.M. and Mirkin, C.A. (eds.), pp 126–135. Wiley-VCH, Weinheim, Germany.Google Scholar
  144. Scheibe, T.D., Mahadevan, R., Fang, Y., Garg, S., Long, P.E., and Lovley, D.R. 2009. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb Biotechnol 2:274–286.Google Scholar
  145. Schisler, D.A., Slininger, P.J., and Bothast, R.J. 1997. Effects of antagonist cell concentration and two-strain mixtures on biological control of Fusarium dry rot of potatoes. Phytopathology 87:177–183.Google Scholar
  146. Schmalenberger, A. and Tebbe, C.C. 2002. Bacterial community composition in the rhizosphere transgenic, herbicide resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore. FEMS Microbiol Ecol 40:29–37.Google Scholar
  147. Selifonova, O., Burlage, R., and Barkay, T. 1993. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090.Google Scholar
  148. Sessitsch, A., Coenye, T., Sturz, A.V., Vandamme, P., Ait Barka, E., Salles, J.F., van Elsas, J.D., Faure, D., Reiter, B., Glick, B.R., Wang-Pruski, G., and Nowak, J. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192.Google Scholar
  149. Siddiqui, K.S. and Cavicchioli, R. 2006. Cold-adapted enzymes. Annu Rev Biochem 75:403–433.Google Scholar
  150. Siezen, R.J. and Wilson, G. 2010. Probiotics genomics. Microb Biotechnol 3:1–9.Google Scholar
  151. Simkiss, K. and Wilbur, K.M. 1989. Biomineralization. Academic Press: New York.Google Scholar
  152. Singh, O.V. 2006. Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics 6: 5481–5492.Google Scholar
  153. Sleytr, U.B., Messner, P., Pum, D., and Sara, M. 1999. Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed 38:1035–1054.Google Scholar
  154. Smidt, H. and de Vos, W.M. 2004. Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73.Google Scholar
  155. Spring, H. and Schleifer, K.H. 1995. Diversity of magnetotactic bacteria. Syst Appl Microbiol 18:147–153.Google Scholar
  156. Stephen, J.R. and Macnaughton, S.J. 1999. Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10:230–233.Google Scholar
  157. Sturz, A.V., Christie, B.R., and Nowak, J. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30.Google Scholar
  158. Subrahmanyam, S., Shanmugam, K., Subramanian, T.V., Murugesan, M., Madhav, V.M., and Jeyakumar, D. 2001. Development of electrochemical microbial biosensor for ethanol based on Aspergillus niger. Electroanalysis 13:944–948.Google Scholar
  159. Sylvia, D.M., Fuhrman, J.J., Hartel, P.G., and Zuberer, D.A. 2005. Principles and applications of soil microbiology, pp. 35–38. Prentice Hall: Upper Saddle River, NJ, USA.Google Scholar
  160. Temmerman, R., Vervaeren, H., Noseda, B., Boon, N., and Verstraete, W. 2006. Necrotrophic growth of Legionella pneumophila. Appl Environ Microbiol 72:4323–4328.Google Scholar
  161. Tibazarwa, C., Corbisier, P., Mench, M., Bossus, A., Solda, P., Mergeay, M., Wyns, L., and van der Lelie, D. 2001. A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26.Google Scholar
  162. Timms-Wilson, T.M., Ellis, R.J., Renwick, A., Rhodes, D.J., Mavrodi, D.V., Weller, D.M., Thomashow, L.S., and Bailey, M.J. 2000. Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13:1293–1300.Google Scholar
  163. Timur, S., Pazarlioglu, N., Pilloton, R., and Telefoncu, A. 2003. Detection of phenolic compounds by thick film sensors based on Pseudomonas putida. Talanta 61:87–93.Google Scholar
  164. Tissier, H. 1900. Recherchers sur la flora intestinale normale et pathologique du nourisson. University of Paris: Paris, France.Google Scholar
  165. Tkac, J., Gemeiner, P., Svitel, J., Benikovsky, B., Sturdík, E., Vala, V., Petrus, L., and Hrabarova, E. 2000. Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Anal Chim Acta 420:1–7.Google Scholar
  166. Torsvik, V. and Ovreas, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245.Google Scholar
  167. Torsvik, V., Goksoyr, J., and Daae, F.D. 1990. High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787.Google Scholar
  168. Van de Wiele, T., Vanhaecke, L., Boeckaert, C., Peru, K., Headley, J., Verstraete,W., and Siciliano, S. 2005. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect 113:6–10.Google Scholar
  169. van De Woestyne, M., Gellens, V., Anasi, I., and Verstraete, W. 1994. Anaerobic digestion and inter-regional recycling of organic soil supplements. In: Sustainable rural environment and energy network (SREN) – Biogas technology as an environmental solution to pollution, Marchaim, U. and Ney, G. (eds.), REUR Technical series number 33. FAO: Rome (Italy).Google Scholar
  170. van Elsas, J.D., Trevors, J.T., and Starodub, M.E. 1998. Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol Lett 53:299–306.Google Scholar
  171. van Trappen, S., Vandecandelaere, I., Mergaert, J., and Swings, J. 2005. Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 55:769–772.Google Scholar
  172. Ventura, M., O’Connell-Motherway, M., Leahy, S., Moreno-Munoz, J.A., Fitzgerald, G.F., and van Sinderen, D. 2007. From bacterial genome to functionality; case bifidobacteria. Int J Food Microbiol 120:2–12.Google Scholar
  173. Verstaete, W., Wittelbolle, L., Heylen, K., Vanprays, B., de Vos, P., van de Wiele, T., and Boon, N. 2007. Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7:117–126.Google Scholar
  174. Wagrowski, D.M. and Hites, R.A. 1997. Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation. Environ Sci Technol 31:279–282.Google Scholar
  175. Walsh, U.F., Morrissey, J.P., and O’Gara, F. 2001. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295.Google Scholar
  176. Wang, C., Knill, E., Glick, B.R., and Defago, G. 2000. Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907.Google Scholar
  177. Welbaum, G., Sturz, A.V., Dong, Z., and Nowak, J. 2004. Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193.Google Scholar
  178. Wynn, S.G. 2009. Probiotics in veterinary practice. J Am Vet Med Assoc 234:606–613.Google Scholar
  179. Yamada, T., Hiraoka, Y., Das Gupta, T.K., and Chakrabarty, A.M. 2004. Rusticyanin, a bacterial electron transfer protein causes G(1) arrest in J774 and apoptosis in human cancer cells. Cell Cycle 3:1182–1187.Google Scholar
  180. Yoshida, N., Hoashi, J., Morita, T., McNiven, S.J., Nakamura, H., and Karube, I. 2001. Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. J Biotechnol 88:269–275.Google Scholar
  181. Zafar, S., Aqil, F., and Ahmad, I. 2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2257–2261.Google Scholar
  182. Zakaria, M.P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., and Kumata, H. 2002. Distribution of polycyclic aromatic (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environ Sci Technol 36:1907–1918.Google Scholar
  183. Zocca, C., Di Gregorio, S., Visentini, F., and Vallini, G. 2004. Biodiversity amongst cultivable polycyclic aromatic hydrocarbon-transforming bacteria isolated from an abandoned industrial site. FEMS Microbiol Lett 238:375–382.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Iqbal Ahmad
  • Mohd Sajjad Ahmad Khan
  • Farrukh Aqil
  • Mahipal Singh
    • 1
    Email author
  1. 1.Animal Science DivisionFort Valley State UniversityFort ValleyUSA

Personalised recommendations