Skip to main content

Introduction to Protein Mass Spectrometry

  • Chapter
  • First Online:

Abstract

Proteins fulfill a plethora of biochemical functions within every living organism, and mass spectrometry (MS) has become one of the most powerful and popular modern physical–chemical methods to study the complexities of proteins. In particular, the invention of matrix-assisted laser desorption/ionization (MALDI) [1] and electrospray ionization (ESI) technologies[2, 3] allows one to measure protein molecular weights and sequences, and to probe conformations and post-translational modifications of proteins. In addition, the mass range of species amenable for MS analysis has increased, enabling the transfer of ionized non-covalent species with masses well over one million (e.g., 1.5 MDa 24-Mer flavoprotein vanillyl-alcohol oxidase (VAO) from Penicillium simplicissimum [4]) into the gas phase. These advances moved MS into the range of intact protein oligomers and functional machineries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60:2299–2301

    CAS  Google Scholar 

  2. Yamashita M, Fenn JB (1984) Electrospray ion source. Another variation on the free-jet theme. J Phys Chem 88:4451–4459

    CAS  Google Scholar 

  3. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    CAS  Google Scholar 

  4. Van Berkel WJH, Van Den Heuvel RHH, Versluis C et al (2000) Detection of intact megaDalton protein assemblies of vanillyl-alcohol oxidase by mass spectrometry. Protein Sci 9:435–439

    Google Scholar 

  5. Cole RB (ed) (1997) Electrospray ionization mass spectrometry: fundamentals, instrumentation, and applications. Wiley-Interscience, New York

    Google Scholar 

  6. Gross JH (ed) (2004) Mass spectrometry: a textbook. Springer, New York

    Google Scholar 

  7. Fenn JB (2000) Mass spectrometric implications of high-pressure ion sources. Int J Mass Spectrom 200:459–478

    CAS  Google Scholar 

  8. Winston RL, Fitzgerald MC (1997) Mass spectrometry as a readout of protein structure and function. Mass Spectrom Rev 16:165–179

    CAS  Google Scholar 

  9. Loo JA (2000) Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. Int J Mass Spectrom 200:175–186

    CAS  Google Scholar 

  10. Loo JA (1997) Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16:1–23

    CAS  Google Scholar 

  11. Kaltashov IA, Zhang M, Eyles SJ et al (2006) Investigation of structure, dynamics and function of metalloproteins with electrospray ionization mass spectrometry. Anal Bioanal Chem 386:472–481

    CAS  Google Scholar 

  12. Grandori R (2003) Electrospray-ionization mass spectrometry for protein conformational studies. Curr Org Chem 7:1589–1603

    CAS  Google Scholar 

  13. Calvo E, Camafeita E, Fernando Díaz J et al (2008) Mass spectrometry for studying the interaction between small molecules and proteins. Curr Proteom 5:20–34

    CAS  Google Scholar 

  14. Dalluge JJ (2002) Matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). Anal Bioanal Chem 372:18–19

    CAS  Google Scholar 

  15. Harvey DJ (2003) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates and glycoconjugates. Int J Mass Spectrom 226:1–35

    CAS  Google Scholar 

  16. Reyzer ML, Caprioli RM (2007) MALDI-MS-Based imaging of small molecules and proteins in tissues. Curr Opin Chem Biol 11:29–35

    CAS  Google Scholar 

  17. Najam-ul-Haq M, Szabó RZ, Vallant R et al (2007) Role of carbon nano-materials in the analysis of biological materials by laser desorption/ionization-mass spectrometry. J Biochem Biophys Methods 70:319–328

    CAS  Google Scholar 

  18. Thomson JJ (1913) Rays of positive electricity and their application to chemical analysis. Longmans, London

    Google Scholar 

  19. Bleakney W (1929) A new method of positive ray analysis and its application to the measurement of ionization potentials in mercury vapor. Phys Rev 34:157–160

    CAS  Google Scholar 

  20. Nier AO (1947) A mass spectrometer for isotope and gas analysis. Rev Sci Instrum 18:398

    CAS  Google Scholar 

  21. Biemann K, Gapp F, Seibl J (1959) Application of mass spectrometry to structure problems. I. amino acid sequence in peptides. J Am Chem Soc 81:2274–2275

    CAS  Google Scholar 

  22. Senn M, McLafferty FW (1966) Automatic amino acid sequence determination in peptides. Biochem Biophys Res Commun 23:381–385

    CAS  Google Scholar 

  23. Munson MSB, Field FH (1966) Chemical ionization mass spectrometry. I. general introduction. J Am Chem Soc 88:2621

    CAS  Google Scholar 

  24. Harrison AG (1992) Chemical ionization mass spectrometry. CRC Press, Boca Raton

    Google Scholar 

  25. Beckey HD (1969) Field ionization mass spectrometry. Research/Development 20:26

    Google Scholar 

  26. Hakansson P, Kamensky I, Sundqvist B et al (1982) 127I-Plasma desorption mass spectrometry of insulin. J Am Chem Soc 104:2948–2949

    Google Scholar 

  27. Morris HR, Panico M, Taylor GW (1983) FAB-mapping of recombinant-DNA protein products. Biochem Biophys Res Commun 117:299–305

    CAS  Google Scholar 

  28. Macfarlane RD, Torgerson DF (1976) Californium-252 plasma desorption mass spectroscopy. Science 191:920–925

    CAS  Google Scholar 

  29. Barber M, Green BN (1987) The analysis of small proteins in the molecular weight range 10–24 kDa by magnetic sector mass spectrometry. Rapid Commun Mass Spectrom 1:80–83

    CAS  Google Scholar 

  30. Blakley CR, Vestal ML (1983) Thermospray interface for liquid chromatography/mass spectrometry. Anal Chem 55:750–754

    CAS  Google Scholar 

  31. Koropchak JA, Veber M, Browner RF (1992) Thermospray sample introduction to atomic spectrometry. Crit Rev Anal Chem 23:113–141

    CAS  Google Scholar 

  32. Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    CAS  Google Scholar 

  33. Wikimedia Foundation I (2012) http://en.wikipedia.org/wiki/History_of_mass_spectrometry. 29 Feb 2012

  34. Ingendoh A, Karas M, Hillenkamp F et al (1994) Factors affecting the mass resolution in matrix-assisted laser desorption-ionization mass spectrometry. Int J Mass Spectrom Ion Process 131:345–354

    CAS  Google Scholar 

  35. Vestal ML, Juhasz P, Martin SA (1995) Delayed extraction matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Comm Mass Spectrom 9:1044–1050

    CAS  Google Scholar 

  36. Roepstoref P (2002) Mass spectrometry of peptides and proteins a personal historical view. In: Silberrying J, Ekman R (eds) Mass spectrometry of peptides and proteins a personal historical view. Wiley, New York

    Google Scholar 

  37. Harris GA, Galhena AS, Fernandez FM (2011) Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem 83:4508–4538

    CAS  Google Scholar 

  38. Takats Z, Wiseman JM, Cooks RG (2005) Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrom 40:1261–1275

    CAS  Google Scholar 

  39. Takats Z, Wiseman JM, Gologan B et al (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473

    CAS  Google Scholar 

  40. Cody RB, Laramee JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302

    CAS  Google Scholar 

  41. Huang M, Jhang S, Cheng C et al (2010) Effects of matrix, electrospray solution, and laser light on the desorption and ionization mechanisms in electrospray-assisted laser desorption ionization mass spectrometry. Analyst 135:759–766

    CAS  Google Scholar 

  42. Peng IX, Loo RO, Margalith E et al (2010) Electrospray-assisted laser desorption ionization mass spectrometry (ELDI-MS) with an infrared laser for characterizing peptides and proteins. Analyst 135:767–772

    CAS  Google Scholar 

  43. Sampson JS, Murray KK, Muddimana DC (2009) Intact and top-down characterization of biomolecules and direct analysis using infrared matrix-assisted laser desorption electrospray ionization coupled to FT-ICR mass spectrometry. J Am Soc Mass Spectrom 20:667–673

    CAS  Google Scholar 

  44. Cheng S-C, Cheng T-L, Chang H-C et al (2009) Using laser-induced acoustic desorption/electrospray ionization mass spectrometry to characterize small organic and large biological compounds in the solid state and in solution under ambient conditions. Anal Chem 81:868–874

    CAS  Google Scholar 

  45. Dixon RB, Muddiman DC (2010) Study of the ionization mechanism in hybrid laser based desorption techniques. Analyst 135:880–882

    CAS  Google Scholar 

  46. Dixon RB, Sampson JS, Muddiman DC (2009) Generation of multiply charged peptides and proteins by radio frequency acoustic desorption and ionization for mass spectrometric detection. J Am Soc Mass Spectrom 20:597–600

    CAS  Google Scholar 

  47. Dole M, Mack LL, Hines RL (1968) Molecular Beams of Macroions. J Chem Phys 49:2240–2249

    CAS  Google Scholar 

  48. Iribarne JV, Thomson BA (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64:2287–2294

    CAS  Google Scholar 

  49. Benesch JLP, Ruotolo BT, Simmons DA et al (2007) Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem Rev 107:3544–3567

    CAS  Google Scholar 

  50. Kaltashov IA, Abzalimov RR (2008) Do ionic charges in ESI MS provide useful information on macromolecular structure? J Am Soc Mass Spectrom 19:1239–1246

    CAS  Google Scholar 

  51. Przybylski M, Glocker MO (1996) Electrospray mass spectrometry of biomacromolecular complexes with non-covalent interactions-new analytical perspectives for supramolecular chemistry and molecular recognition processes. Angew Chem Int Ed 35:806–826

    CAS  Google Scholar 

  52. van den Heuvel RHH, Heck AJR (2004) Native protein mass spectrometry: from intact oligomers to functional machineries. Curr Opin Chem Biol 8:519–526

    Google Scholar 

  53. Kaddis CS, Loo JA (2007) Native protein MS and ion mobility: large flying proteins with ESI. Anal Chem 79:1778–1784

    CAS  Google Scholar 

  54. Benesch JLP, Robinson CV (2006) Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr Opin Struct Biol 16:245–251

    CAS  Google Scholar 

  55. Chowdhurry SK, Katta V, Chait BT (1990) Probing conformational changes in proteins by mass spectrometry. J Am Chem Soc 112:9012–9013

    Google Scholar 

  56. Nemirovskiy O, Giblin DE, Gross ML (1999) Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium. J Am Soc Mass Spectrom 10:711–718

    CAS  Google Scholar 

  57. Simmons DA, Konermann L (2002) Characterization of transient protein folding intermediates during myoglobin reconstitution by time-resolved electrospray mass spectrometry with on-line isotopic pulse labeling. Biochemistry 41:1906–1914

    CAS  Google Scholar 

  58. Winger BE, Light-Wahl KJ, Rockwood AL et al (1992) Probing qualitative conformation differences of multiply protonated gas-phase proteins via H/D isotopic exchange with D2O. J Am Chem Soc 114:5898–5900

    Google Scholar 

  59. Campbell S, Rodgers MT, Marzluff EM et al (1995) Deuterium exchange reactions as a probe of biomolecule structure. Fundamental studies of gas phase H/D exchange reactions of protonated glycine oligomers with D2O, CD3OD, CD3CO2D, and ND3. J Am Chem Soc 117:12840–12854

    CAS  Google Scholar 

  60. Engen JR (2009) Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal Chem 81:7870–7875

    CAS  Google Scholar 

  61. Zhang Z, Smith DL (1996) Thermal-induced unfolding domains in aldolase identified by amide hydrogen exchange and mass spectrometry. Protein Sci 5:1282–1289

    CAS  Google Scholar 

  62. Zhu M, Rempel DL, Du Z et al (2003) Quantification of protein-ligand interactions by mass spectrometry, titration, and H/D exchange: PLIMSTEX. J Am Chem Soc 125:5252–5253

    CAS  Google Scholar 

  63. Zhu M, Rempel DL, Zhao J et al (2003) Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength. Biochemistry 42:15388–15397

    CAS  Google Scholar 

  64. McLafferty FW, Guan Z, Haupts U et al (1998) Gaseous conformational structures of cytochrome c. J Am Chem Soc 120:4732–4740

    CAS  Google Scholar 

  65. Wilm MS, Mann M (1994) Electrospray and Taylor-Cone theory, Dole’s beam of macromolecules at last? Int J Mass Spectrom Ion Proc 136:167–180

    CAS  Google Scholar 

  66. El-Faramawy YA, Siu KWM, Thomson BA (2005) Efficiency of nano-electrospray ionization. J Am Soc Mass Spectrom 16:1702–1707

    CAS  Google Scholar 

  67. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    CAS  Google Scholar 

  68. Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935–2939

    CAS  Google Scholar 

  69. Karas M, Bachmann D, Bahr U et al (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Proc 78:53–68

    CAS  Google Scholar 

  70. Karas M, Krüger R (2003) Ion formation in MALDI: the cluster ionization mechanism. Chem Rev 103:427–439

    CAS  Google Scholar 

  71. Hardesty WM, Caprioli RM (2008) In situ molecular imaging of proteins in tissues using mass spectrometry. Anal Bioanal Chem 391:899–903

    CAS  Google Scholar 

  72. Cornett DS, Reyzer ML, Chaurand P et al (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833

    CAS  Google Scholar 

  73. Grassl J, Taylor NL, Millar AH (2011) Matrix-assisted laser desorption/ionisation mass spectrometry imaging and its development for plant protein imaging. Plant Methods 7:21–32

    CAS  Google Scholar 

  74. Miao Z, Wu S, Chen H (2010) The study of protein conformation in solution via direct sampling by desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 21:1730–1736

    CAS  Google Scholar 

  75. Yang SH, Wijeratne AB, Li L, Edwards BL, Schug KA (2011) Manipulation of protein charge states through continuous flow-extractive desorption electrospray ionization: a new ambient ionization technique. Anal Chem 83:643–647

    CAS  Google Scholar 

  76. Cotte-Rodriguez I, Takats Z, Talaty N et al (2005) Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Anal Chem 77:6755–6764

    CAS  Google Scholar 

  77. Cotte-Rodriguez I, Mulligan CC, Cooks G (2007) Non-proximate detection of small and large molecules by desorption electrospray ionization and desorption atmospheric pressure chemical ionization mass spectrometry: instrumentation and applications in forensics, chemistry, and biology. Anal Chem 79:7069–7077

    CAS  Google Scholar 

  78. Cotte-Rodriguez I, Hernandez-Soto H, Chen H et al (2008) In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization. Anal Chem 80:1512–1519

    CAS  Google Scholar 

  79. Cotte-Rodriguez I, Cooks RG (2006) Non-proximate detection of explosives and chemical warfare agent simulants by desorption electrospray ionization mass spectrometry. Chem Commun 28:2968–2970

    Google Scholar 

  80. Miao ZX, Chen H (2009) Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J Am Soc Mass Spectrom 20:10–19

    CAS  Google Scholar 

  81. Chipuk JE, Brodbelt JS (2008) Transmission mode desorption electrospray ionization. J Am Soc Mass Spectrom 19:1612–1620

    CAS  Google Scholar 

  82. Venter A, Cooks RG (2007) Desorption electrospray ionization in a small pressure-tight enclosure. Anal Chem 79:6368–6403

    Google Scholar 

  83. Shiea J, Huang MZ, Hsu HJ et al (2005) Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun Mass Spectrom 19:3701–3704

    CAS  Google Scholar 

  84. Sampson JS, Hawkridge AM, Muddiman DC (2007) Direct characterization of intact polypeptides by matrix-assisted laser desorption electrospray ionization quadrupole fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 21:1150–1154

    CAS  Google Scholar 

  85. Chen H, Venter A, Cooks RG (2006) Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem Commun 19:2042–2044

    Google Scholar 

  86. McEwen CN, McKay RG, Larsen BS (2005) Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal Chem 77:7826–7831

    CAS  Google Scholar 

  87. Takáts Z, Czuczy N, Katona M et al (2006) Jet desorption ionization. In: Proceedings of the 54th ASMS conference on mass spectrometry, Seattle, 28 May–1 June 1

    Google Scholar 

  88. Haddad R, Sparrapan R, Eberlin MN (2006) Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. Rapid Commun Mass Spectrom 20:2901–2905

    CAS  Google Scholar 

  89. Grimm RL, Beauchamp JL (2005) Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields. J Phys Chem B 109:8244–8250

    CAS  Google Scholar 

  90. Haapala M, Pol J, Saarela V et al (2007) Desorption atmospheric pressure photoionization. Anal Chem 79:7867–7872

    CAS  Google Scholar 

  91. Ratcliffe LV, Rutten FJM, Barrett DA et al (2007) Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry. Anal Chem 79:6094–6101

    CAS  Google Scholar 

  92. Na N, Zhang C, Zhao M et al (2007) Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. J Mass Spectrom 42:1079–1085

    CAS  Google Scholar 

  93. Van Berkel GJ, Kertesz V, Koeplinger KA et al (2008) Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J Mass Spectrom 43:500–508

    Google Scholar 

  94. Chen H, Ouyang Z, Cooks RG (2006) Thermal production and reactions of organic ions at atmospheric pressure. Angew Chem Int Ed 45:3656–3660

    CAS  Google Scholar 

  95. Ford MJ, Van Berkel GJ (2004) An improved thin-layer chromatography/mass spectrometry coupling using a surface sampling probe electrospray ion trap system. Rapid Communs in Mass Spectrom 18:1303–1309

    CAS  Google Scholar 

  96. Shieh IF, Lee CY, Shiea J (2005) Eliminating the interferences from TRIS Buffer and SDS in protein analysis by fused-droplet electrospray ionization mass spectrometry. J Proteome Res 4:606–612

    CAS  Google Scholar 

  97. Andrade FJ, Shelley JT, Wetzel WC et al (2008) Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal Chem 80:2646–2653

    CAS  Google Scholar 

  98. Chen H, Yang S, Wortmann A et al (2007) Neutral desorption sampling of living objects for rapid analysis by extractive electrospray ionization mass spectrometry. Angew Chem Int Ed 46:7591–7594

    CAS  Google Scholar 

  99. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79:8098–8106

    CAS  Google Scholar 

  100. Harper JD, Charipar NA, Mulligan CC et al (2008) Low-temperature plasma probe for ambient desorption ionization. Anal Chem 80:9097–9104

    CAS  Google Scholar 

  101. Murray KK, Russell DH (1994) Laser spray ionization for biological mass spectrometry. Am Lab 26:38–44

    CAS  Google Scholar 

  102. Venter A, Nefliu M, Cooks RG (2008) Ambient desorption ionization mass spectrometry. Trends Anal Chem 27:284–290

    CAS  Google Scholar 

  103. Takats Z, Wiseman JM, Cooks RG (2005) Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrom 40:1261–1275

    CAS  Google Scholar 

  104. Cooks RG, Ouyang Z, Takats Z et al (2006) Ambient mass spectrometry. Science 311:1566–1570

    CAS  Google Scholar 

  105. Cotte-Rodriguez I, Chen H, Cooks RG (2006) Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization. Chem Commun 953–955

    Google Scholar 

  106. Ifa DR, Manicke NE, Dill AL et al (2008) Latent fingerprint chemical imaging by mass spectrometry. Science 321:805

    CAS  Google Scholar 

  107. Meetani MA, Shin YS, Zhang S et al (2007) Desorption electrospray ionization mass spectrometry of intact bacteria. J Mass Spectrom 42:1186–1193

    CAS  Google Scholar 

  108. Wu C, Ifa DR, Manicke NE et al (2010) Molecular imaging of adrenal gland by desorption electrospray ionization mass spectrometry. Analyst 135:28–32

    CAS  Google Scholar 

  109. Dill AL, Ifa DR, Manicke NE et al (2009) Lipid profiles of canine invasive transitional cell carcinoma of the urinary bladder and adjacent normal tissue by desorption electrospray ionization imaging mass spectrometry. Anal Chem 81:8758–8764

    CAS  Google Scholar 

  110. Kertesz V, Van Berkel GJ, Vavrek M et al (2008) Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography. Anal Chem 80:5168–5177

    CAS  Google Scholar 

  111. Manicke NE, Wiseman JM, Ifa DR et al (2008) Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J Am Soc Mass Spectrom 19:531–543

    CAS  Google Scholar 

  112. Nefliu M, Venter A, Cooks RG (2006) Desorption electrospray ionization and electrosonic spray ionization for solid- and solution-phase analysis of industrial polymers. Chem Commun 888–890

    Google Scholar 

  113. Kennedy JH, Wiseman JM (2010) Evaluation and performance of desorption electrospray ionization using a triple quadrupole mass spectrometer for quantitation of pharmaceuticals in plasma. Rapid Commun Mass Spectrom 24:309–314

    CAS  Google Scholar 

  114. Harry EL, Reynolds JC, Bristow AWT et al (2009) Direct analysis of pharmaceutical formulations from non-bonded reversed-phase thin-layer chromatography plates by desorption electrospray ionisation ion mobility mass spectrometry. Rapid Commun Mass Spectrom 23:2597–2604

    CAS  Google Scholar 

  115. Luosujärvi L, Laakkonen UM, Kostiainen R et al (2009) Analysis of street market confiscated drugs by desorption atmospheric pressure photoionization and desorption electrospray ionization coupled with mass spectrometry. Rapid Commun Mass Spectrom 23:1401–1404

    Google Scholar 

  116. Soparawalla S, Salazar GA, Perry RH et al (2009) Pharmaceutical cleaning validation using non-proximate large-area desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 23:131–137

    CAS  Google Scholar 

  117. Williams JP, Scrivens JH (2005) Rapid accurate mass desorption electrospray ionisation tandem mass spectrometry of pharmaceutical samples. Rapid Commun Mass Spectrom 19:3643–3650

    CAS  Google Scholar 

  118. Shin YS, Drolet B, Mayer R et al (2007) Desorption electrospray ionization-mass spectrometry of proteins. Anal Chem 79:3514–3518

    CAS  Google Scholar 

  119. Myung S, Wiseman JM, Valentine SJ et al (2006) Coupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: evidence for desorption of folded and denatured states. J Phys Chem B 110:5045–5051

    CAS  Google Scholar 

  120. Huang M-Z, Hsu H-J, Lee J-Y et al (2006) Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry. J Proteome Res 5:1107–1116

    CAS  Google Scholar 

  121. Weston DJ, Bateman R, Wilson ID et al (2005) Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization. Anal Chem 77:7572–7580

    CAS  Google Scholar 

  122. Bereman MS, Nyadong L, Fernandez FM et al (2006) Direct high-resolution peptide and protein analysis by desorption electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 20:3409–3411

    CAS  Google Scholar 

  123. Patterson GE, Guymon AJ, Riter LS et al (2002) Miniature cylindrical ion trap mass spectrometer. Anal Chem 74:6145–6153

    CAS  Google Scholar 

  124. Takats Z, Wiseman JM, Gologan B et al (2004) Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion—molecule reactions at atmospheric pressure. Anal Chem 76:4050–4058

    CAS  Google Scholar 

  125. Costa AB, Cooks RG (2007) Simulation of atmospheric transport and droplet-thin film collisions in desorption electrospray ionization. Chem Commun 3915–3917

    Google Scholar 

  126. Costa AB, Cooks GR (2008) Simulated splashes: elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem Phys Lett 464:1–8

    CAS  Google Scholar 

  127. Nefliu M, Smith JN, Venter A et al (2008) Internal energy distributions in desorption electrospray ionization (DESI). J Am Soc Mass Spectrom 19:420–427

    CAS  Google Scholar 

  128. Takats Z, Cotte-Rodriguez I, Talaty N et al (2005) Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem Commun 1950–1952

    Google Scholar 

  129. Kertesz V, Van Berkel GJ (2008) Improved imaging resolution in desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 22:2639–2644

    CAS  Google Scholar 

  130. Ifa DR, Manicke NE, Rusine AL et al (2008) Quantitative analysis of small molecules by desorption electrospray ionization mass spectrometry from polytetrafluoroethylene surfaces. Rapid Commun Mass Spectrom 22:503–510

    CAS  Google Scholar 

  131. Mulligan CC, MacMillan DK, Noll RJ et al (2007) Fast analysis of high-energy compounds and agricultural chemicals in water with desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 21:3729–3736

    CAS  Google Scholar 

  132. Miao Z, Chen H (2008) Analysis of continuous-flow liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). In: Proceedings of the 56th annual American society for mass spectrometry conference on mass spectrometry, Denver, June 1–5

    Google Scholar 

  133. Ma X, Zhao M, Lin Z et al (2008) Versatile platform employing desorption electrospray ionization mass spectrometry for high-throughput analysis. Anal Chem 80:6131–6136

    CAS  Google Scholar 

  134. Chipuk JE, Brodbelt JS (2009) The influence of material and mesh characteristics on transmission mode desorption electrospray ionization. J Am Soc Mass Spectrom 20:584–592

    CAS  Google Scholar 

  135. Ferguson C, Benchaar S, Miao Z, Loo J, Chen H (2011) Direct ionization of large proteins and protein complexes by desorption electrospray ionization-mass spectrometry. Anal Chem 83:6468–6473

    CAS  Google Scholar 

  136. Hutchens TW, Yip TT (1993) New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom 7:576–580

    Google Scholar 

  137. Northen TR, Yanes O, Northen MT et al (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–U1033

    CAS  Google Scholar 

  138. Woo HK, Northen TR, Yanes O et al (2008) Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. Nature Protocols 3:1341–1349

    CAS  Google Scholar 

  139. Hirabayashi A, Sakairi M, Koizumi H (1994) Sonic spray ionization method for atmospheric-pressure ionization mass-spectrometry. Anal Chem 66:4557–4559

    CAS  Google Scholar 

  140. Chang DY, Lee CC, Shiea J (2002) Detecting large biomolecules from high-salt solutions by fused-droplet electrospray ionization mass spectrometry. Anal Chem 74:2465–2469

    CAS  Google Scholar 

  141. Hong CM, Tsia FC, Shiea J (2000) A multiple channel electrospray source used to detect highly reactive ketenes from a flow pyrolyzer. Anal Chem 72:1175–1178

    CAS  Google Scholar 

  142. Huang M, Jhang S, Cheng C et al (2010) Effects of matrix, electrospray solution, and laser light on the desorption and ionization mechanisms in electrospray-assisted laser desorption ionization mass spectrometry. Analyst 135:759–766

    CAS  Google Scholar 

  143. Chen H, Yang S, Li M et al (2010) Sensitive detection of native proteins using extractive electrospray ionization mass spectrometry. Angew Chem Int Ed 49:3053–3056

    CAS  Google Scholar 

  144. Pagnotti VS, Chubatyi ND, McEwen CN (2011) Solvent assisted inlet ionization: an ultrasensitive new liquid introduction ionization method for mass spectrometry. Anal Chem 83:3981–3985

    CAS  Google Scholar 

  145. Pagnotti VS, Inutan ED, Marshall DD et al (2011) Inlet ionization: a new highly sensitive approach for liquid chromatography/mass spectrometry of small and large molecules. Anal Chem 83:7591–7594

    CAS  Google Scholar 

  146. Cotte-Rodriguez I, Zhang Y, Miao Z et al (2011) Ionization methods in protein mass spectrometry. In: Guodong C et al (eds) Protein mass spectrometry, John Wiley & Sons, pp 3–42

    Google Scholar 

  147. Cody RB, Freiser BS (1982) Collision-induced dissociation in a Fourier-transform mass spectrometer. Int J Mass Spectrom Ion Processes 41:199–204

    CAS  Google Scholar 

  148. Cooks RG (1995) Collision-induced dissociation: readings and commentary. J Mass Spectrom 30:1215–1221

    CAS  Google Scholar 

  149. Jennings KR (1968) Collision-induced decompositions of aromatic molecular ions. Int J Mass Spectrom Ion Phys 1:227–235

    CAS  Google Scholar 

  150. McLafferty FW, Bryce TA (1967) Metastable-ion characteristics. Characterization of isomeric molecules. Chem Commun 1215–1217

    Google Scholar 

  151. Wells JM, McLuckey SA (2005) Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol 402:148–185

    CAS  Google Scholar 

  152. Marcus RA (1952) Unimolecular dissociations and free-radical recombination reactions. J Chem Phys 20:359–364

    CAS  Google Scholar 

  153. Rosenstock HM, Wallenstein MB, Wahrhaftig AL et al (1952) Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules. Proc Natl Acad Sci U S A 38:667–678

    CAS  Google Scholar 

  154. Cooks RG, Glish GL (1981) Mass-spectrometry. Chem Eng News 59:40–52

    CAS  Google Scholar 

  155. McLafferty FW (1983) Tandem mass spectrometry. Wiley, New York

    Google Scholar 

  156. McLafferty FW (1981) Tandem mass-spectrometry. Science 214:280–287

    CAS  Google Scholar 

  157. McLuckey SA (1992) Principles of collisional activation in analytical mass spectrometry. J Am Soc Mass Spectr 3:599–614

    CAS  Google Scholar 

  158. Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39:1091–1112

    CAS  Google Scholar 

  159. Yamaoka H, Pham D, Durup J (1969) Energetics of the collision-induced dissociations C2H2+.far. C2H++H and C2H2+.far. H++C2H. J Chem Phys 51:3465–3476

    CAS  Google Scholar 

  160. Beynon JH, Boyd RK, Brenton AG (1986) Charge permutation reactions. Adv Mass Spectrom 10th:437–469

    Google Scholar 

  161. Dodonov A, Kozlovsky V, Loboda A et al (1997) A new technique for decomposition of selected ions in molecule ion reactor coupled with ortho-time-of-flight mass spectrometry. Rapid Commun Mass Sp 11:1649–1656

    CAS  Google Scholar 

  162. Laskin J, Futrell JH (2003) Collisional activation of peptide ions in FT-ICR mass spectrometry. Mass Spectrom Rev 22:158–181

    CAS  Google Scholar 

  163. Gauthier JW, Trautman TR, Jacobson DB (1991) Sustained off-resonance irradiation for collision-activated dissociation involving Fourier transform mass spectrometry. Collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal Chim Acta 246:211–225

    CAS  Google Scholar 

  164. Louris JN, Brodbelt-Lustig JS, Cooks RG et al (1990) Ion isolation and sequential stages of mass spectrometry in a quadrupole ion trap mass spectrometer. Int J Mass Spectrom Ion Processes 96:117–137

    CAS  Google Scholar 

  165. Yost RA, Enke CG, McGilvery DC et al (1979) High efficiency collision-induced dissociation in an rf-only quadrupole. Int J Mass Spectrom Ion Phys 30:127–136

    CAS  Google Scholar 

  166. Fabris D, Kelly M, Murphy C et al (1993) High-energy collision-induced dissociation of multiply charged polypeptides produced by electrospray. J Am Soc Mass Spectr 4:652–661

    CAS  Google Scholar 

  167. Medzihradszky KF, Burlingame AL (1994) The advantages and versatility of a high-energy collision-induced dissociation-based strategy for the sequence and structural determination of proteins. Methods (San Diego) 6:284–303

    CAS  Google Scholar 

  168. Medzihradszky KF, Campbell JM, Baldwin MA et al (2000) The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 72:552–558

    CAS  Google Scholar 

  169. Shukla AK, Futrell JH (2000) Tandem mass spectrometry: dissociation of ions by collisional activation. J Mass Spectrom 35:1069–1090

    CAS  Google Scholar 

  170. Wysocki VH, Resing KA, Zhang Q et al (2005) Mass spectrometry of peptides and proteins. Methods (San Diego) 35:211–222

    Google Scholar 

  171. Papayannopoulos IA (1995) The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom Rev 14:49–73

    CAS  Google Scholar 

  172. O’Hair RA (2000) The role of nucleophile–electrophile interactions in the unimolecular and bimolecular gas-phase ion chemistry of peptides and related systems. J Mass Spectrom 35:1377–1381

    Google Scholar 

  173. Schlosser A, Lehmann WD (2000) Five-membered ring formation in unimolecular reactions of peptides: a key structural element controlling low-energy collision-induced dissociation of peptides. J Mass Spectrom 35:1382–1390

    CAS  Google Scholar 

  174. Polce MJ, Ren D, Wesdemiotis C (2000) Dissociation of the peptide bond in protonated peptides. J Mass Spectrom 35:1391–1398

    CAS  Google Scholar 

  175. Wysocki VH, Tsaprailis G, Smith LL et al (2000) Mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom 35:1399–1406

    CAS  Google Scholar 

  176. Paizs B, Suhai S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24:508–548

    CAS  Google Scholar 

  177. Summerfield SG, Whiting A, Gaskell SJ (1997) Intra-ionic interactions in electrosprayed peptide ions. Int J Mass Spectrom Ion Processes 162:149–161

    CAS  Google Scholar 

  178. Dongre AR, Jones JL, Somogyi A et al (1996) Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model. J Am Chem Soc 118:8365–8374

    CAS  Google Scholar 

  179. Barlow CK, O’Hair RAJ (2008) Gas-phase peptide fragmentation: how understanding the fundamentals provides a springboard to developing new chemistry and novel proteomic tools. J Mass Spectrom 43:1301–1319

    CAS  Google Scholar 

  180. Breci LA, Tabb DL, Yates JR III et al (2003) Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal Chem 75:1963–1971

    CAS  Google Scholar 

  181. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spec 11:601

    CAS  Google Scholar 

  182. Jones AW, Cooper HJ (2011) Dissociation techniques in mass spectrometry-based proteomics. Analyst (Cambridge) 136:3419–3429

    Google Scholar 

  183. Harrison AG, Young AB, Bleiholder C et al (2006) Scrambling of sequence information in collision-induced dissociation of peptides. J Am Chem Soc 128:10364–10365

    CAS  Google Scholar 

  184. Bleiholder C, Osburn S, Williams TD et al (2008) Sequence-scrambling fragmentation pathways of protonated peptides. J Am Chem Soc 130:17774–17789

    CAS  Google Scholar 

  185. Dodds ED, Blackwell AE, Jones CM et al (2011) Determinants of gas-phase disassembly behavior in homodimeric protein complexes with related yet divergent structures. Anal Chem (Washington) 83:3881–3889

    Google Scholar 

  186. Blackwell AE, Dodds ED, Bandarian V et al (2011) Revealing the quaternary structure of a heterogeneous noncovalent protein complex through surface-induced dissociation. Anal Chem (Washington) 83:2862–2865

    Google Scholar 

  187. Benesch JLP (2009) Collisional activation of protein complexes: picking up the pieces. J Am Soc Mass Spectrom 20:341–348

    CAS  Google Scholar 

  188. Cooks RG, Ast T, Beynon JH (1975) Anomalous metastable peaks. Int J Mass Spectrom Ion Phys 16:348–352

    CAS  Google Scholar 

  189. Cooks RG, Terwilliger DT, Ast T et al (1975) Surface modified mass spectrometry. J Am Chem Soc 97:1583–1585

    CAS  Google Scholar 

  190. Mabud MA, Dekrey MJ, Cooks RG (1985) Surface-induced dissociation of molecular ions. Int J Mass Spectrom Ion Processes 67:285–294

    CAS  Google Scholar 

  191. Wysocki VH (2002) Surface-induced dissociation for peptide/protein sequencing. In: Abstracts of papers, 224th ACS national meeting, Boston, 18–22 August 2002: ANYL-230

    Google Scholar 

  192. Wysocki VH, Ding JM, Jones JL et al (1992) Surface-induced dissociation in tandem quadrupole mass spectrometers: a comparison of three designs. J Am Soc Mass Spectrom 3:27–32

    CAS  Google Scholar 

  193. Wysocki VH, Galhena A, Gamage C (2005) Surface-induced dissociation in a Q-TOF mass spectrometer. In: Abstracts of papers, 229th ACS national meeting, San Diego, 13–17 March

    Google Scholar 

  194. Wysocki VH, Gamage C, Qi Z et al (2004) Integrating surface-induced dissociation into simple TOF mass spectrometers. In: Abstracts of papers, 227th ACS national meeting, Anaheim, 28 March–1 April

    Google Scholar 

  195. Wysocki VH, Jones CM, Galhena A et al (2008) Surface-induced dissociation of noncovalent protein–protein complexes. In: Abstracts of papers, 236th ACS national meeting, Philadelphia, 17–21 August

    Google Scholar 

  196. Wysocki VH, Jones CM, Galhena AS et al (2008) Surface-induced dissociation shows potential to be more informative than collision-induced dissociation for structural studies of large systems. J Am Soc Mass Spectrom 19:903–913

    CAS  Google Scholar 

  197. Wysocki VH, Jones JL, Dongre AR et al (1994) Surface-induced dissociation of peptides. Biol Mass Spectrom Present Future, [Proc Kyoto ‘92 Int Conf]:249–254

    Google Scholar 

  198. Wysocki VH, Joyce KE, Jones CM et al (2008) Surface-induced dissociation of small molecules, peptides, and non-covalent protein complexes. J Am Soc Mass Spectrom 19:190–208

    CAS  Google Scholar 

  199. Wysocki VH, Tsaprailis G, Smith LL et al (2000) Mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom 35:1399–1406

    CAS  Google Scholar 

  200. Dongre AR (1996) Surface-induced dissociation of polyatomic ions: structure elucidation, energetics and mechanisms for fragmentation of protonated peptides, 348

    Google Scholar 

  201. Williams ER, Henry KD, McLafferty FW et al (1990) Surface-induced dissociation of peptide ions in Fourier-transform mass spectrometry. J Am Soc Mass Spectrom 1:413–416

    CAS  Google Scholar 

  202. Chorush RA, Little DP, Beu SC et al (1995) Surface-induced dissociation of multiply-protonated proteins. Anal Chem 67:1042–1046

    CAS  Google Scholar 

  203. Futrell J, Laskin J, Shukla AK (2003) Kinetics and dynamics of surface-induced dissociation of complex ions. In: Abstracts of papers, 225th ACS national meeting, New Orleans, 23–27 March

    Google Scholar 

  204. Futrell JH, Zhong W, Nikolaev EN et al (1998) Tandem Fourier transform mass spectrometry studies of surface-induced dissociation of benzene monomer and dimer ions on a self-assembled fluoroalkanethiolate monolayer surface. Adv Mass Spectrom 14:65321–65391

    Google Scholar 

  205. Laskin J, Bailey TH, Futrell JH (2003) Shattering of peptide ions on self-assembled monolayer surfaces. J Am Chem Soc 125:1625–1632

    CAS  Google Scholar 

  206. Laskin J, Beck KM, Hache JJ et al (2004) Surface-induced dissociation of ions produced by matrix-assisted laser desorption/ionization in a Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 76:351–356

    CAS  Google Scholar 

  207. Laskin J, Denisov EV, Shukla AK et al (2002) Surface-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer: instrument design and evaluation. Anal Chem 74:3255–3261

    CAS  Google Scholar 

  208. Laskin J (2004) Energetics and dynamics of peptide fragmentation from multiple-collision activation and surface-induced dissociation studies. Eur J Mass Spectrom 10:259–267

    CAS  Google Scholar 

  209. Laskin J (2006) Energetics and dynamics of fragmentation of protonated leucine enkephalin from time- and energy-resolved surface-induced dissociation studies. J Phys Chem A 110:8554–8562

    CAS  Google Scholar 

  210. Laskin J, Bailey TH, Futrell JH (2004) Fragmentation energetics for angiotensin II and its analogs from time- and energy-resolved surface-induced dissociation studies. Int J Mass Spectrom 234:89–99

    CAS  Google Scholar 

  211. Laskin J, Bailey TH, Futrell JH (2006) Mechanisms of peptide fragmentation from time- and energy-resolved surface-induced dissociation studies: dissociation of angiotensin analogs. Int J Mass Spectrom 249(250):462–472

    Google Scholar 

  212. Laskin J, Denisov E, Futrell J (2000) A comparative study of collision-induced and surface-induced dissociation. 1. Fragmentation of protonated dialanine. J Am Chem Soc 122:9703–9714

    CAS  Google Scholar 

  213. Laskin J, Denisov E, Futrell J (2001) Comparative study of collision-induced and surface-induced dissociation. 2. Fragmentation of small alanine-containing peptides in FT-ICR MS. J Phys Chem B 105:1895–1900

    CAS  Google Scholar 

  214. Laskin J, Denisov E, Futrell JH (2002) Fragmentation energetics of small peptides from multiple-collision activation and surface-induced dissociation in FT-ICR MS. Int J Mass Spectrom 219:189–201

    CAS  Google Scholar 

  215. Laskin J, Futrell JH (2003) Surface-induced dissociation of peptide ions: kinetics and dynamics. J Am Soc Mass Spectrom 14:1340–1347

    CAS  Google Scholar 

  216. Laskin J, Futrell JH (2003) Energy transfer in collisions of peptide ions with surfaces. J Chem Phys 119:3413–3420

    CAS  Google Scholar 

  217. Grill V, Shen J, Evans C et al (2001) Collisions of ions with surfaces at chemically relevant energies: instrumentation and phenomena. Rev Sci Instrum 72:3149–3179

    CAS  Google Scholar 

  218. Cooks RG, Ast T, Mabud MA (1990) Collisions of polyatomic ions with surfaces. Int J Mass Spectrom Ion Processes 100:209–265

    CAS  Google Scholar 

  219. Wysocki VH, Kenttamaa HI (1990) Collisional activation of distonic radical cations and their conventional isomers in quadrupole tandem mass spectrometry. J Am Chem Soc 112:5110–5116

    CAS  Google Scholar 

  220. DeKrey MJ, Kenttamaa HI, Wysocki VH et al (1986) Energy deposition in iron pentacarbonyl cation radical upon collision with a metal surface. Org Mass Spectrom 21:193–195

    CAS  Google Scholar 

  221. Schaaff TG, Qu Y, Farrell N et al (1998) Investigation of the trans effect in the fragmentation of dinuclear platinum complexes by electrospray ionization surface-induced dissociation tandem mass spectrometry. J Mass Spectrom 33:436–443

    CAS  Google Scholar 

  222. Franchetti V, Solka BH, Baitinger WE et al (1977) Soft landing of ions as a means of surface modification. Int J Mass Spectrom Ion Phys 23:29–35

    CAS  Google Scholar 

  223. Dongre AR, Somogyi A, Wysocki VH (1996) Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J Mass Spectrom 31:339–350

    CAS  Google Scholar 

  224. Sun W, May JC, Gillig KJ et al (2009) A dual time-of-flight apparatus for an ion mobility-surface-induced dissociation-mass spectrometer for high-throughput peptide sequencing. Int J Mass Spectrom 287:39–45

    CAS  Google Scholar 

  225. Sun W (2007) Development of a MALDI-ion mobility-surface-induced dissociation-time-of-flight mass spectrometer with novel collision source configurations for high throughput peptide sequencing. Texas A&M University, Texas, p 129

    Google Scholar 

  226. Stone EG (2003) Development of a MALDI-ion mobility-surface-induced dissociation-time-of- flight-mass spectrometer for the analysis of peptides and protein digests. Texas A&M University, Texas, p 169

    Google Scholar 

  227. Fernandez FM, Smith LL, Kuppannan K et al (2003) Peptide sequencing using a patchwork approach and surface-induced dissociation in sector-TOF and dual quadrupole mass spectrometers. J Am Soc Mass Spectrom 14:1387–1401

    CAS  Google Scholar 

  228. Galhena AS, Dagan S, Jones CM et al (2008) Surface-induced dissociation of peptides and protein complexes in a quadrupole/time-of-flight mass spectrometer. Anal Chem (Washington) 80:1425–1436

    Google Scholar 

  229. Fernandez FM, Wysocki VH, Futrell JH et al (2006) Protein identification via surface-induced dissociation in an FT-ICR mass spectrometer and a patchwork sequencing approach. J Am Soc Mass Spectrom 17:700–709

    CAS  Google Scholar 

  230. Winger BE, Laue HJ, Horning SR et al (1992) Hybrid BEEQ tandem mass spectrometer for the study of ion/surface collision processes. Rev Sci Instrum 63:5613–5625

    CAS  Google Scholar 

  231. Qayyum A, Herman Z, Tepnual T et al (2004) Surface-induced dissociation of polyatomic hydrocarbon projectile ions with different initial internal energy content. J Phys Chem A 108:1–8

    CAS  Google Scholar 

  232. Feketeova L, Grill V, Zappa F et al (2008) Charge exchange, surface-induced dissociation and reactions of doubly charged molecular ions SF 2+4 upon impact on a stainless steel surface: a comparison with surface-induced dissociation of singly charged SF +4 molecular ions. Int J Mass Spectrom 276:37–42

    CAS  Google Scholar 

  233. Feketeova L, Tepnual T, Grill V et al (2007) Surface-induced dissociation and reactions of cations and dications C7H8 +/2+, C7H7 +/2+ and C7H6 2+: dependence of mass spectra of product ions on incident energy of the projectiles. Int J Mass Spectrom 265:337–346

    CAS  Google Scholar 

  234. Jasik J, Roithova J, Zabka J et al (2006) Surface-induced dissociation and reactions of dications and cations: collisions of dications C7H8 2+, C7H7 2+, and C7H6 2+ and a comparison with the respective cations C7D8 + and C7H7 +. Int J Mass Spectrom 249(250):162–170

    Google Scholar 

  235. Jasik J, Zabka J, Feketeova L et al (2005) Collisions of slow polyatomic ions with surfaces: dissociation and chemical reactions of C2H2 +, C2H3 +, C2H4 +, C2H5 +, and their deuterated variants C2D2 + and C2D4 + on room-temperature and heated carbon surfaces. J Phys Chem A 109:10208–10215

    CAS  Google Scholar 

  236. Jo S-C, Cooks RG (2003) Translational to vibrational energy conversion during surface-induced dissociation of n-butylbenzene molecular ions colliding at self-assembled monolayer surfaces. Eur J Mass Spectrom 9:237–244

    CAS  Google Scholar 

  237. Shukla AK, Futrell JH (2003) Surface-induced dissociation of acetone cations from self-assembled monolayer surface of fluorinated alkyl thiol on Au (1 1 1) substrate at low collision energies. Int J Mass Spectrom 228:563–576

    CAS  Google Scholar 

  238. Rakov VS, Denisov EV, Laskin J et al (2002) Surface-induced dissociation of the benzene molecular cation in Fourier transform ion cyclotron resonance mass spectrometry. J Phys Chem A 106:2781–2788

    CAS  Google Scholar 

  239. Zulauf A, Schmidt L, Jungclas H (2008) Grazing incidence surface-induced dissociation: molecules sliding along a surface. Anal Bioanal Chem 392:793–796

    CAS  Google Scholar 

  240. Biasioli F, Fiegele T, Mair C et al (2000) Surface-induced dissociation of singly and multiply charged fullerene ions. J Chem Phys 113:5053–5057

    CAS  Google Scholar 

  241. Waldschmidt B, Turra M, Schaefer R (2007) Surface-induced dissociation as a probe for the energetics and structure of lead clusters. Zeitschrift fuer Physikalische Chemie (Muenchen) 221:1569–1579

    Google Scholar 

  242. Cooks R, Amy J, Bier M et al (1989) New mass spectrometers. Adv Mass Spectrom 11A:33–52

    CAS  Google Scholar 

  243. Williams ER, Henry KD, McLafferty FW et al (1990) Surface-induced dissociation of peptide ions in Fourier-transform mass spectrometry. J Am Soc Mass Spectr 1:413–416

    CAS  Google Scholar 

  244. Cole RB, LeMeillour S, Tabet JC (1992) Surface-induced dissociation of protonated peptides: implications of initial kinetic energy spread. Anal Chem 64:365–371

    CAS  Google Scholar 

  245. McCormack AL, Somogyi A, Dongre AR et al (1993) Fragmentation of protonated peptides: surface-induced dissociation in conjunction with a quantum mechanical approach. Anal Chem 65:2859–2872

    CAS  Google Scholar 

  246. Jones JL, Dongre AR, Somogyi A et al (1994) Sequence dependence of peptide fragmentation efficiency curves determined by electrospray ionization/surface-induced dissociation mass spectrometry. J Am Chem Soc 116:8368–8369

    CAS  Google Scholar 

  247. Jones CM, Beardsley RL, Galhena AS et al (2006) Symmetrical gas-phase dissociation of noncovalent protein complexes via surface collisions. J Am Chem Soc 128:15044–15045

    CAS  Google Scholar 

  248. Beardsley RL, Jones CM, Galhena AS et al (2009) Noncovalent protein tetramers and pentamers with “n” charges yield monomers with n/4 and n/5 charges. Anal Chem (Washington) 81:1347–1356

    Google Scholar 

  249. Brodbelt JS (2011) Shedding light on the frontier of photodissociation. J Am Soc Mass Spectr 22:197–206

    CAS  Google Scholar 

  250. Brodbelt JS, Wilson JJ (2009) Infrared multiphoton dissociation in quadrupole ion traps. Mass Spec Rev 28:390–424

    CAS  Google Scholar 

  251. Ly T, Julian RR (2009) Ultraviolet photodissociation: developments towards applications for mass-spectrometry-based proteomics. Angew Chem Int Edit 48:7130–7137

    CAS  Google Scholar 

  252. Laskin J, Futrell JH (2005) Activation of large ions in FT-ICR mass spectrometry. Mass Spectrom Rev 24:135–167

    CAS  Google Scholar 

  253. Black DM, Payne AH, Glish GL (2006) Determination of cooling rates in a quadrupole ion trap. J Am Soc Mass Spectr 17:932–938

    CAS  Google Scholar 

  254. Palumbo AM, Smith SA, Kalcic CL et al (2011) Tandem mass spectrometry strategies for phosphoproteome analysis. Mass Spec Rev 30:600–625

    CAS  Google Scholar 

  255. Dunbar RC (2004) BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications. Mass Spec Rev 23:127–158

    CAS  Google Scholar 

  256. Stephenson JL, Booth MM, Boue SM et al (1996) Analysis of biomolecules using electrospray ionization ion-trap mass spectrometry and laser photodissociation. Acs Sym Ser 619:512–564

    CAS  Google Scholar 

  257. Crowe MC, Brodbelt JS (2004) Infrared multiphoton dissociation (IRMPD) and collisionally activated dissociation of peptides in a quadrupole ion trap with selective IRMPD of phosphopeptides. J Am Soc Mass Spectr 15:1581–1592

    CAS  Google Scholar 

  258. Pikulski M, Wilson JJ, Aguilar A et al (2006) Amplification of infrared multiphoton dissociation efficiency in a quadruple ion trap using IR-active ligands. Anal Chem 78:8512–8517

    CAS  Google Scholar 

  259. Pikulski M, Hargrove A, Shabbir SH et al (2007) Sequencing and characterization of oligosaccharides using infrared multiphoton dissociation and boronic acid derivatization in a quadrupole ion trap. J Am Soc Mass Spectr 18:2094–2106

    CAS  Google Scholar 

  260. Smith SA, Kalcic CL, Safran KA et al (2010) Enhanced characterization of singly protonated phosphopeptide ions by femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fs-LID-MS/MS). J Am Soc Mass Spectr 21:2031–2040

    CAS  Google Scholar 

  261. Kalcic CL, Gunaratne TC, Jonest AD et al (2009) Femtosecond laser-induced ionization/dissociation of protonated peptides. J Am Chem Soc 131:940–942

    CAS  Google Scholar 

  262. Reilly JP (2009) Ultraviolet photofragmentation of biomolecular ions. Mass Spectrom Rev 28:425–447

    CAS  Google Scholar 

  263. Thompson MS, Cui WD, Reilly JP (2004) Fragmentation of singly charged peptide ions by photodissociation at lambda = 157 nm. Angew Chem Int Edit 43:4791–4794

    CAS  Google Scholar 

  264. Cui WD, Thompson MS, Reilly JP (2005) Pathways of peptide ion fragmentation induced by vacuum ultraviolet light. J Am Soc Mass Spectr 16:1384–1398

    CAS  Google Scholar 

  265. Kim TY, Thompson MS, Reilly JP (2005) Peptide photodissociation at 157 nm in a linear ion trap mass spectrometer. Rapid Commun Mass Sp 19:1657–1665

    CAS  Google Scholar 

  266. Thompson MS, Cui WD, Reilly JP (2007) Factors that impact the vacuum ultraviolet photofragmentation of peptide ions. J Am Soc Mass Spectr 18:1439–1452

    CAS  Google Scholar 

  267. Kim TY, Reilly JP (2009) Time-resolved observation of product ions generated by 157 nm photodissociation of singly protonated phosphopeptides. J Am Soc Mass Spectr 20:2334–2341

    CAS  Google Scholar 

  268. Parthasarathi R, He Y, Reilly JP et al (2010) New insights into the vacuum UV photodissociation of peptides. J Am Chem Soc 132:1606–1610

    CAS  Google Scholar 

  269. Ly T, Julian RR (2010) Elucidating the tertiary structure of protein ions in vacuo with site specific photoinitiated radical reactions. J Am Chem Soc 132:8602–8609

    CAS  Google Scholar 

  270. Diedrich JK, Julian RR (2010) Site-Selective fragmentation of peptides and proteins at quinone-modified cysteine residues investigated by ESI-MS. Anal Chem 82:4006–4014

    CAS  Google Scholar 

  271. Sun QY, Yin S, Loo JA et al (2010) Radical directed dissociation for facile identification of iodotyrosine residues using electrospray ionization mass spectrometry. Anal Chem 82:3826–3833

    CAS  Google Scholar 

  272. Liu ZJ, Julian RR (2009) Deciphering the peptide iodination code: influence on subsequent gas-phase radical generation with photo dissociation ESI-MS. J Am Soc Mass Spectr 20:965–971

    CAS  Google Scholar 

  273. Ly T, Julian RR (2008) Residue-specific radical-directed dissociation of whole proteins in the gas phase. J Am Chem Soc 130:351–358

    CAS  Google Scholar 

  274. Wilson JJ, Brodbelt JS (2007) MS/MS simplification by 355 nm ultraviolet photodissociation of chromophore-derivatized peptides in 4–3 quadrupole ion trap. Anal Chem 79:7883–7892

    CAS  Google Scholar 

  275. Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266

    CAS  Google Scholar 

  276. McLafferty F, Horn DM, Breuker K et al (2001) Electron capture dissociation of gaseous multiply charged ions by fourier-transform ion cyclotron resonance. J Am Soc Mass Spectrom 12:245–249

    CAS  Google Scholar 

  277. Guan Z, Kelleher NL, O’Connor PB et al (1996) 193 nm photodissociation of larger multiply-charged biomolecules. Int J Mass Spectrom Ion Processes 157(158):357–364

    Google Scholar 

  278. Zubarev RA, Kruger NA, Fridriksson EK et al (1999) Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J Am Chem Soc 121:2857–2862

    CAS  Google Scholar 

  279. Kelleher NL, Zubarev RA, Bush K et al (1999) Localization of labile posttranslational modifications by electron capture dissociation: The case of γ-carboxyglutamic acid. Anal Chem 71:4250–4253

    CAS  Google Scholar 

  280. Shi SDH, Hemling ME, Carr SA (2001) Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal Chem 73:19–22

    CAS  Google Scholar 

  281. Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal Chem 71:4431–4436

    CAS  Google Scholar 

  282. Whitelegge JP, Zabrouskov V, Halgand F et al (2007) Protein-sequence polymorphisms and post-translational modifications in proteins from human saliva using top-down fourier-transform ion cyclotron resonance mass spectrometry. Int J Mass Spectrom 268:190–197

    CAS  Google Scholar 

  283. Haselmann KF, Budnik BA, Olsen JV et al (2001) Advantages of external accumulation for electron capture dissociation in Fourier-transform mass spectrometry. Anal Chem 73:2998–3005

    CAS  Google Scholar 

  284. Cooper HJ, Håkansson K, Marshall AG (2005) The role of electron capture dissociation in biomolecular analysis. Mass Spectrom Rev 24:201–222

    CAS  Google Scholar 

  285. Chen XH, Tureček F (2006) The arginine anomaly: Arginine radicals are poor hydrogen atom donors in electron transfer induced dissociations. J Am Chem Soc 128:12520–12530

    CAS  Google Scholar 

  286. Zubarev RA, Horn DM, Fridriksson EK et al (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573

    CAS  Google Scholar 

  287. Sawicka A, Skurski P, Hudgins RR et al (2003) Model calculations relevant to disulfide bond cleavage via electron capture influenced by positively charged group. J Phys Chem B 107:13505–13511

    CAS  Google Scholar 

  288. Syrstad EA, Tureček F (2005) Toward a general mechanism of electron capture dissociation. J Am Soc Mass Spectrom 16:208–224

    CAS  Google Scholar 

  289. Cui W, Rohrs HW, Gross ML (2011) Top-down mass spectrometry: recent developments, applications, and perspectives. Analyst 136:3854–3864

    CAS  Google Scholar 

  290. Horn DM, Ge Y, McLafferty FW (2000) Activated ion electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins. Anal Chem 72:4778–4784

    CAS  Google Scholar 

  291. Han X, Jin M, Breuker K et al (2006) Extending top-down mass spectrometry to proteins with masses greater than 200 kilodaltons. Science 314:109–112

    CAS  Google Scholar 

  292. Henry KD, Quinn JP, McLafferty FW (1991) High-resolution electrospray mass spectra of large molecules. J Am Chem Soc 113:5447–5449

    CAS  Google Scholar 

  293. Axelsson J, Palmblad M, Håkansson K et al (1999) Electron capture dissociation of substance P using a commercially available Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun Mass Spectrom 13:474–477

    CAS  Google Scholar 

  294. Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal Chem 71:4431–4436

    CAS  Google Scholar 

  295. Breuker K, Oh H, Horn DM et al (2002) Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J Am Chem Soc 124:6407–6420

    CAS  Google Scholar 

  296. Horn DM, Breuker K, Frank AJ et al (2001) Kinetic intermediates in the folding of gaseous protein ions characterized by electron capture dissociation mass spectrometry. J Am Chem Soc 123:9792–9799

    CAS  Google Scholar 

  297. Breuker K, McLafferty FW (2003) Native electron capture dissociation for the structural characterization of noncovalent interactions in native cytochrome c. Angre Chem Int Ed 42:4900–4904

    CAS  Google Scholar 

  298. Breuker K, McLafferty FW (2005) The thermal unfolding of native cytochrome c in the transition from solution to gas phase probed by native electron capture dissociation. Angre Chem Int Ed 44:4911–4914

    CAS  Google Scholar 

  299. Breuker K, Bruschweiler S, Tollinger M (2011) Electrostatic stabilization of a native protein structure in the gas phase. Angre Chem Int Ed 50:873–877

    CAS  Google Scholar 

  300. Xie Y, Zhang J, Yin S et al (2006) Top-down ESI-ECD-FT-ICR mass spectrometry localizes noncovalent protein-ligand binding sites. J Am Chem Soc 128:14432–14433

    CAS  Google Scholar 

  301. Yin S, Loo JA (2010) Elucidating the site of protein-ATP binding by top-down mass spectrometry. J Am Soc Mass Spectrom 21:899–907

    CAS  Google Scholar 

  302. Yin S, Loo JA (2011) Top-down mass spectrometry of supercharged native protein–ligand complexes. Int J Mass Spectrom 300:118–122

    CAS  Google Scholar 

  303. Zhang H, Cui W, Wen J et al (2010) Native electrospray and electron-capture dissociation in FTICR mass spectrometry provide top-down sequencing of a protein component in an intact protein assembly. J Am Soc Mass Spectrom 21:1966–1968

    CAS  Google Scholar 

  304. Zhang H, Cui W, Wen J et al (2011) Native electrospray and electron-capture dissociation FTICR mass spectrometry for top-down studies of protein assemblies. Anal Chem 83:5598–5606

    CAS  Google Scholar 

  305. Yoo HJ, Wang N, Zhuang S et al (2011) Negative-ion electron capture dissociation: radical-driven fragmentation of charge-increased gaseous peptide anions. J Am Chem Soc 133:16790–16793

    CAS  Google Scholar 

  306. Hunt DF, Coon JJ, Syka JEP et al (2009) Electron transfer dissociation for biopolymer sequence mass spectrometric analysis eds, US

    Google Scholar 

  307. Syka JEP, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533

    CAS  Google Scholar 

  308. Mikesh LM, Ueberheide B, Chi A et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822

    CAS  Google Scholar 

  309. O’Connor PB, Cournoyer JJ, Pitteri SJ et al (2006) Differentiation of aspartic and isoaspartic acids using electron transfer dissociation. J Am Soc Mass Spectrom 17:15–19

    Google Scholar 

  310. Wiesner J, Premsler T, Sickmann A (2008) Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 8:4466–4483

    CAS  Google Scholar 

  311. Coon JJ, Shabanowitz J, Hunt DF et al (2005) Electron transfer dissociation of peptide anions. J Am Soc Mass Spectrom 16:880–882

    CAS  Google Scholar 

  312. Han H, Xia Y, McLuckey SA (2007) Ion trap collisional activation of c and z.bul. ions formed via gas-phase ion/ion electron-transfer dissociation. J Proteome Res 6:3062–3069

    CAS  Google Scholar 

  313. Han H, Pappin DJ, Ross PL et al (2008) Electron transfer dissociation of iTRAQ labeled peptide ions. J Proteome Res 7:3643–3648

    CAS  Google Scholar 

  314. Han H, Xia Y, Yang M et al (2008) Rapidly alternating transmission mode electron-transfer dissociation and collisional activation for the characterization of polypeptide ions. Anal Chem (Washington) 80:3492–3497

    Google Scholar 

  315. Lin C, O’Connor P (2012) Ion activation and mass analysis in protein mass spectrometry. In: Gross ML, Guodong C, Pramanik BN (eds) Ion activation and mass analysis in protein mass spectrometry. Wiley, Hoboken, pp 55–59

    Google Scholar 

  316. Swaney DL, McAlister GC, Wirtala M et al (2006) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem 79:477–485

    Google Scholar 

  317. Vasicek L, Brodbelt JS (2009) Enhanced electron transfer dissociation through fixed charge derivatization of cysteines. Anal Chem 81:7876–7884

    CAS  Google Scholar 

  318. Pitteri SJ, Chrisman PA, Hogan JM et al (2005) Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap: reactions of doubly and triply protonated peptides with SO *2 . Anal Chem 77:1831–1839

    CAS  Google Scholar 

  319. Gunawardena HP, Gorenstein L, Erickson DE et al (2007) Electron transfer dissociation of multiply protonated and fixed charge disulfide linked polypeptides. Int J Mass Spectrom 265:130–138

    CAS  Google Scholar 

  320. Tsybin YO, Fornelli L, Stoermer C et al (2011) Structural analysis of intact monoclonal antibodies by electron transfer dissociation mass spectrometry. Anal Chem 83:8919–8927

    CAS  Google Scholar 

  321. McAlister GC, Russell JD, Rumachik NG et al (2012) Analysis of the acidic proteome with negative electron-transfer dissociation mass spectrometry. Anal Chem 84:2875–2882

    CAS  Google Scholar 

  322. Budnik BA, Haselmann KF, Zubarev RA (2001) Electron detachment dissociation of peptide di-anions: an electron-hole recombination phenomenon. Chem Phys Lett 342:299–302

    CAS  Google Scholar 

  323. Kalli A, Håkansson K (2007) Preferential cleavage of S–S and C–S bonds in electron detachment dissociation and infrared multiphoton dissociation of disulfide-linked peptide anions. Int J Mass Spectrom 263:71–81

    CAS  Google Scholar 

  324. Wolff JJ, Laremore TN, Franklin E, Leach I et al (2009) Electron capture dissociation, electron detachment dissociation and infrared multiphoton dissociation of sucrose octasulfate. EurJ Mass Spectrom 15:275–281

    CAS  Google Scholar 

  325. Wolff JJ, Amster IJ, Chi L et al (2007) Electron detachment dissociation of glycosaminoglycan tetrasaccharides. J Am Soc Mass Spectrom 18:234–244

    CAS  Google Scholar 

  326. Wolff JJ, Chi L, Linhardt RJ et al (2007) Distinguishing glucuronic from iduronic acid in glycosaminoglycan tetrasaccharides by using electron detachment dissociation. Anal Chem 79:2015–2022

    CAS  Google Scholar 

  327. Wolff JJ, Laremore TN, Busch AM et al (2008) Electron detachment dissociation of dermatan sulfate oligosaccharides. J Am Soc Mass Spectrom 19:294–304

    CAS  Google Scholar 

  328. Yang J, Håkansson K (2008) Characterization and optimization of electron detachment dissociation Fourier transform ion cyclotron resonance mass spectrometry. Int J Mass Spectrom 276:144–148

    CAS  Google Scholar 

  329. Ganisl B, Valovka T, Ms Hartl et al (2011) Electron detachment dissociation for top-down mass spectrometry of acidic proteins. Chem Eur J 17:4460–4469

    CAS  Google Scholar 

  330. Taucher M, Breuker K (2010) Top-down mass spectrometry for sequencing of larger (up to 61 nt) RNA by CAD and EDD. J Am Soc Mass Spectrom 21:918–929

    CAS  Google Scholar 

  331. Fung YME, Adams CM, Zubarev RA (2009) Electron ionization dissociation of singly and multiply charged peptides. J Am Chem Soc 131:9977–9985

    CAS  Google Scholar 

  332. Chen H, Eberlin LS, Cooks RG (2007) Neutral fragment mass spectra via ambient thermal dissociation of peptide and protein ions. J Am Chem Soc 129:5880–5886

    CAS  Google Scholar 

  333. Xia Y, Ouyang Z, Cooks RG (2008) Peptide fragmentation assisted by surfaces treated with a low-temperature plasma in NanoESI. Angew Chem Int Edit 47:8646–8649

    CAS  Google Scholar 

  334. Robb DB, Rogalski JC, Kast J et al (2012) Liquid chromatography—atmospheric pressure electron capture dissociation mass spectrometry for the structural analysis of peptides and proteins. Anal Chem 84:4221–4226

    CAS  Google Scholar 

  335. Cook SL, Collin OL, Jackson GP (2009) Metastable atom-activated dissociation mass spectrometry: leucine/isoleucine differentiation and ring cleavage of proline residues. J Mass Spectrom 44:1211–1223

    CAS  Google Scholar 

  336. Cook SL, Jackson GP (2011) Characterization of tyrosine nitration and cysteine nitrosylation modifications by metastable atom-activation dissociation mass spectrometry. J Am Soc Mass Spectr 22:221–232

    CAS  Google Scholar 

  337. Berkout VD (2006) Fragmentation of protonated peptide ions via interaction with metastable atoms. Anal Chem 78:3055–3061

    CAS  Google Scholar 

  338. Berkout VD, Doroshenko VM (2008) Fragmentation of phosphorylated and singly charged peptide ions via interaction with metastable atoms. Int J Mass Spectrom 278:150–157

    CAS  Google Scholar 

  339. Berkout VD (2009) Fragmentation of singly protonated peptides via interaction with metastable rare gas atoms. Anal Chem 81:725–731

    CAS  Google Scholar 

  340. Misharin AS, Silivra OA, Kjeldsen F et al (2005) Dissociation of peptide ions by fast atom bombardment in a quadrupole ion trap. Rapid Commun Mass Sp 19:2163–2171

    CAS  Google Scholar 

  341. Berkout VD, Doroshenko VM (2008) Fragmentation of phosphorylated and singly charged peptide ions via interaction with metastable atoms. Int J Mass Spectrom 278:150–157

    CAS  Google Scholar 

  342. Berkout VD (2006) Fragmentation of protonated peptide ions via interaction with metastable atoms. Anal Chem 78:3055–3061

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF (CHE-0911160) and NSF Career (CHE-1149367) funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cotte-Rodriguez, I., Miao, Z., Zhang, Y., Chen, H. (2013). Introduction to Protein Mass Spectrometry. In: Chen, G. (eds) Characterization of Protein Therapeutics using Mass Spectrometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7862-2_1

Download citation

Publish with us

Policies and ethics