Skip to main content

Mass Spectrometry of Antibody–Drug Conjugates in Plasma and Tissue in Drug Development

  • Chapter
  • First Online:
Characterization of Protein Therapeutics using Mass Spectrometry

Abstract

The discovery of “soft” ionization techniques in mass spectrometry (MS) such as electrospray ionization (ESI) [1] and matrix-assisted laser desorption/ionization (MALDI) [2] for measuring molecular masses of intact proteins was a significant breakthrough in the analysis of proteins. The work was recognized by a Nobel Prize in Chemistry in 2002 and led to the widespread use of ESI–MS to characterize intact protein molecular masses in protein therapeutics discovery and development in biotechnology. Previously, it was only possible to measure peptide molecular masses. In contrast to the analysis of intact purified proteins in simple buffers by ESI–MS, the ability to analyze biotherapeutic proteins in plasma or other tissues is significantly more challenging due to interference from the background plasma/tissue proteome and has only recently been reported for plasma [3]. The intact molecular mass measurement of biotherapeutic proteins in plasma by ESI–MS required isolation of the proteins from plasma using affinity capture followed by elution of the isolated intact biotherapeutics of interest and liquid chromatography (LC)–ESI–MS characterization to determine their intact molecular masses. The ability to obtain intact molecular masses and thereby characterize structural changes in biotherapeutics in plasma for in vivo studies provides key insights for large molecule drug development. Additional information can be obtained by enzymatic digestion followed by peptide analysis using LC-tandem MS (MS/MS) methodology. Understanding biotransformation and molecular changes of biotherapeutics in vivo is particularly valuable for the development of antibody–drug conjugates (ADCs) where efficacy and safety may be affected. It also provides essential structural characterization information for the ADCs in vivo, necessary for designing appropriate quantitative assays for measuring pharmacokinetics (PK) and toxicokinetics (TK).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  Google Scholar 

  2. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  CAS  Google Scholar 

  3. Xu K, Liu L, Saad OM et al (2011) Characterization of intact antibody-drug conjugates from plasma/serum in vivo by affinity capture capillary LC-MS. Anal Biochem 412:56–66

    Article  CAS  Google Scholar 

  4. Carter PJ, Senter PD (2008) Antibody-drug conjugates for cancer therapy. Cancer J 14(3):154–169

    Article  CAS  Google Scholar 

  5. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drug as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  CAS  Google Scholar 

  6. Lewis Phillips GD, Li G, Dugger DL et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290

    Article  CAS  Google Scholar 

  7. DiJoseph JF, Goad ME, Dougher MM et al (2004) Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res 10(24):8620–8629

    Article  CAS  Google Scholar 

  8. Ojima I, Geng X, Wu X et al (2002) Tumor-specific novel taxoid-monoclonal antibody conjugates. J Med Chem 45(26):5620–5623

    Article  CAS  Google Scholar 

  9. Wahl AF, Klussman K, Thompson JD et al (2002) The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease. Cancer Res 62(13):3736–3742

    CAS  Google Scholar 

  10. Junutula JR, Raab H, Clark S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932

    Article  CAS  Google Scholar 

  11. Junutula JR, Bhakta S, Raab H et al (2008) Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J Immunol Methods 332:41–52

    Article  CAS  Google Scholar 

  12. Lambert JM (2005) Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol 5:543–549

    Article  CAS  Google Scholar 

  13. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    Article  CAS  Google Scholar 

  14. Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14(4):529–537

    Article  CAS  Google Scholar 

  15. Bross PF, Beitz J, Chen G et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496

    CAS  Google Scholar 

  16. FDA (2010) Mylotarg withdrawal. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm216458.htm

  17. Payne G (2003) Progress in immunoconjugate cancer therapeutics. Cancer Cell 3:207–212

    Article  CAS  Google Scholar 

  18. Polakis P (2005) Arming antibodies for cancer therapy. Curr Opin Pharmacol 5:382–387

    Article  CAS  Google Scholar 

  19. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:871–874

    Article  CAS  Google Scholar 

  20. Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418

    Article  CAS  Google Scholar 

  21. DeSilva B, Smith W, Weiner R et al (2003) Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res 20(11):1885–1900

    Article  CAS  Google Scholar 

  22. Ezan E, Dubois M, Bscher F (2009) Bioanalysis of recombinant proteins and antibodies by mass spectrometry. Analyst 134:825–834

    Article  CAS  Google Scholar 

  23. Francisco JA, Cerveny CG, Meyer DL et al (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102:1458–1465

    Article  CAS  Google Scholar 

  24. Sanderson RJ, Hering MA, James SF et al (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res 11:843–852

    CAS  Google Scholar 

  25. Tolcher AW, Ochoa L, Hammond LA et al (2003) Cantuzumab Mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: A phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol 21:211–222

    Article  CAS  Google Scholar 

  26. Stephan JP, Chan P, Lee C et al (2008) Anti-CD22-MCC-DM1 and MC-MMAF conjugates: impact of assay format on pharmacokinetic parameters determination. Bioconjug Chem 19:1673–1683

    Article  CAS  Google Scholar 

  27. Stephan JP, Kozak KR, Wong WLT (2011) Challenges in developing bioanalytical assays for characterization of antibody–drug conjugates. Bioanalysis 3(6):677–700

    Article  CAS  Google Scholar 

  28. King HD, Yurgaitis D, Willner D et al (1999) Monoclonal antibody conjugates of doxorubicin prepared with branched linkers: A novel method for increasing the potency of doxorubicin immunoconjugates. Bioconjug Chem 10:279–288

    Article  CAS  Google Scholar 

  29. Hamblett KJ, Senter PD, Chace DF et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070

    Article  CAS  Google Scholar 

  30. Bross PF, Beitz J, Chen G et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496

    CAS  Google Scholar 

  31. Hamann PR, Hinman LM, Hollander I et al (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13:47–58

    Article  CAS  Google Scholar 

  32. Dijoseph JF, Armellino DC, Boghaert ER et al (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for treatment of B-lymphoid malignancies. Blood 103:1807–1814

    Article  CAS  Google Scholar 

  33. Doronina SO, Toki BE, Torgov MY et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:754–778

    Article  Google Scholar 

  34. Doronina SO, Mendelsohn BA, Bovee TD et al (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effect of linker technology on efficacy and toxicity. Bioconjug Chem 17:114–124

    Article  CAS  Google Scholar 

  35. Erickson HK, Park PU, Widdison WC et al (2006) Antibody-maytansinoid conjugates are activated in target cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 66:4426–4433

    Article  CAS  Google Scholar 

  36. Chari RVJ (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107

    Article  CAS  Google Scholar 

  37. Kaur S (2008) Bioanalytical considerations for antibody-drug conjugates. In: Workshop proceedings of AAPS national biotechnology conference on overview of monoclonal antibody immunoconjugates in cancer therapy

    Google Scholar 

  38. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  Google Scholar 

  39. Press MF, Cordon-Cardo C, Slamon DJ (1990) Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene 5:953–962

    CAS  Google Scholar 

  40. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  Google Scholar 

  41. Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  Google Scholar 

  42. Nahta R, Yu D, Hung MC et al (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3:269–280

    Article  CAS  Google Scholar 

  43. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that over expresses HER2. N Engl J Med 344:783–792

    Article  CAS  Google Scholar 

  44. Blattler WA, Chari RV (2001) Drugs to enhance the therapeutic potency of anticancer antibodies: antibody-drug conjugates as tumor-activated prodrugs. In: Ojima I, Vite G, Altmann K (eds) Anticancer agents—frontiers in cancer chemotherapy. American Chemical Society, Washington, DC, pp 317–338

    Chapter  Google Scholar 

  45. Cassady JM, Chan KK, Floss HG, Leistner E (2004) Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull (Tokyo) 52:1–26

    Article  CAS  Google Scholar 

  46. Goldmacher VS, Blattler WA, Lambert JM, Chari RV (2002) Immunotoxins and antibody-drug conjugates for cancer treatment. In: Muzykantov VR, Torchilin V (eds), Biomedical aspects of drug targeting, pp 291–310

    Google Scholar 

  47. Krop IE, Beeram M, Modi S et al (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28(16):2698–2704

    Article  CAS  Google Scholar 

  48. Erickson HK, Widdison WC, Mayo MF et al (2010) Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug Chem 21:84–92

    Article  CAS  Google Scholar 

  49. Shen BQ, Xu K, Liu L et al (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody conjugates. Nat Biotechnol 30:184–189

    Article  CAS  Google Scholar 

  50. Fishkin N, Maloney EK, Chari RVJ, Singh R (2011) A novel pathway for maytansinoid release from thioether linked antibody–drug conjugates (ADCs) under oxidative conditions. Chem Commun 47:10752–10754

    Article  CAS  Google Scholar 

  51. Alley SC, Benjamin DR, Jeffrey SC et al (2008) Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 19:759–765

    Article  CAS  Google Scholar 

  52. Xu K, Liu L, Montserrat Carrasco-Triguero et al (2010) Monitoring tissue distributions of antibody drug conjugate biotherapeutics by LC–MS. Presented in the 58th American society for mass spectrometry (ASMS) conference proceedings, May 23–27, Salt lake City, Utah

    Google Scholar 

  53. Kaur S et al (2013) Bioanalysis, doi. 10.4155/BIO.13.72 in press

Download references

Acknowledgments

The authors would like to thank the following Genentech colleagues for their support of mass spectrometric strategies for antibody drug conjugate bioanalysis, providing study samples and helpful discussions: Jagath Junutula, Ben-Quan Shen, Doug Leipold, Jay Tibbitts, Sandhya Girish, Kelly Flagella, Susan Spencer, Mark Sliwkowski, and Paul Polakis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaur, S., Xu, K., Saad, O., Liu, L., Slattery, T., Dere, R. (2013). Mass Spectrometry of Antibody–Drug Conjugates in Plasma and Tissue in Drug Development. In: Chen, G. (eds) Characterization of Protein Therapeutics using Mass Spectrometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7862-2_7

Download citation

Publish with us

Policies and ethics