Skip to main content

Targeting C-Type Lectin for the Treatment of Flavivirus Infections

  • Conference paper
  • First Online:
The Molecular Immunology of Complex Carbohydrates-3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 705))

Abstract

The genus Flavivirus contains approximately 70 viruses, and the major flaviviruses that cause human diseases are yellow fever virus (YFV), dengue virus (DV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus [1]. The flaviviral particles contain single-stranded, positive-sensed RNA genome packaged within an icosahedral capsid formed by the capsid protein. The genome-containing capsid is surrounded by a host-derived lipid bilayer bearing dimers of the viral envelope protein and the membrane protein. The sizes of flavivirus virions are approximately 37–50 nm. Thus, the antigenic, genetic, and three-dimensional structures of all the flaviviruses are similar to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett A, Weaver S (2002) Arboviruses: alphaviruses flaviviruses and bunyaviruses. Med Microbiol 482–494

    Google Scholar 

  2. Murray P, Rosenthal K, Pfaller M (2005) Togaviruses and flaviviruses. Med Microbiol 619–628

    Google Scholar 

  3. Heinz FX, Allison SL (2003) Flavivirus structure and membrane fusion. Adv Virus Res 59:63–97

    Article  PubMed  CAS  Google Scholar 

  4. Johnson AJ, Guirakhoo F, Roehrig JT (1994) The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology 203:241–249

    Article  PubMed  CAS  Google Scholar 

  5. Mondotte JA, Lozach PY, Amara A, Gamarnik AV (2007) Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol 81:7136–7148

    Article  PubMed  CAS  Google Scholar 

  6. Pokidysheva E, Zhang Y, Battisti AJ et al (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493

    Article  PubMed  CAS  Google Scholar 

  7. Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100:6986–6991

    Article  PubMed  CAS  Google Scholar 

  8. Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM, Doms RW (2005) N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol 79:13262–13274

    Article  PubMed  CAS  Google Scholar 

  9. Kawano H, Rostapshov V, Rosen L, Lai CJ (1993) Genetic determinants of dengue type 4 virus neurovirulence for mice. J Virol 67:6567–6575

    PubMed  CAS  Google Scholar 

  10. Shirato K, Miyoshi H, Kariwa H, Takashima I (2006) The kinetics of proinflammatory cytokines in murine peritoneal macrophages infected with envelope protein-glycosylated or non-glycosylated West Nile virus. Virus Res 121:11–16

    Article  PubMed  CAS  Google Scholar 

  11. Davis CW, Nguyen HY, Hanna SL, Sanchez MD, Doms RW, Pierson TC (2006) West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80:1290–1301

    Article  PubMed  CAS  Google Scholar 

  12. Wu SJ, Grouard-Vogel G, Sun W et al (2000) Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6:816–820

    Article  PubMed  CAS  Google Scholar 

  13. Chen YC, Wang SY (2002) Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide. J Virol 76:9877–9887

    Article  PubMed  CAS  Google Scholar 

  14. Navarro-Sanchez E, Altmeyer R, Amara A et al (2003) Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723–728

    Article  PubMed  CAS  Google Scholar 

  15. Tassaneetrithep B, Burgess TH, Granelli-Piperno A et al (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829

    Article  PubMed  CAS  Google Scholar 

  16. Miller JL, deWet BJ, Martinez-Pomares L et al (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4:e17

    Article  PubMed  Google Scholar 

  17. Chen ST, Lin YL, Huang MT et al (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453:672–676

    Article  PubMed  CAS  Google Scholar 

  18. Bakker AB, Baker E, Sutherland GR, Phillips JH, Lanier LL (1999) Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc Natl Acad Sci USA 96:9792–9796

    Article  PubMed  CAS  Google Scholar 

  19. Brown GD, Taylor PR, Reid DM et al (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196:407–412

    Article  PubMed  CAS  Google Scholar 

  20. Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413:36–37

    Article  PubMed  CAS  Google Scholar 

  21. Pang T, Cardosa MJ, Guzman MG (2007) Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol Cell Biol 85:43–45

    Article  PubMed  CAS  Google Scholar 

  22. Theofilopoulos AN, Baccala R, Beutler B, Kono DH (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23:307–336

    Article  PubMed  CAS  Google Scholar 

  23. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131:1124–1136

    Article  PubMed  CAS  Google Scholar 

  24. Kong KF, Delroux K, Wang X et al (2008) Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J Virol 82:7613–7623

    Article  PubMed  CAS  Google Scholar 

  25. Sakuntabhai A, Turbpaiboon C, Casademont I et al (2005) A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet 37:507–513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported mainly by the National Research Program for Genomic Medicine, National Science Council, Taiwan (NSC-95-3112-B-010-0171 & NSC 96-3112-B-010-2), and in part by the National Yang-Ming University, Taiwan (96A-D-D132 from MOE), the Taipei Veterans General Hospital (V97S5-001), and Academia Sinica.

We are grateful to the resources and collaborative efforts provided by the RNAi Consortium, Academia Sinica, Taiwan, and the Consortium for Functional Glycomics, funded by NIGMS-GM62116 USA.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Chen, ST., Lin, YL., Huang, MT., Wu, MF., Hsieh, SL. (2011). Targeting C-Type Lectin for the Treatment of Flavivirus Infections. In: Wu, A. (eds) The Molecular Immunology of Complex Carbohydrates-3. Advances in Experimental Medicine and Biology, vol 705. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7877-6_40

Download citation

Publish with us

Policies and ethics