The Development and Implementation of LC/MS-Based Bioanalytical Methods for the Quantification of Protein Therapeutics in Drug Discovery

  • Timothy V. Olah
  • Asoka Ranasinghe
  • Hongwei Zhang
  • Richard L. Wong
  • John Mehl
  • Dieter M. Drexler
  • James Smalley
  • Steven Wu
  • Bogdan Sleczka
  • Yongxin Zhu
  • Yulia Benitex
  • Eric Shields
  • Baomin Xin


The search to discover and develop viable therapies for the treatment of diseases continues to branch out in new directions and to improve and incorporate more efficient strategies to identify drug molecules in a cost-effective manner. Although proven treatments such as optimized small molecule drugs continue to provide an effective means for the management of certain medical conditions, alternatives such as engineered protein constructs have also been successful as therapeutic agents for treatment of a variety of diseases. Regardless of the type of drug molecule under consideration, optimized strategies and high-quality quantitative bioanalytical methods must be developed and applied throughout the drug discovery and development process in order to inform critical decisions during the selection and characterization of drug candidates.


Charge State Collision Induce Dissociation Select Reaction Monitoring Trypsin Digestion Linear Dynamic Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ruan Q, Ji QC, Arnold ME, Humphreys WG, Zhu M (2011) Strategy and its implications of protein bioanalysis utilizing high-resolution mass spectrometric detection of intact protein. Anal Chem 83:8937–8944CrossRefGoogle Scholar
  2. 2.
    Ji QC, Gage EM, Rodila R, Chang MS, El-Shourbagy TA (2003) Method development for the concentration determination of a protein in human plasma utilizing 96-well solid-phase extraction and liquid chromatography/tandem mass spectrometric detection. Rapid Commun Mass Spectrom 17:794–799CrossRefGoogle Scholar
  3. 3.
    Ji QC, Rodila R, Gage EM, El-Shourbagy TA (2003) A strategy of plasma protein quantitation by selective reaction monitoring of an intact protein. Anal Chem 75:7008–7014CrossRefGoogle Scholar
  4. 4.
    Wu ST, Ouyang Z, Olah TV, Jemal M (2011) A strategy for liquid chromatography/tandem mass spectrometry based quantitation of pegylated protein drugs in plasma using plasma protein precipitation with water-miscible organic solvents and subsequent trypsin digestion to generate surrogate peptides for detection. Rapid Commun Mass Spectrom 25:281–290CrossRefGoogle Scholar
  5. 5.
    Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 6:2212–2229CrossRefGoogle Scholar
  6. 6.
    Hagman C, Ricke D, Ewert S, Bek S, Falchetto R, Bitsch F (2008) Absolute quantification of monoclonal antibodies in biofluids by liquid chromatography-tandem mass spectrometry. Anal Chem 80:1290–1296CrossRefGoogle Scholar
  7. 7.
    Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, Sekine Y, Uchida Y, Ito S, Terasaki T (2008) Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in silico peptide selection criteria. Pharm Res 25:1469–1483CrossRefGoogle Scholar
  8. 8.
    Han B, Copeland M, Geiser AG, Hale LV, Harvey A, Ma YL, Powers CS, Sato M, You J, Hale JE (2007) Development of a highly sensitive, high-throughput, mass spectrometry-based assay for rat procollagen type-I N-terminal propeptide (PINP) to measure bone formation activity. J Proteome Res 6:4218–4229CrossRefGoogle Scholar
  9. 9.
    Strader MB, Tabb DL, Hervey WJ, Pan C, Hurst GB (2006) Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems. Anal Chem 78:125–134CrossRefGoogle Scholar
  10. 10.
    Hervey WJt, Strader MB, Hurst GB (2007) Comparison of digestion protocols for microgram quantities of enriched protein samples. J Proteome Res 6:3054–3061CrossRefGoogle Scholar
  11. 11.
    Russell WK, Park ZY, Russell DH (2001) Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry. Anal Chem 73:2682–2685CrossRefGoogle Scholar
  12. 12.
    Chen EI, Cociorva D, Norris JL, Yates JR 3rd (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6:2529–2538CrossRefGoogle Scholar
  13. 13.
    Arsene CG, Ohlendorf R, Burkitt W, Pritchard C, Henrion A, O’Connor G, Bunk DM, Guttler B (2008) Protein quantification by isotope dilution mass spectrometry of proteolytic fragments: cleavage rate and accuracy. Anal Chem 80:4154–4160CrossRefGoogle Scholar
  14. 14.
    Ren D, Pipes GD, Liu D, Shih LY, Nichols AC, Treuheit MJ, Brems DN, Bondarenko PV (2009) An improved trypsin digestion method minimizes digestion-induced modifications on proteins. Anal Biochem 392:12–21CrossRefGoogle Scholar
  15. 15.
    Schuchert-Shi A, Hauser PC (2009) Peptic and tryptic digestion of peptides and proteins monitored by capillary electrophoresis with contactless conductivity detection. Anal Biochem 387:202–207CrossRefGoogle Scholar
  16. 16.
    Yamaguchi K, Takashima M, Uchimura T, Kobayashi S (2000) Development of a sensitive liquid chromatography-electrospray ionization mass spectrometry method for the measurement of KW-5139 in rat plasma. Biomed Chromatogr 14:77–81CrossRefGoogle Scholar
  17. 17.
    Hewavitharana AK, Herath HM, Shaw PN, Cabot PJ, Kebarle P (2010) Effect of solvent and electrospray mass spectrometer parameters on the charge state distribution of peptides—a case study using liquid chromatography/mass spectrometry method development for beta-endorphin assay. Rapid Commun Mass Spectrom 24:3510–3514CrossRefGoogle Scholar
  18. 18.
    Zhang H, Xin B, Caporuscio C, Olah TV (2011) Bioanalytical strategies for developing highly sensitive liquid chromatography/tandem mass spectrometry based methods for the peptide GLP-1 agonists in support of discovery PK/PD studies. Rapid Commun Mass Spectrom 25:3427–3435CrossRefGoogle Scholar
  19. 19.
    Wysocki VH, Resing KA, Zhang Q, Cheng G (2005) Mass spectrometry of peptides and proteins. Methods 35:211–222CrossRefGoogle Scholar
  20. 20.
    Ranasinghe A, Ramanathan R, Jemal M, D’Arienzo CJ, Humphreys WG, Olah TV (2012) Integrated quantitative and qualitative workflow for in vivo bioanalytical support in drug discovery using hybrid Q-TOF-MS. Bioanalysis 4:511–528CrossRefGoogle Scholar
  21. 21.
    Bateman KP, Kellmann M, Muenster H, Papp R, Taylor L (2009) Quantitative-qualitative data acquisition using a benchtop Orbitrap mass spectrometer. J Am Soc Mass Spectrom 20:1441–1450CrossRefGoogle Scholar
  22. 22.
    O’Connor D, Mortishire-Smith R, Morrison D, Davies A, Dominguez M (2006) Ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry for robust, high-throughput quantitative analysis of an automated metabolic stability assay, with simultaneous determination of metabolic data. Rapid Commun Mass Spectrom 20:851–857CrossRefGoogle Scholar
  23. 23.
    Rousu T, Herttuainen J, Tolonen A (2010) Comparison of triple quadrupole, hybrid linear ion trap triple quadrupole, time-of-flight and LTQ-Orbitrap mass spectrometers in drug discovery phase metabolite screening and identification in vitro–amitriptyline and verapamil as model compounds. Rapid Commun Mass Spectrom 24:939–957CrossRefGoogle Scholar
  24. 24.
    Ramanathan R, Jemal M, Ramagiri S, Xia YQ, Humpreys WG, Olah T, Korfmacher WA (2011) It is time for a paradigm shift in drug discovery bioanalysis: from SRM to HRMS. J Mass Spectrom 46:595–601CrossRefGoogle Scholar
  25. 25.
    Goodenough AK (2011) High resolution mass spectrometry approaches for the quantification of proteins using stable isotopically labeled peptide. Am Pharm Rev 14:21–32Google Scholar
  26. 26.
    Wong RL, Xin B, Olah T (2011) Optimization of Exactive Orbitrap acquisition parameters for quantitative bioanalysis. Bioanalysis 3:863–871CrossRefGoogle Scholar
  27. 27.
    Dillen L, Cools W, Vereyken L, Lorreyne W, Huybrechts T, de Vries R, Ghobarah H, Cuyckens F (2012) Comparison of triple quadrupole and high-resolution TOF-MS for quantification of peptides. Bioanalysis 4:565–579CrossRefGoogle Scholar
  28. 28.
    Zhu M, Ma L, Zhang D, Ray K, Zhao W, Humphreys WG, Skiles G, Sanders M, Zhang H (2006) Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug Metab Dispos 34:1722–1733CrossRefGoogle Scholar
  29. 29.
    Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom 20:1989–1994CrossRefGoogle Scholar
  30. 30.
    Zhang H, Zhu M, Ray KL, Ma L, Zhang D (2008) Mass defect profiles of biological matrices and the general applicability of mass defect filtering for metabolite detection. Rapid Commun Mass Spectrom 22:2082–2088CrossRefGoogle Scholar
  31. 31.
    Ramagiri S, Garofolo F (2012) Large molecule bioanalysis using Q-TOF without predigestion and its data processing challenges. Bioanalysis 4:529–540CrossRefGoogle Scholar
  32. 32.
    Plumb RS, Fujimoto G, Mather J, Potts WB, Rainville PD, Ellor NJ, Evans C, Kehler JR, Szapacs ME (2012) Comparison of the quantification of a therapeutic protein using nominal and accurate mass MS/MS. Bioanalysis 4:605–615CrossRefGoogle Scholar
  33. 33.
    Cuyckens F, Dillen L, Cools W, Bockx M, Vereyken L, de Vries R, Mortishire-Smith RJ (2012) Identifying metabolite ions of peptide drugs in the presence of an in vivo matrix background. Bioanalysis 4:595–604CrossRefGoogle Scholar
  34. 34.
    Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867CrossRefGoogle Scholar
  35. 35.
    Ouyang Z, Furlong MT, Wu S, Sleczka B, Tamura J, Wang H, Suchard S, Suri A, Olah T, Tymiak A, Jemal M (2012) Pellet digestion: a simple and efficient sample preparation technique for LC-MS/MS quantification of large therapeutic proteins in plasma. Bioanalysis 4:17–28CrossRefGoogle Scholar
  36. 36.
    Sleczka BG, D’Arienzo CJ, Tymiak AA, Olah TV (2012) Quantitation of therapeutic proteins following direct trypsin digestion of dried blood spot samples and detection by LC-MS-based bioanalytical methods in drug discovery. Bioanalysis 4:29–40CrossRefGoogle Scholar
  37. 37.
    Ackermann BL, Berna MJ (2007) Coupling immunoaffinity techniques with MS for quantitative analysis of low-abundance protein biomarkers. Expert Rev Proteomics 4:175–186CrossRefGoogle Scholar
  38. 38.
    Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW (2004) Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 3:235–244CrossRefGoogle Scholar
  39. 39.
    Whiteaker JR, Zhao L, Zhang HY, Feng LC, Piening BD, Anderson L, Paulovich AG (2007) Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Anal Biochem 362:44–54CrossRefGoogle Scholar
  40. 40.
    Young SA, Julka S, Bartley G, Gilbert JR, Wendelburg BM, Hung SC, Anderson WH, Yokoyama WH (2009) Quantification of the sulfated cholecystokinin CCK-8 in hamster plasma using immunoprecipitation liquid chromatography-mass spectrometry/mass spectrometry. Anal Chem 81:9120–9128CrossRefGoogle Scholar
  41. 41.
    Kumar V, Barnidge DR, Chen LS, Twentyman JM, Cradic KW, Grebe SK, Singh RJ (2010) Quantification of serum 1–84 parathyroid hormone in patients with hyperparathyroidism by immunocapture in situ digestion liquid chromatography-tandem mass spectrometry. Clin Chem 56:306–313CrossRefGoogle Scholar
  42. 42.
    Berna M, Ott L, Engle S, Watson D, Solter P, Ackermann B (2008) Quantification of NTproBNP in rat serum using immunoprecipitation and LC/MS/MS: a biomarker of drug-induced cardiac hypertrophy. Anal Chem 80:561–566CrossRefGoogle Scholar
  43. 43.
    Whiteaker JR, Zhao L, Anderson L, Paulovich AG (2010) An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol Cell Proteomics 9:184–196CrossRefGoogle Scholar
  44. 44.
    Ciccimaro E, Hanks SK, Yu KH, Blair IA (2009) Absolute quantification of phosphorylation on the kinase activation loop of cellular focal adhesion kinase by stable isotope dilution liquid chromatography/mass spectrometry. Anal Chem 81:3304–3313CrossRefGoogle Scholar
  45. 45.
    Berna MJ, Zhen Y, Watson DE, Hale JE, Ackermann BL (2007) Strategic use of immunoprecipitation and LC/MS/MS for trace-level protein quantification: myosin light chain 1, a biomarker of cardiac necrosis. Anal Chem 79:4199–4205CrossRefGoogle Scholar
  46. 46.
    Xu K, Liu L, Saad OM, Baudys J, Williams L, Leipold D, Shen B, Raab H, Junutula JR, Kim A, Kaur S (2011) Characterization of intact antibody-drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography-mass spectrometry. Anal Biochem 412:56–66CrossRefGoogle Scholar
  47. 47.
    Berna M, Schmalz C, Duffin K, Mitchell P, Chambers M, Ackermann B (2006) Online immunoaffinity liquid chromatography/tandem mass spectrometry determination of a type II collagen peptide biomarker in rat urine: Investigation of the impact of collision-induced dissociation fluctuation on peptide quantitation. Anal Biochem 356:235–243CrossRefGoogle Scholar
  48. 48.
    Berna M, Ackermann B (2009) Increased throughput for low-abundance protein biomarker verification by liquid chromatography/tandem mass spectrometry. Anal Chem 81:3950–3956CrossRefGoogle Scholar
  49. 49.
    Xu Y, Mehl JT, Bakhtiar R, Woolf EJ (2010) Immunoaffinity purification using anti-PEG antibody followed by two-dimensional liquid chromatography/tandem mass spectrometry for the quantification of a PEGylated therapeutic peptide in human plasma. Anal Chem 82:6877–6886CrossRefGoogle Scholar
  50. 50.
    Bronsema KJ, Bischoff R, van de Merbel NC (2012) Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 893–894:1–14Google Scholar
  51. 51.
    Zhang R, Sioma CS, Thompson RA, Xiong L, Regnier FE (2002) Controlling deuterium isotope effects in comparative proteomics. Anal Chem 74:3662–3669CrossRefGoogle Scholar
  52. 52.
    Ezan E, Bitsch F (2009) Critical comparison of MS and immunoassays for the bioanalysis of therapeutic antibodies. Bioanalysis 1:1375–1388CrossRefGoogle Scholar
  53. 53.
    Wang SJ, Wu ST, Gokemeijer J, Fura A, Krishna M, Morin P, Chen G, Price K, Wang-Iverson D, Olah T, Weiner R, Tymiak A, Jemal M (2012) Attribution of the discrepancy between ELISA and LC-MS/MS assay results of a PEGylated scaffold protein in post-dose monkey plasma samples due to the presence of anti-drug antibodies. Anal Bioanal Chem 402:1229–1239CrossRefGoogle Scholar
  54. 54.
    Yang J, Quarmby V (2011) Free versus total ligand-binding assays: points to consider in biotherapeutic drug development. Bioanalysis 3:1163–1165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Timothy V. Olah
    • 1
  • Asoka Ranasinghe
    • 1
  • Hongwei Zhang
    • 1
  • Richard L. Wong
    • 1
  • John Mehl
    • 1
  • Dieter M. Drexler
    • 2
  • James Smalley
    • 1
  • Steven Wu
    • 1
  • Bogdan Sleczka
    • 1
  • Yongxin Zhu
    • 1
  • Yulia Benitex
    • 1
  • Eric Shields
    • 1
  • Baomin Xin
    • 1
  1. 1.Bristol-Myers SquibbPrincetonUSA
  2. 2.Bristol-Myers SquibbWallingfordUSA

Personalised recommendations