RNA Exosome pp 29-38 | Cite as

The Archaeal Exosome

  • Elena Evguenieva-Hackenberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 702)


The archaeal exosome is a protein complex with structural similarities to the eukaryotic exosome and bacterial PNPase. Its catalytic core is formed by alternating Rrp41 and Rrp42 polypeptides, arranged in a hexameric ring. A flexible RNA binding cap composed of the evolutionarily conserved proteins Rrp4 and/or Csl4 is bound at the top of the ring and seems to be involved in recruitment of specific substrates and their unwinding. Additionally, the protein complex contains an archaea-specific subunit annotated as DnaG, the function of which is still unknown. The archaeal exosome degrades RNA phosphorolytically in 3′ to 5′ direction. In a reverse reaction, it synthesizes heteropolymeric RNA tails using nucleoside diphosphates. The functional similarity between the archaeal exosome and PNPase shows that important processes of RNA degradation and posttranscriptional modification in Archaea are similar to the processes in Bacteria and organelles.


Hexameric Ring Polynucleotide Phosphorylase Exosome Complex Splice Endonuclease Methanothermobacter Thermoautotrophicus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 1977; 74:5088–5090.PubMedCrossRefGoogle Scholar
  2. 2.
    Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms:proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576–4579.PubMedCrossRefGoogle Scholar
  3. 3.
    Kletzin A. General characteristics and importantmodel organisms. In: Cavicchioli R., ed. Archaea—Molecular and Cellular Biology, Washington, DC: ASM Press 2007:14–92.Google Scholar
  4. 4.
    Barry ER, Bell SD. DNA replication in the archaea. Microbiol Mol Biol Rev 2006; 70:876–887.PubMedCrossRefGoogle Scholar
  5. 5.
    Werner F, Weinzierl RO. A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol Cell 2002; 10:635–646.PubMedCrossRefGoogle Scholar
  6. 6.
    Anantharaman V, Koonin EV, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 2002; 30:1427–1464.PubMedCrossRefGoogle Scholar
  7. 7.
    Koonin EV, Wolf YI, Aravind L. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res 2001; 11:240–252.PubMedCrossRefGoogle Scholar
  8. 8.
    Evguenieva-Hackenberg E, Walter P, Hochleitner E et al. An exosome-like complex in Sulfolobus solfataricus. EMBO Rep 2003; 4:889–893.PubMedCrossRefGoogle Scholar
  9. 9.
    Lorentzen E, Walter P, Fribourg S et al. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 2005; 12:575–581.PubMedCrossRefGoogle Scholar
  10. 10.
    Büttner K, Wenig K, Hopfner KP. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 2005; 20:461–471.PubMedCrossRefGoogle Scholar
  11. 11.
    Portnoy V, Evguenieva-Hackenberg E, Klein F et al. RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Rep 2005; 6:1188–1193.PubMedCrossRefGoogle Scholar
  12. 12.
    Walter P, Klein F, Lorentzen E et al. Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 2006; 62:1076–1089.PubMedCrossRefGoogle Scholar
  13. 13.
    Ramos CR, Oliveira CL, Torriani IL et al. The Pyrococcus exosome complex: structural and functional characterization. J Biol Chem 2006; 281:6751–6759.PubMedCrossRefGoogle Scholar
  14. 14.
    Evguenieva-Hackenberg E, Roppelt V, Finsterseifer P et al. Rrp4 and Csl4 are needed for efficient degradation but not for polyadenylation of synthetic and natural RNA by the archaeal exosome. Biochemistry 2008; 47:13158–13168.PubMedCrossRefGoogle Scholar
  15. 15.
    Mohanty BK, Kushner SR. Polynucleotide phosphorylase functions both as a 3′right-arrow 5′ exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci USA 2000; 97:11966–11971.PubMedCrossRefGoogle Scholar
  16. 16.
    Rott R, Zipor G, Portnoy V et al. RNA polyadenylation and degradation in cyanobacteria are similar to the chloroplast but different from Escherichia coli. J Biol Chem 2003; 278:15771–15777.PubMedCrossRefGoogle Scholar
  17. 17.
    Farhoud MH, Wessels HJ, Steenbakkers PJ et al. Protein complexes in the archaeon Methanothermobacter thermautotrophicus analyzed by blue native/SDS-PAGE and mass spectrometry. Mol Cell Proteomics 2005; 4:1653–1663.PubMedCrossRefGoogle Scholar
  18. 18.
    Lorentzen E, Dziembowski A, Lindner D et al. RNA channelling by the archaeal exosome. EMBO Rep 2007; 8:470–476.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu Q, Greimann JC, Lima CD. Reconstitution, activities and structure of the eukaryotic RNA exosome. Cell 2006; 127:1223–1237. Erratum in: Cell 2007; 131:188–189.PubMedCrossRefGoogle Scholar
  20. 20.
    Symmons MF, Jones GH, Luisi BF. Aduplicated fold is the structural basis forpolynucleotide phosphorylase catalytic activity, processivity and regulation. Structure 2000; 8:1215–1226.PubMedCrossRefGoogle Scholar
  21. 21.
    Walter P. Aufklärung von Struktur und Funktion des archaealen Exosoms durch Charakterisierung nativer und rekonstituierter Proteinkomplexe aus Sulfolobus solfataricus. Dissertation, 2007: Universität Giessen, Germany.Google Scholar
  22. 22.
    Mitchell P, Petfalski E, Shevchenko A et al. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 1997; 91:457–466.PubMedCrossRefGoogle Scholar
  23. 23.
    Chekanova JA, Dutko JA, Mian IS et al. Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3′→5′ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res 2002; 30:695–700.PubMedCrossRefGoogle Scholar
  24. 24.
    Oddone A, Lorentzen E, Basquin J et al. Structural and biochemical characterization of the yeast exosome component Rrp40. EMBO Rep 2007; 8:63–69.PubMedCrossRefGoogle Scholar
  25. 25.
    Navarro MV, Oliveira CC, Zanchin NI et al. Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J Biol Chem 2008; 283:14120–14131.PubMedCrossRefGoogle Scholar
  26. 26.
    Lu C, Ding F, Ke A. Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring. PLoS One 2010; 5:e8739.PubMedCrossRefGoogle Scholar
  27. 27.
    Lorentzen E, Conti E. Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol Cell 2005; 20:473–481.PubMedCrossRefGoogle Scholar
  28. 28.
    Nurmohamed S, Vaidialingam B, Callaghan AJ et al. Crystal structure of Escherichia coli polynucleotide phosphorylase core bound to RNase E, RNA and manganese: implications for catalytic mechanism and RNA degradosome assembly. J Mol Biol 2009; 389:17–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Shi Z, Yang WZ, Lin-Chao S et al. Crystal structure of Escherichia coli PNPase: central channel residues are involved in processive RNA degradation. RNA 2008; 14:2361–2371.PubMedCrossRefGoogle Scholar
  30. 30.
    van Hoof A, Staples RR, Baker RE et al. Function of the ski4p (Csl4p) and Ski7p proteins in 3′-to-5′ degradation of mRNA. Mol Cell Biol 2000; 20:8230–8243.PubMedCrossRefGoogle Scholar
  31. 31.
    Raijmakers R, Noordman YE, van Venrooij WJ et al. Protein-protein interactions of hCsl4p with other human exosome subunits. J Mol Biol 2002; 315:809–818.PubMedCrossRefGoogle Scholar
  32. 32.
    Haile S, Estevez AM, Clayton C. A role for the exosome in the in vivo degradation of unstable mRNAs. RNA 2003; 9:1491–1501.PubMedCrossRefGoogle Scholar
  33. 33.
    Bonneau F, Basquin J, Ebert J et al. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 2009; 139(3):547–559.PubMedCrossRefGoogle Scholar
  34. 34.
    Evguenieva-Hackenberg E, Klug G. RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli. Prog Mol Biol Transl Sci 2009; 85:275–317.PubMedCrossRefGoogle Scholar
  35. 35.
    Portnoy V, Schuster G. RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Nucleic Acids Res 2006; 34:5923–5931.PubMedCrossRefGoogle Scholar
  36. 36.
    Hartung S, Hopfner KP. Lessons from structural and biochemical studies on the archaeal exosome. Biochem Soc Trans 2009; 37:83–87.PubMedCrossRefGoogle Scholar
  37. 37.
    Dziembowski A, Lorentzen E, Conti E et al. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 2007; 14:15–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang HW, Wang J, Ding F et al. Architecture of the yeast Rrp44 exosome complex suggests routes of RNA recruitment for 3′ end processing. Proc Natl Acad Sci USA 2007; 104:16844–16849.PubMedCrossRefGoogle Scholar
  39. 39.
    LaCava J, Houseley J, Saveanu C et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 2005; 121:713–724.PubMedCrossRefGoogle Scholar
  40. 40.
    Vanácová S, Wolf J, Martin G et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 2005; 3:e 189.CrossRefGoogle Scholar
  41. 41.
    Liou GG, Jane WN, Cohen SN et al. RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. Proc Natl Acad Sci USA 2001; 98:63–68.PubMedCrossRefGoogle Scholar
  42. 42.
    Taghbalout A, Rothfield L. RNase E and RNA helicase B play central roles in the cytosceletal organization of the RNA degradosome. J Biol Chem 2008; 283:13850–13855.PubMedCrossRefGoogle Scholar
  43. 43.
    Commichau FM, Rothe FM, Herzberg C et al. Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. Mol Cell Proteomics 2009; 8:1350–1360.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Elena Evguenieva-Hackenberg
    • 1
  1. 1.Institut für Mikrobiologie und MolekularbiologieUniversity of GiessenGiessenGermany

Personalised recommendations