Skip to main content

Diversity of Natural Anti-α-Galactosyl Antibodies in Human Serum

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 705))

Abstract

Human serum contains many natural antibodies specific to carbohydrate epitopes (glycotopes) that are absent, or present in a cryptic form, in the host tissues. The first known examples were isoantibodies recognizing blood group A (GalNAcα1-3[Fucα1-2]Galβ-) or B (Galα1-3[Fucα1-2]Galβ-) antigens. Later, several anticarbohydrate antibodies commonly present in all or most human sera were detected thanks to the finding of rare polyagglutinable erythrocytes [1, 2]. Anti-T antibodies agglutinate desialylated human erythrocytes due to reactivity with Galβ1-3GalNAcα1-Ser/Thr units (Thomsen–Friedenreich antigen) of asialoglycophorins. This disaccharide is sialylated in normal human tissues and can be transiently exposed under pathological states by the action of microbial sialidases. Anti-Tn antibodies recognize GalNAcα1-Ser/Thr units that are persistently exposed in the rare Tn syndrome on mucin-type glycoproteins due to incomplete biosynthesis of O-glycans. In contrast to normal tissues, T and Tn antigens are expressed by various types of cancer cells and were the subject of wide interest as markers of malignancy. The first reported inherited type of polyagglutination was Cad, related to the Sda blood group.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beck ML (2000) Red blood cell polyagglutination: clinical aspects. Semin Hematol 37:186–196

    Article  PubMed  CAS  Google Scholar 

  2. Lisowska E, Duk M (2001) Red blood cell antigens responsible for inherited types of polyagglutination. Adv Exp Biol Med 491:141–153

    CAS  Google Scholar 

  3. Galili U, Rachmilewitz EA, Peleg A, Flechner I (1984) A unique natural human IgG antibody with anti-α-galactosyl specificity. J Exp Med 160:1510–1531

    Article  Google Scholar 

  4. Galili U, Macher BA, Buehler J, Shohet SB (1985) Human natural anti-α-galactosyl IgG. II. The specific recognition of α(1→3)-linked galactose residues. J Exp Med 162:573–582

    Article  PubMed  CAS  Google Scholar 

  5. Galili U, Clark MR, Shohet SB, Buehler J, Macher BA (1987) Evolutionary relationship between the natural anti-Gal antibody and the Galα1→3Gal epitope in primates. Proc Natl Acad Sci USA 84:1369–1373

    Article  PubMed  CAS  Google Scholar 

  6. Galili U, Mandrell RE, Hamadeh MR, Shohet SB, Griffiss JM (1988) Interaction between human natural anti-α-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun 56:1730–1737

    PubMed  CAS  Google Scholar 

  7. Macher BA, Galili U (2008) The Galα1, 3Galβ1, 4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta 1780:75–88

    PubMed  CAS  Google Scholar 

  8. Larsen RD, Rivera-Marrero CA, Ernst LK, Cummings RD, Lowe JB (1990) Frameshift and nonsense mutations in human genomic sequence homologous to a murine UDP-Gal:β-D-Gal(1, 4)-D-GlcNAc α(1, 3)-galactosyl-transferase cDNA. J Biol Chem 265:7055–7061

    PubMed  CAS  Google Scholar 

  9. Joziasse DH, Shaper JH, Jabs EW, Shaper NL (1991) Characterization of an α1→3-galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogene. J Biol Chem 266:6991–6998

    PubMed  CAS  Google Scholar 

  10. Koike C, Fung JJ, Geller DA, Kannagi R, Libert T, Luppi P, Nakashima I, Profozich J, Rudert W, Sharma SB, Starz TE, Trucco M (2002) Molecular basis of evolutionary loss of the α1, 3-galactosyltransferase gene in higher primates. J Biol Chem 277:10114–10120

    Article  PubMed  CAS  Google Scholar 

  11. Jozassie DH, Oriol R (1999) Xenotransplantation: the importance of the Galα1, 3Gal epitope in hyperacute vascular rejection. Biochim Biophys Acta 1455:403–418

    Google Scholar 

  12. Ezzelarab M, Cooper DKC (2005) Reducing Gal expression on the pig organ – a retrospective view. Xenotransplantation 12:278–285

    Article  PubMed  Google Scholar 

  13. Galili U (2006) Xenotransplantation and ABO incompatible transplantation: the similarities they share. Transfus Apher Sci 35:45–58

    Article  PubMed  Google Scholar 

  14. Cretin N, Bracy J, Hanson K, Iacomini J (2002) The role of T cell help in the production of antibodies specific for Galα1-3Gal. J Immunol 168:1479–1483

    PubMed  CAS  Google Scholar 

  15. McKane W, Lee J, Preston R, Hacking A, Simpson P, Lynds S, Goldberg L, Cairns T, Taube D (1998) Polymorphism in the human anti-pig natural antibody repertoire: implications for antigen-specific immuno-adsorption. Transplantation 66:626–633

    Article  PubMed  CAS  Google Scholar 

  16. Parker W, Lateef J, Everett ML, Platt JL (1996) Specificity of xenoreactive anti-Galα1-3Gal IgM for α-galactosyl ligands. Glycobiology 6:499–506

    Article  PubMed  CAS  Google Scholar 

  17. Galili U, Buehler J, Shohet SB, Macher BA (1987) The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J Exp Med 165:693–704

    Article  PubMed  CAS  Google Scholar 

  18. Neethling FA, Joziasse D, Bovin N, Cooper DK, Oriol R (1996) The reducing end of αGal oligosaccharides contributes to their efficiency in blocking natural antibodies of human and baboon sera. Transpl Int 9:98–101

    Article  PubMed  CAS  Google Scholar 

  19. Rieben R, Bovin NV, Korchagina EY, Oriol R, Nifant’ev E, Tsvetkov DE, Daha MR, Mohacsi PJ, Joziasse DH (2000) Xenotransplantation: in vitro analysis of synthetic α-galactosyl inhibitors of human anti-Galα1-3Gal IgM and IgG antibodies. Glycobiology 10:141–148

    Article  PubMed  CAS  Google Scholar 

  20. Corzana F, Bettler E, Herve du Penhoat C, Tyrtysh TV, Bovin NV, Imberty A (2002) Solution structure of two xenoantigens: αGal-LacNAc and αGal-Lewis X. Glycobiology 12:241–250

    Article  PubMed  CAS  Google Scholar 

  21. Andreana PR, Kowal P, Janczuk AJ, Wang PG (2004) Alpha-Galactosyl trisaccharide epitope: modification of the 6-primary positions and recognition by human anti-αGal antibody. Glycoconj J 20:107–118

    Article  PubMed  CAS  Google Scholar 

  22. Hamadeh RM, Jarvis GA, Zhou P, Cotleur AC, Griffiss JM (1996) Bacterial enzymes can add galactose α1, 3 to human erythrocytes and create a senescence-associated epitope. Infect Immun 64:528–534

    PubMed  CAS  Google Scholar 

  23. Kooyman DL, McClellan SB, Parker M, Avissar PL, Velardo MA, Platt JL, Logan JS (1996) Identification and characterization of a galactosyl peptide mimetic. Implications for use in removing xenoreactive anti-A Gal antibodies. Transplantation 61:851–855

    Article  PubMed  CAS  Google Scholar 

  24. Zhan J, Xia Z, Xu L, Yan Z, Wang K (2003) A peptide mimetic of Gal-α1, 3-Gal is able to block human natural antibodies. Biochem Biophys Res Commun 308:19–22

    Article  PubMed  CAS  Google Scholar 

  25. Lang J, Zhan J, Xu L, Yan Z (2006) Identification of peptide mimetics of xenoreactive α-Gal antigenic epitope by phage display. Biochem Biophys Res Commun 344:214–220

    Article  PubMed  CAS  Google Scholar 

  26. Buonomano R, Tinguely C, Rieben R, Mohacsi PJ, Nydegger UE (1999) Quantitation and characterization of anti-Galα1-3Gal antibodies in sera of 200 healthy persons. Xenotransplantation 5:173–180

    Article  Google Scholar 

  27. Galili U, Tibell A, Samuelsson B, Rydberg L, Groth CG (1996) Increased anti-Gal activity in diabetic patients transplanted with porcine islet cells. Transplant Proc 28:564–566

    PubMed  CAS  Google Scholar 

  28. Avila JL, Rojas M, Galili U (1989) Immunogenic Gal-α1-3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J Immunol 142:2828–2834

    PubMed  CAS  Google Scholar 

  29. Almeida IC, Milan SR, Gorin PAJ, Travassos LR (1991) Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-α-galactosyl antibodies. J Immunol 146:2394–2400

    PubMed  CAS  Google Scholar 

  30. Ravindran D, Satapathy AK, Das MK (1988) Naturally occurring anti α-galactosyl antibodies in human Plasmodium falciparum infections – a possible role for autoantibodies in malaria. Immunol Lett 19:137–138

    Article  PubMed  CAS  Google Scholar 

  31. Hamadeh RM, Jarvis GA, Galili U, Mandrell RE, Zhou P, Griffiss JM (1992) Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest 89:1223–1235

    Article  PubMed  CAS  Google Scholar 

  32. Repik PM, Strizki JM, Galili U (1994) Differential host-dependent expression of α-galactosyl epitopes on viral glycoproteins: a study of eastern equine encephalitis virus as a model. J Gen Virol 75:1177–1181

    Article  PubMed  CAS  Google Scholar 

  33. Rother RP, Fodor WL, Springhorn JP, Birks CW, Setter E, Sandrin MS, Squinto SP, Rollins SA (1995) A novel mechanism of retrovirus inactivation in human serum mediated by anti-α-galactosyl natural antibody. J Exp Med 182:1345–1355

    Article  PubMed  CAS  Google Scholar 

  34. D’Alessandro M, Mariani P, Lomanto D, Bachetoni A, Speranza V (2002) Alterations in serum anti-α-galactosyl antibodies in patients with Crohn’s disease and ulcerative colitis. Clin Immunol 103:63–68

    Article  PubMed  Google Scholar 

  35. Winand RJ, Winand Devigne J, Meurisse M, Galili U (1994) Specific stimulation of Graves’ disease thyrocytes by the natural anti-Gal antibody from normal and autologous serum. J Immunol 153:1386–1395

    PubMed  CAS  Google Scholar 

  36. Fullmer J, Lindall A, Bahn R, Mariash CN (2005) The possible contribution of anti-Gal to Graves’ disease. Thyroid 15:1239–1243

    Article  PubMed  CAS  Google Scholar 

  37. Galili U (2004) Autologous tumor vaccines processed to express α-gal epitopes: a practical approach to immunotherapy in cancer. Cancer Immunol Immunother 53:935–945

    Article  PubMed  CAS  Google Scholar 

  38. Galili U (2005) The α-Gal epitope and the anti-Gal antibody in xenotransplantation and cancer immunotherapy. Immunol Cell Biol 83:674–686

    Article  PubMed  CAS  Google Scholar 

  39. Galili U, Wigglesworth K, Abdel-Motal UM (2007) Intratumoral injection of α-gal glycolipids induces xenograft-like destruction and conversion of lesions into endogenous vaccines. J Immunol 178:4676–4687

    PubMed  CAS  Google Scholar 

  40. Abdel-Motal U, Wang S, Lu S, Wigglesworth K, Galili U (2006) Increased immunogenicity of human immunodeficiency virus gp120 engineered to express Galα1-3Galβ1-4GlcNAc-R epitopes. J Virol 80:6943–6951

    Article  PubMed  CAS  Google Scholar 

  41. Abdel-Motal UM, Guay HM, Wigglesworth RM, Welsh U, Galili U (2007) Immunogenicity of influenza virus vaccine is increased by anti-gal-mediated targeting to antigen-presenting cells. J Virol 81:9131–9141

    Article  PubMed  CAS  Google Scholar 

  42. Harris PA, Roman GK, Moulds JJ, Bird GWG, Shah NG (1982) An inherited RBC characteristic, NOR, resulting in erythrocyte polyagglutination. Vox Sang 42:134–140

    Article  PubMed  CAS  Google Scholar 

  43. Kuśnierz-Alejska G, Duk M, Storry JR, Reid ME, Więcek B, Seyfried H, Lisowska E (1999) NOR polyagglutination and Sta glycophorin in one family. Relation of NOR polyagglutination to terminal α-galactose residues and abnormal glycolipids. Transfusion 39:32–38

    Article  PubMed  Google Scholar 

  44. Duk M, Reinhold BB, Reinhold VN, Kuśnierz-Alejska G, Lisowska E (2001) Structure of a neutral glycosphingolipid recognized by human antibodies in polyagglutinable erythrocytes of the rare NOR phenotype. J Biol Chem 276:40574–40582

    Article  PubMed  CAS  Google Scholar 

  45. Duk M, Singh S, Reinhold VN, Krotkiewski H, Kurowska E, Lisowska E (2007) Structures of unique globoside elongation products present in erythrocytes with a rare NOR phenotype. Glycobiology 17:304–312

    Article  PubMed  CAS  Google Scholar 

  46. Duk M, Lisowska E, Moulds JJ (2006) Polyagglutinable NOR erythrocytes found in an American and a Polish family have the same unique glycosphingolipids. Transfusion 46:1264–1265

    Article  PubMed  Google Scholar 

  47. Westerlind U, Hagback P, Duk M, Norberg T (2002) Synthesis and inhibitory activity of a di- and a trisaccharide corresponding to an erythrocyte glycolipid responsible for the NOR polyagglutination. Carbohydr Res 337:1517–1522

    Article  PubMed  CAS  Google Scholar 

  48. Duk M, Westerlind U, Norberg T, Pazynina G, Bovin NN, Lisowska E (2003) Specificity of human anti-NOR antibodies, a distinct species of ‘natural’ anti-α-galactosyl antibodies. Glycobiology 13:279–284

    Article  PubMed  CAS  Google Scholar 

  49. Duk M, Kuśnierz-Alejska G, Korchagina E, Yu BNV, Bochenek S, Lisowska E (2005) Anti-α-galactosyl antibodies recognizing epitopes terminating with α1-4-linked galactose: human natural and mouse monoclonal anti-NOR and anti-P1 antibodies. Glycobiology 15:109–118

    PubMed  CAS  Google Scholar 

  50. Galili U, Ishida H, Tanabe K, Toma H (2002) Anti-Gal A/B, a novel anti-blood group antibody identified in recipients of abo-incompatible kidney allografts. Transplantation 74:1574–1580

    Article  PubMed  CAS  Google Scholar 

  51. Korchagina EY, Pochechueva TV, Obukhova PS, Formanovsky AA, Imberty A, Rieben R, Bovin NV (2005) Design of the blood group AB glycotope. Glycoconj J 22:127–133

    Article  PubMed  CAS  Google Scholar 

  52. Duk M, Lisowska E (2006) Presence of natural anti-Galα1-4GalNAcβ1-3Gal (anti-NOR) antibodies in animal sera. Glycoconj J 23:585–590

    Article  PubMed  CAS  Google Scholar 

  53. Mourad R, Morelle W, Neveu A, Strecker G (2001) Diversity of O-linked glycosylation ­patterns between species. Characterization of 25 oligosaccharide chains from oviductal mucins of Rana ridibunda. Eur J Biochem 268:1990–2003

    Article  PubMed  CAS  Google Scholar 

  54. Vinogradov EV, Kaca W, Knirel YA, Rozalski A, Kochetkov NV (1989) Structural studies on the fucosamine-containing O-specific polysaccharide of Proteus vulgaris O19. Eur J Biochem 180:95–99

    Article  PubMed  CAS  Google Scholar 

  55. Perepelov AV, Ujazda E, Senchenkova SN, Shashkov AS, Kaca W, Knirel YA (1999) Structural and serological studies on the O-antigen of Proteus mirabilis O14, a new polysaccharide containing 2-[(R)-1-carboxyethyl-amino]ethyl phosphate. Eur J Biochem 261:347–353

    Article  PubMed  CAS  Google Scholar 

  56. Toukach FV, Perepelov AV, Bartodziejska B, Shashkov AS, Blaszczyk A, Arbatsky NP, Rozalski A, Knirel YA (2003) Structure of the O-polysaccharide of Proteus vulgaris O44: a new O-antigen that contains an amide of D-glucuronic acid with L-alanine. Carbohydr Res 338:1431–1435

    Article  PubMed  CAS  Google Scholar 

  57. Kondakova AN, Zych K, Senchenkova SN, Zablotni A, Shashkov AS, Knirel YA, Sidorczyk Z (2003) Structure of the O-polysaccharide leads to classification of Proteus penneri 31 in Proteus serogroup O19. FEMS Immunol Med Microbiol 39:73–79

    Article  PubMed  CAS  Google Scholar 

  58. Ali T, Weintraub A, Widmalm G (2007) Structural determination of the O-antigenic polysaccharide from Escherichia coli O166. Carbohydr Res 342:274–278

    Article  PubMed  CAS  Google Scholar 

  59. Parker W, Lin SS, Yu PB, Sood A, Nakamura YC, Song A, Everett ML, Platt JL (1999) Naturally occurring anti-α-galactosyl antibodies: relationship to xenoreactive anti-α-galactosyl antibodies. Glycobiology 9:865–873

    Article  PubMed  CAS  Google Scholar 

  60. Obukhova P, Rieben R, Bovin N (2007) Normal human serum contains high levels of anti-Galα1-4GlcNAc antibodies. Xenotransplantation 14:627–635

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elwira Lisowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Lisowska, E., Duk, M. (2011). Diversity of Natural Anti-α-Galactosyl Antibodies in Human Serum. In: Wu, A. (eds) The Molecular Immunology of Complex Carbohydrates-3. Advances in Experimental Medicine and Biology, vol 705. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7877-6_30

Download citation

Publish with us

Policies and ethics