Microenvironmental Regulation of Tumor Angiogenesis: Biological and Engineering Considerations

  • David W. Infanger
  • Siddharth P. Pathi
  • Claudia Fischbach
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Tumor angiogenesis is fundamental to tumor growth and metastasis, and antiangiogenic therapies have been developed to target this process. However, the clinical success of these treatments has been limited, which may be due, in part, to an incomplete understanding of cell–microenvironment interactions and their role in tumor angiogenesis. Traditionally, two-dimensional (2D) culture approaches have been used to study tumor progression in vitro, but these systems fail to faithfully recreate tumor microenvironmental conditions contributing to tumor angiogenesis in vivo. By integrating cancer biology with tissue engineering and drug delivery approaches, the development of biologically inspired tumor models has emerged. Such 3D model systems allow studying the specific role of soluble factor signaling, cell–extracellular matrix (ECM) interactions, cell–cell interactions, mechanical cues, and metabolic stress. This chapter discusses specific biological and engineering design considerations for tissue-engineered tumor models and highlights their application for defining the underpinnings of tumor angiogenesis.


Vascular Endothelial Growth Factor Tumor Angiogenesis Antiangiogenic Therapy Vascular Endothelial Growth Factor Signaling Proangiogenic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Emily Brooks and Daniel Brooks from Cornell University for their help with the editing of this chapter and acknowledge funding from the Cornell Nanobiotechnology Center (supported by the STC Program of the National Science Foundation under Agreement No. ECS-9876771), the Morgan Fund for Tissue Engineering, NIH (RC1 CA146065, 1U54 CA143876-01), and NSF (graduate research fellowship for SPP).


  1. 1.
    Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57–70.CrossRefGoogle Scholar
  2. 2.
    Carmeliet, P. and R.K. Jain, Angiogenesis in cancer and other diseases. Nature, 2000. 407(6801): p. 249–57.CrossRefGoogle Scholar
  3. 3.
    Jain, R.K., Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer, 2008. 8(4): p. 309–16.CrossRefGoogle Scholar
  4. 4.
    Goldmann, E., The growth of malignant disease in man and the lower animals with special reference to the vascular system. Lancet, 1907. 170(4392): p. 1236–40.CrossRefGoogle Scholar
  5. 5.
    Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182–6.CrossRefGoogle Scholar
  6. 6.
    Kerbel, R.S., Tumor angiogenesis. N Engl J Med, 2008. 358(19): p. 2039–49.CrossRefGoogle Scholar
  7. 7.
    Ferrara, N., H.P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Nat Med, 2003. 9(6): p. 669–76.CrossRefGoogle Scholar
  8. 8.
    Coussens, L.M., B. Fingleton, and L.M. Matrisian, Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002. 295(5564): p. 2387–92.ADSCrossRefGoogle Scholar
  9. 9.
    Hurwitz, H., et al., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 2004. 350(23): p. 2335–42.CrossRefGoogle Scholar
  10. 10.
    Sandler, A., et al., Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med, 2006. 355(24): p. 2542–50.CrossRefGoogle Scholar
  11. 11.
    Ferrara, N., et al., Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov, 2004. 3(5): p. 391–400.CrossRefGoogle Scholar
  12. 12.
    Ebos, J.M., et al., Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 2009. 15(3): p. 232–9.CrossRefGoogle Scholar
  13. 13.
    Paez-Ribes, M., et al., Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 2009. 15(3): p. 220–31.CrossRefGoogle Scholar
  14. 14.
    Eskens, F.A. and J. Verweij, The clinical toxicity profile of vascular endothelial growth ­factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer, 2006. 42(18): p. 3127–39.CrossRefGoogle Scholar
  15. 15.
    Jain, R.K., et al., Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol, 2006. 3(1): p. 24–40.CrossRefGoogle Scholar
  16. 16.
    Verheul, H.M. and H.M. Pinedo, Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer, 2007. 7(6): p. 475–85.CrossRefGoogle Scholar
  17. 17.
    Bissell, M.J. and D. Radisky, Putting tumours in context. Nat Rev Cancer, 2001. 1(1): p. 46–54.CrossRefGoogle Scholar
  18. 18.
    Eccles, S.A., et al., Preclinical models for the evaluation of targeted therapies of metastatic disease. Cell Biophys, 1994. 24–25: p. 279–91.Google Scholar
  19. 19.
    Fischbach, C., et al., Engineering tumors with 3D scaffolds. Nat Methods, 2007. 4(10): p. 855–60.CrossRefGoogle Scholar
  20. 20.
    Fischbach, C. and D.J. Mooney, Polymeric systems for bioinspired delivery of angiogenic molecules. Polymers for regenerative medicine. Adv Polym Sci, 2006. 203: p. 191–221.CrossRefGoogle Scholar
  21. 21.
    Zisch, A.H., M.P. Lutolf, and J.A. Hubbell, Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol, 2003. 12(6): p. 295–310.CrossRefGoogle Scholar
  22. 22.
    Fischbach, C. and D.J. Mooney, Polymers for pro- and anti-angiogenic therapy. Biomaterials, 2007. 28(12): p. 2069–76.CrossRefGoogle Scholar
  23. 23.
    Hubbell, J.A., Biomaterials in tissue engineering. Biotechnology (NY), 1995. 13(6): p. 565–76.CrossRefGoogle Scholar
  24. 24.
    Dang, J.M. and K.W. Leong, Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev, 2006. 58(4): p. 487–99.CrossRefGoogle Scholar
  25. 25.
    Hotary, K., et al., Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol, 2000. 149(6): p. 1309–23.CrossRefGoogle Scholar
  26. 26.
    van Amerongen, M.J., et al., The enzymatic degradation of scaffolds and their replacement by vascularized extracellular matrix in the murine myocardium. Biomaterials, 2006. 27(10): p. 2247–57.CrossRefGoogle Scholar
  27. 27.
    Vaalamo, M., et al., Distinct populations of stromal cells express collagenase-3 (MMP-13) and collagenase-1 (MMP-1) in chronic ulcers but not in normally healing wounds. J Invest Dermatol, 1997. 109(1): p. 96–101.CrossRefGoogle Scholar
  28. 28.
    Hall, H., T. Baechi, and J.A. Hubbell, Molecular properties of fibrin-based matrices for promotion of angiogenesis in vitro. Microvasc Res, 2001. 62(3): p. 315–26.CrossRefGoogle Scholar
  29. 29.
    Richardson, T.P., et al., Polymeric system for dual growth factor delivery. Nat Biotechnol, 2001. 19(11): p. 1029–34.CrossRefGoogle Scholar
  30. 30.
    Kubota, S., et al., Anti-alpha3 integrin antibody induces the activated form of matrix metalloprotease-2 (MMP-2) with concomitant stimulation of invasion through matrigel by human rhabdomyosarcoma cells. Int J Cancer, 1997. 70(1): p. 106–11.CrossRefGoogle Scholar
  31. 31.
    Jain, R., et al., Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm, 1998. 24(8): p. 703–27.CrossRefGoogle Scholar
  32. 32.
    Rhodes, C.T. and S.C. Porter, Coatings for controlled-release drug delivery systems. Drug Dev Ind Pharm, 1998. 24(12): p. 1139–54.CrossRefGoogle Scholar
  33. 33.
    Kuo, C.K. and P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001. 22(6): p. 511–21.CrossRefGoogle Scholar
  34. 34.
    Fischbach, C., et al., Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc Natl Acad Sci U S A, 2009. 106(2): p. 399–404.ADSCrossRefGoogle Scholar
  35. 35.
    Pathi, S.P., et al., A novel 3-D mineralized tumor model to study breast cancer bone metastasis. PLoS One, 2010. 5(1): p. e8849.ADSCrossRefGoogle Scholar
  36. 36.
    Zhang, R. and P.X. Ma, Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bonetissue engineering. I. Preparation and morphology. J Biomed Mater Res, 1999. 44(4): p. 446–55.CrossRefGoogle Scholar
  37. 37.
    Yeong, W.Y., et al., Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol, 2004. 22(12): p. 643–52.CrossRefGoogle Scholar
  38. 38.
    Huang, L., et al., Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Ed, 2001. 12(9): p. 979–93.CrossRefGoogle Scholar
  39. 39.
    Yoshimoto, H., et al., A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003. 24(12): p. 2077–82.CrossRefGoogle Scholar
  40. 40.
    Shin, H.J., et al., Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed, 2006. 17(1–2): p. 103–19.CrossRefGoogle Scholar
  41. 41.
    Cuevas, I. and N. Boudreau, Managing tumor angiogenesis: lessons from VEGF-resistant tumors and wounds. Adv Cancer Res, 2009. 103: p. 25–42.CrossRefGoogle Scholar
  42. 42.
    Holash, J., S.J. Wiegand, and G.D. Yancopoulos, New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene, 1999. 18(38): p. 5356–62.CrossRefGoogle Scholar
  43. 43.
    Metheny-Barlow, L.J. and L.Y. Li, The enigmatic role of angiopoietin-1 in tumor angiogenesis. Cell Res, 2003. 13(5): p. 309–17.CrossRefGoogle Scholar
  44. 44.
    Ahn, G.O. and J.M. Brown, Role of endothelial progenitors and other bone marrow-derived cells in the development of the tumor vasculature. Angiogenesis, 2009. 12(2): p. 159–64.CrossRefGoogle Scholar
  45. 45.
    Mizukami, Y., et al., Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med, 2005. 11(9): p. 992–7.Google Scholar
  46. 46.
    Chen, A., et al., Endothelial cell migration and vascular endothelial growth factor expression are the result of loss of breast tissue polarity. Cancer Res, 2009. 69(16): p. 6721–9.CrossRefGoogle Scholar
  47. 47.
    Tan, C.P., et al., Parylene peel-off arrays to probe the role of cell–cell interactions in tumour angiogenesis. Integr Biol (Camb), 2009. 1(10): p. 587–94.CrossRefGoogle Scholar
  48. 48.
    Dvorak, H.F., Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol, 2002. 20(21): p. 4368–80.CrossRefGoogle Scholar
  49. 49.
    Li, B., et al., VEGF and PIGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J, 2006. 20(9): p. 1495–7.CrossRefGoogle Scholar
  50. 50.
    Ferrara, N. and T. Davis-Smyth, The biology of vascular endothelial growth factor. Endocr Rev, 1997. 18(1): p. 4–25.CrossRefGoogle Scholar
  51. 51.
    Dallas, N.A., et al., Functional significance of vascular endothelial growth factor receptors on gastrointestinal cancer cells. Cancer Metastasis Rev, 2007. 26(3–4): p. 433–41.CrossRefGoogle Scholar
  52. 52.
    Dong, X., Z.C. Han, and R. Yang, Angiogenesis and antiangiogenic therapy in hematologic malignancies. Crit Rev Oncol Hematol, 2007. 62(2): p. 105–18.CrossRefGoogle Scholar
  53. 53.
    Mercurio, A.M., E.A. Lipscomb, and R.E. Bachelder, Non-angiogenic functions of VEGF in breast cancer. J Mammary Gland Biol Neoplasia, 2005. 10(4): p. 283–90.CrossRefGoogle Scholar
  54. 54.
    Ono, M., et al., Biological implications of macrophage infiltration in human tumor angiogenesis. Cancer Chemother Pharmacol, 1999. 43(Suppl): p. S69–71.CrossRefGoogle Scholar
  55. 55.
    Zlotnik, A. and O. Yoshie, Chemokines: a new classification system and their role in immunity. Immunity, 2000. 12(2): p. 121–7.CrossRefGoogle Scholar
  56. 56.
    Mehrad, B., M.P. Keane, and R.M. Strieter, Chemokines as mediators of angiogenesis. Thromb Haemost, 2007. 97(5): p. 755–62.Google Scholar
  57. 57.
    Raman, D., et al., Role of chemokines in tumor growth. Cancer Lett, 2007. 256(2): p. 137–65.CrossRefGoogle Scholar
  58. 58.
    Singh, S., A. Sadanandam, and R.K. Singh, Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev, 2007. 26(3–4): p. 453–67.CrossRefGoogle Scholar
  59. 59.
    Strieter, R.M., et al., CXC chemokines in angiogenesis. Cytokine Growth Factor Rev, 2005. 16(6): p. 593–609.CrossRefGoogle Scholar
  60. 60.
    Belperio, J.A., et al., CXC chemokines in angiogenesis. J Leukoc Biol, 2000. 68(1): p. 1–8.Google Scholar
  61. 61.
    Strieter, R.M., et al., Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer, 2006. 42(6): p. 768–78.CrossRefGoogle Scholar
  62. 62.
    Koch, A.E., et al., Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 1992. 258(5089): p. 1798–801.ADSCrossRefGoogle Scholar
  63. 63.
    Yoneda, J., et al., Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst, 1998. 90(6): p. 447–54.CrossRefGoogle Scholar
  64. 64.
    Strieter, R.M., et al., CXC chemokines in angiogenesis of cancer. Semin Cancer Biol, 2004. 14(3): p. 195–200.CrossRefGoogle Scholar
  65. 65.
    Mestas, J., et al., The role of CXCR2/CXCR2 ligand biological axis in renal cell carcinoma. J Immunol, 2005. 175(8): p. 5351–7.Google Scholar
  66. 66.
    Keane, M.P., et al., Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol, 2004. 172(5): p. 2853–60.Google Scholar
  67. 67.
    Holmes, W.E., et al., Structure and functional expression of a human interleukin-8 receptor. Science, 1991. 253(5025): p. 1278–80.ADSCrossRefGoogle Scholar
  68. 68.
    Murphy, P.M. and H.L. Tiffany, Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science, 1991. 253(5025): p. 1280–3.ADSCrossRefGoogle Scholar
  69. 69.
    Addison, C.L., et al., The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol, 2000. 165(9): p. 5269–77.Google Scholar
  70. 70.
    Heidemann, J., et al., Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem, 2003. 278(10): p. 8508–15.CrossRefGoogle Scholar
  71. 71.
    Li, A., et al., IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol, 2003. 170(6): p. 3369–76.Google Scholar
  72. 72.
    Inoue, K., et al., Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res, 2000. 6(5): p. 2104–19.Google Scholar
  73. 73.
    Li, A., et al., Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis, 2005. 8(1): p. 63–71.CrossRefGoogle Scholar
  74. 74.
    Luca, M., et al., Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol, 1997. 151(4): p. 1105–13.Google Scholar
  75. 75.
    De Larco, J.E., B.R. Wuertz, and L.T. Furcht, The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res, 2004. 10(15): p. 4895–900.CrossRefGoogle Scholar
  76. 76.
    Waugh, D.J. and C. Wilson, The interleukin-8 pathway in cancer. Clin Cancer Res, 2008. 14(21): p. 6735–41.CrossRefGoogle Scholar
  77. 77.
    Shono, T., et al., Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol, 1996. 16(8): p. 4231–9.Google Scholar
  78. 78.
    Nor, J.E., et al., Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res, 2001. 61(5): p. 2183–8.Google Scholar
  79. 79.
    Yancopoulos, G.D., et al., Vascular-specific growth factors and blood vessel formation. Nature, 2000. 407(6801): p. 242–8.CrossRefGoogle Scholar
  80. 80.
    Shireman, P.K., et al., Modulation of vascular cell growth kinetics by local cytokine delivery from fibrin glue suspensions. J Vasc Surg, 1999. 29(5): p. 852–61; discussion 862.CrossRefGoogle Scholar
  81. 81.
    Lee, K.Y. and D.J. Mooney, Hydrogels for tissue engineering. Chem Rev, 2001. 101(7): p. 1869–79.CrossRefGoogle Scholar
  82. 82.
    Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337–51.CrossRefGoogle Scholar
  83. 83.
    Jain, R.A., The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000. 21(23): p. 2475–90.CrossRefGoogle Scholar
  84. 84.
    Makino, K., et al., Pulsatile drug release from poly (lactide-co-glycolide) microspheres: how does the composition of the polymer matrices affect the time interval between the initial burst and the pulsatile release of drugs? Colloids Surf B Biointerfaces, 2000. 19(2): p. 173–9.CrossRefGoogle Scholar
  85. 85.
    Sheridan, M.H., et al., Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release, 2000. 64(1–3): p. 91–102.CrossRefGoogle Scholar
  86. 86.
    Shea, L.D., et al., DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol, 1999. 17(6): p. 551–4.CrossRefGoogle Scholar
  87. 87.
    Chen, R.R., et al., Integrated approach to designing growth factor delivery systems. FASEB J, 2007. 21(14): p. 3896–903.CrossRefGoogle Scholar
  88. 88.
    Choi, N.W., et al., Microfluidic scaffolds for tissue engineering. Nat Mater, 2007. 6(11): p. 908–15.ADSCrossRefGoogle Scholar
  89. 89.
    Silva, E.A. and D.J. Mooney, Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials, 2010. 31(6): p. 1235–41.CrossRefGoogle Scholar
  90. 90.
    Silva, E.A., et al., Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci U S A, 2008. 105(38): p. 14347–52.ADSCrossRefGoogle Scholar
  91. 91.
    Ehrbar, M., et al., Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res, 2004. 94(8): p. 1124–32.CrossRefGoogle Scholar
  92. 92.
    Ehrbar, M., et al., The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials, 2008. 29(11): p. 1720–9.CrossRefGoogle Scholar
  93. 93.
    Zisch, A.H., et al., Covalently conjugated VEGF–fibrin matrices for endothelialization. J Control Release, 2001. 72(1–3): p. 101–13.CrossRefGoogle Scholar
  94. 94.
    Simmons, C.A., et al., Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone, 2004. 35(2): p. 562–9.CrossRefGoogle Scholar
  95. 95.
    Kalluri, R., Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer, 2003. 3(6): p. 422–33.CrossRefGoogle Scholar
  96. 96.
    Timpl, R. and J.C. Brown, Supramolecular assembly of basement membranes. Bioessays, 1996. 18(2): p. 123–32.CrossRefGoogle Scholar
  97. 97.
    Xu, J., et al., Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol, 2001. 154(5): p. 1069–79.CrossRefGoogle Scholar
  98. 98.
    Ingber, D.E., Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res, 2002. 91(10): p. 877–87.CrossRefGoogle Scholar
  99. 99.
    Rak, J., et al., Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res, 1995. 55(20): p. 4575–80.Google Scholar
  100. 100.
    Mueller, M.M. and N.E. Fusenig, Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer, 2004. 4(11): p. 839–49.CrossRefGoogle Scholar
  101. 101.
    Yuan, F., et al., Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res, 1995. 55(17): p. 3752–6.Google Scholar
  102. 102.
    Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992. 69(1): p. 11–25.CrossRefGoogle Scholar
  103. 103.
    Alghisi, G.C. and C. Ruegg, Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. Endothelium, 2006. 13(2): p. 113–35.CrossRefGoogle Scholar
  104. 104.
    Kim, S., et al., Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Invest, 2002. 110(7): p. 933–41.Google Scholar
  105. 105.
    Stupack, D.G., et al., Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol, 2001. 155(3): p. 459–70.CrossRefGoogle Scholar
  106. 106.
    Kim, S., et al., Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol, 2000. 156(4): p. 1345–62.CrossRefGoogle Scholar
  107. 107.
    Kim, S., M. Harris, and J.A. Varner, Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem, 2000. 275(43): p. 33920–8.CrossRefGoogle Scholar
  108. 108.
    Clark, E.A. and J.S. Brugge, Integrins and signal transduction pathways: the road taken. Science, 1995. 268(5208): p. 233–9.ADSCrossRefGoogle Scholar
  109. 109.
    Soldi, R., et al., Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J, 1999. 18(4): p. 882–92.CrossRefGoogle Scholar
  110. 110.
    Voest, E.E., Inhibitors of angiogenesis in a clinical perspective. Anticancer Drugs, 1996. 7(7): p. 723–7.CrossRefGoogle Scholar
  111. 111.
    Gladson, C.L., Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol, 1996. 55(11): p. 1143–9.CrossRefGoogle Scholar
  112. 112.
    Overall, C.M. and C. Lopez-Otin, Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer, 2002. 2(9): p. 657–72.CrossRefGoogle Scholar
  113. 113.
    Ii, M., et al., Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood), 2006. 231(1): p. 20–7.MathSciNetGoogle Scholar
  114. 114.
    Deryugina, E.I. and J.P. Quigley, Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta, 2010. 1803(1): p. 103–20.CrossRefGoogle Scholar
  115. 115.
    Bergers, G., et al., Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2000. 2(10): p. 737–44.CrossRefGoogle Scholar
  116. 116.
    Deryugina, E.I., et al., Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem, 2002. 277(12): p. 9749–56.CrossRefGoogle Scholar
  117. 117.
    Ghajar, C.M., S.C. George, and A.J. Putnam, Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr, 2008. 18(3): p. 251–78.Google Scholar
  118. 118.
    Lee, G.Y., et al., Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods, 2007. 4(4): p. 359–65.CrossRefGoogle Scholar
  119. 119.
    Kratzke, R.A., et al., RB-mediated tumor suppression of a lung cancer cell line is abrogated by an extract enriched in extracellular matrix. Cell Growth Differ, 1993. 4(8): p. 629–35.Google Scholar
  120. 120.
    Zimrin, A.B., B. Villeponteau, and T. Maciag, Models of in vitro angiogenesis: endothelial cell differentiation on fibrin but not matrigel is transcriptionally dependent. Biochem Biophys Res Commun, 1995. 213(2): p. 630–8.CrossRefGoogle Scholar
  121. 121.
    Sun, G., et al., Functional groups affect physical and biological properties of dextran-based hydrogels. J Biomed Mater Res A, 2010. 93(3): p. 1080–90.Google Scholar
  122. 122.
    Baier Leach, J., et al., Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng, 2003. 82(5): p. 578–89.CrossRefGoogle Scholar
  123. 123.
    Khetan, S. and J. Burdick, Cellular encapsulation in 3D hydrogels for tissue engineering. J Vis Exp, 2009. (32).Google Scholar
  124. 124.
    Baldwin, A.D. and K.L. Kiick, Polysaccharide-modified synthetic polymeric biomaterials. Biopolymers, 2010. 94(1): p. 128–40.CrossRefGoogle Scholar
  125. 125.
    Hersel, U., C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003. 24(24): p. 4385–415.CrossRefGoogle Scholar
  126. 126.
    Maheshwari, G., et al., Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci, 2000. 113(Pt 10): p. 1677–86.Google Scholar
  127. 127.
    Miranti, C.K. and J.S. Brugge, Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol, 2002. 4(4): p. E83–90.CrossRefGoogle Scholar
  128. 128.
    Kong, H.J., S. Hsiong, and D.J. Mooney, Nanoscale cell adhesion ligand presentation regulates nonviral gene delivery and expression. Nano Lett, 2007. 7(1): p. 161–6.ADSCrossRefGoogle Scholar
  129. 129.
    Guarnieri, D., et al., Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater, 2010. 6(7): p. 2532–9.CrossRefGoogle Scholar
  130. 130.
    Jadhav, U., et al., Inhibition of matrix metalloproteinase-9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int J Oncol, 2004. 25(5): p. 1407–14.Google Scholar
  131. 131.
    Seliktar, D., et al., MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A, 2004. 68(4): p. 704–16.CrossRefGoogle Scholar
  132. 132.
    Pompe, T., M. Markowski, and C. Werner, Modulated fibronectin anchorage at polymer substrates controls angiogenesis. Tissue Eng, 2004. 10(5–6): p. 841–8.CrossRefGoogle Scholar
  133. 133.
    Wierzbicka-Patynowski, I., Y. Mao, and J.E. Schwarzbauer, Continuous requirement for pp60-Src and phospho-paxillin during fibronectin matrix assembly by transformed cells. J Cell Physiol, 2007. 210(3): p. 750–6.CrossRefGoogle Scholar
  134. 134.
    Ingber, D.E. and J. Folkman, Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol, 1989. 109(1): p. 317–30.CrossRefGoogle Scholar
  135. 135.
    Meyer, C.J., et al., Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol, 2000. 2(9): p. 666–8.CrossRefGoogle Scholar
  136. 136.
    Ausprunk, D.H. and J. Folkman, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res, 1977. 14(1): p. 53–65.CrossRefGoogle Scholar
  137. 137.
    Paszek, M.J., et al., Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005. 8(3): p. 241–54.MathSciNetCrossRefGoogle Scholar
  138. 138.
    Levental, K.R., et al., Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 2009. 139(5): p. 891–906.CrossRefGoogle Scholar
  139. 139.
    Reinhart-King, C.A., M. Dembo, and D.A. Hammer, Cell–cell mechanical communication through compliant substrates. Biophys J, 2008. 95(12): p. 6044–51.CrossRefGoogle Scholar
  140. 140.
    Mammoto, A., et al., A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature, 2009. 457(7233): p. 1103–8.ADSCrossRefGoogle Scholar
  141. 141.
    Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677–89.CrossRefGoogle Scholar
  142. 142.
    Lee, K.Y., et al., Controlled growth factor release from synthetic extracellular matrices. Nature, 2000. 408(6815): p. 998–1000.ADSCrossRefGoogle Scholar
  143. 143.
    Netti, P.A., et al., Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res, 2000. 60(9): p. 2497–503.Google Scholar
  144. 144.
    Boucher, Y., M. Leunig, and R.K. Jain, Tumor angiogenesis and interstitial hypertension. Cancer Res, 1996. 56(18): p. 4264–6.Google Scholar
  145. 145.
    Shimamoto, K., et al., Intratumoral blood flow: evaluation with color Doppler echography. Radiology, 1987. 165(3): p. 683–5.Google Scholar
  146. 146.
    Davies, P.F., et al., Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A, 1986. 83(7): p. 2114–7.ADSCrossRefGoogle Scholar
  147. 147.
    Resnick, N. and M.A. Gimbrone, Jr., Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J, 1995. 9(10): p. 874–82.Google Scholar
  148. 148.
    West, E.R., et al., Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials, 2007. 28(30): p. 4439–48.CrossRefGoogle Scholar
  149. 149.
    Jeon, O., et al., Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials, 2009. 30(14): p. 2724–34.CrossRefGoogle Scholar
  150. 150.
    Pelham, R.J., Jr. and Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A, 1997. 94(25): p. 13661–5.ADSCrossRefGoogle Scholar
  151. 151.
    Ghajar, C.M., et al., Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng, 2006. 12(10): p. 2875–88.CrossRefGoogle Scholar
  152. 152.
    Hsiong, S.X., et al., Integrin-adhesion ligand bond formation of preosteoblasts and stem cells in three-dimensional RGD presenting matrices. Biomacromolecules, 2008. 9(7): p. 1843–51.CrossRefGoogle Scholar
  153. 153.
    Helm, C.L., et al., Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci U S A, 2005. 102(44): p. 15779–84.ADSCrossRefGoogle Scholar
  154. 154.
    Greenberg, A.W., W.G. Kerr, and D.A. Hammer, Relationship between selectin-mediated rolling of hematopoietic stem and progenitor cells and progression in hematopoietic development. Blood, 2000. 95(2): p. 478–86.Google Scholar
  155. 155.
    Figallo, E., et al., Micro-bioreactor array for controlling cellular microenvironments. Lab Chip, 2007. 7(6): p. 710–9.CrossRefGoogle Scholar
  156. 156.
    Finger, A.R., et al., Differential effects on messenger ribonucleic acid expression by bone marrow derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng, 2007. 13(6): p. 1151–8.CrossRefGoogle Scholar
  157. 157.
    Wagner, D.R., et al., Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann Biomed Eng, 2008. 36(5): p. 813–20.CrossRefGoogle Scholar
  158. 158.
    Yang, Y., et al., Effect of cyclic loading on in vitro degradation of poly( l -lactide-co-glycolide) scaffolds. J Biomater Sci Polym Ed, 2010. 21(1): p. 53–66.CrossRefGoogle Scholar
  159. 159.
    Ebnet, K., Organization of multiprotein complexes at cell–cell junctions. Histochem Cell Biol, 2008. 130(1): p. 1–20.CrossRefGoogle Scholar
  160. 160.
    Hazan, R.B., et al., Cadherin switch in tumor progression. Ann N Y Acad Sci, 2004. 1014: p. 155–63.ADSCrossRefGoogle Scholar
  161. 161.
    Orr, F.W., et al., Interactions between cancer cells and the endothelium in metastasis. J Pathol, 2000. 190(3): p. 310–29.CrossRefGoogle Scholar
  162. 162.
    Cavallaro, U., S. Liebner, and E. Dejana, Endothelial cadherins and tumor angiogenesis. Exp Cell Res, 2006. 312(5): p. 659–67.CrossRefGoogle Scholar
  163. 163.
    Voura, E.B., M. Sandig, and C.H. Siu, Cell–cell interactions during transendothelial migration of tumor cells. Microsc Res Tech, 1998. 43(3): p. 265–75.CrossRefGoogle Scholar
  164. 164.
    Leek, R.D. and A.L. Harris, Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia, 2002. 7(2): p. 177–89.CrossRefGoogle Scholar
  165. 165.
    Liotta, L.A. and E.C. Kohn, The microenvironment of the tumour–host interface. Nature, 2001. 411(6835): p. 375–9.ADSCrossRefGoogle Scholar
  166. 166.
    Bhowmick, N.A. and H.L. Moses, Tumor–stroma interactions. Curr Opin Genet Dev, 2005. 15(1): p. 97–101.CrossRefGoogle Scholar
  167. 167.
    Rasmussen, A.A. and K.J. Cullen, Paracrine/autocrine regulation of breast cancer by the insulin like growth factors. Breast Cancer Res Treat, 1998. 47(3): p. 219–33.CrossRefGoogle Scholar
  168. 168.
    Orimo, A., et al., Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005. 121(3): p. 335–48.CrossRefGoogle Scholar
  169. 169.
    Lewis, M.P., et al., Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer, 2004. 90(4): p. 822–32.CrossRefGoogle Scholar
  170. 170.
    Chen, J.J., et al., Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol, 2005. 23(5): p. 953–64.ADSCrossRefGoogle Scholar
  171. 171.
    Lewis, C.E., et al., Cytokine regulation of angiogenesis in breast cancer: the role of tumor associated macrophages. J Leukoc Biol, 1995. 57(5): p. 747–51.Google Scholar
  172. 172.
    Leek, R.D., et al., Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer, 1999. 79(5–6): p. 991–5.CrossRefGoogle Scholar
  173. 173.
    Orre, M. and P.A. Rogers, Macrophages and microvessel density in tumors of the ovary. Gynecol Oncol, 1999. 73(1): p. 47–50.CrossRefGoogle Scholar
  174. 174.
    Nelson, C.M. and C.S. Chen, Cell–cell signaling by direct contact increases cell proliferation via a P13K-dependent signal. FEBS Lett, 2002. 514(2–3): p. 238–42.ADSCrossRefGoogle Scholar
  175. 175.
    Hui, E.E. and S.N. Bhatia, Micromechanical control of cell–cell interactions. Proc Natl Acad Sci U S A, 2007. 104(14): p. 5722–6.ADSCrossRefGoogle Scholar
  176. 176.
    Albrecht, D.R., et al., Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods, 2006. 3(5): p. 369–75.CrossRefGoogle Scholar
  177. 177.
    Nelson, C.M., J.L. Inman, and M.J. Bissell, Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat Protoc, 2008. 3(4): p. 674–8.CrossRefGoogle Scholar
  178. 178.
    Karp, J.M., et al., Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip, 2007. 7(6): p. 786–94.CrossRefGoogle Scholar
  179. 179.
    Janvier, R., et al., Stromal fibroblasts are required for PC-3 human prostate cancer cells to produce capillary-like formation of endothelial cells in a three-dimensional co-culture system. Anticancer Res, 1997. 17(3A): p. 1551–7.Google Scholar
  180. 180.
    Serebriiskii, I., et al., Fibroblast-derived 3D matrix differentially regulates the growth and drugresponsiveness of human cancer cells. Matrix Biol, 2008. 27(6): p. 573–85.CrossRefGoogle Scholar
  181. 181.
    Amatangelo, M.D., et al., Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol, 2005. 167(2): p. 475–88.CrossRefGoogle Scholar
  182. 182.
    Ott, H.C., et al., Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med, 2008. 14(2): p. 213–21.CrossRefGoogle Scholar
  183. 183.
    Bertout, J.A., S.A. Patel, and M.C. Simon, The impact of O 2 availability on human cancer. Nat Rev Cancer, 2008. 8(12): p. 967–75.CrossRefGoogle Scholar
  184. 184.
    Abaci, H.E., et al., Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. Am J Physiol Cell Physiol, 2010. 298(6): 1527–37.CrossRefGoogle Scholar
  185. 185.
    Pugh, C.W. and P.J. Ratcliffe, Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med, 2003. 9(6): p. 677–84.CrossRefGoogle Scholar
  186. 186.
    Ivan, M., et al., HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O 2 sensing. Science, 2001. 292(5516): p. 464–8.ADSCrossRefGoogle Scholar
  187. 187.
    Jaakkola, P., et al., Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O 2 -regulated prolyl hydroxylation. Science, 2001. 292(5516): p. 468–72.ADSCrossRefGoogle Scholar
  188. 188.
    Kumar, R., et al., Spatial and temporal expression of angiogenic molecules during tumor growth and progression. Oncol Res, 1998. 10(6): p. 301–11.Google Scholar
  189. 189.
    Verbridge, S.S., et al., Oxygen-controlled 3-D cultures to analyze tumor angiogenesis. Tissue Eng Part A, 2010. 16(7): p. 2133–41.CrossRefGoogle Scholar
  190. 190.
    Chan, D.A., et al., Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha. J Biol Chem, 2002. 277(42): p. 40112–7.CrossRefGoogle Scholar
  191. 191.
    Le, N.T. and D.R. Richardson, The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta, 2002. 1603(1): p. 31–46.Google Scholar
  192. 192.
    Maxwell, P.H., C.W. Pugh, and P.J. Ratcliffe, Activation of the HIF pathway in cancer. Curr Opin Genet Dev, 2001. 11(3): p. 293–9.CrossRefGoogle Scholar
  193. 193.
    Boucher, Y., L.T. Baxter, and R.K. Jain, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res, 1990. 50(15): p. 4478–84.Google Scholar
  194. 194.
    Vaupel, P., F. Kallinowski, and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res, 1989. 49(23): p. 6449–65.Google Scholar
  195. 195.
    Tannock, I.F., Treatment of cancer with radiation and drugs. J Clin Oncol, 1996. 14(12): p. 3156–74.Google Scholar
  196. 196.
    Gillies, R.J., et al., Tumorigenic 3T3 cells maintain an alkaline intracellular pH under physiological conditions. Proc Natl Acad Sci U S A, 1990. 87(19): p. 7414–8.ADSCrossRefGoogle Scholar
  197. 197.
    Stubbs, M., et al., Metabolic consequences of a reversed pH gradient in rat tumors. Cancer Res, 1994. 54(15): p. 4011–6.Google Scholar
  198. 198.
    Shi, Q., et al., Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene, 2001. 20(28): p. 3751–6.CrossRefGoogle Scholar
  199. 199.
    Elias, A.P. and S. Dias, Microenvironment changes (in pH) affect VEGF alternative splicing. Cancer Microenviron, 2008. 1(1): p. 131–9.CrossRefGoogle Scholar
  200. 200.
    Fukumura, D., et al., Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res, 2001. 61(16): p. 6020–4.Google Scholar
  201. 201.
    Oppegard, S.C., et al., Modulating temporal and spatial oxygenation over adherent cellular cultures. PLoS One, 2009. 4(9): p. e6891.ADSCrossRefGoogle Scholar
  202. 202.
    Derda, R., et al., Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci U S A, 2009. 106(44): p. 18457–62.CrossRefGoogle Scholar
  203. 203.
    Bruzewicz, D.A., A.P. McGuigan, and G.M. Whitesides, Fabrication of a modular tissue construct in a microfluidic chip. Lab Chip, 2008. 8(5): p. 663–71.CrossRefGoogle Scholar
  204. 204.
    Fischbach-Teschl, C. and A. Stroock, Microfluidic culture models of tumor angiogenesis. Tissue Eng Part A, 2010. 16(7): p. 2143–6.CrossRefGoogle Scholar
  205. 205.
    Chrobak, K.M., D.R. Potter, and J. Tien, Formation of perfused, functional microvascular tubes in vitro. Microvasc Res, 2006. 71(3): p. 185–96.CrossRefGoogle Scholar
  206. 206.
    Braun, R.D., et al., Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol Heart Circ Physiol, 2001. 280(6): p. H2533–44.Google Scholar
  207. 207.
    Nordsmark, M., et al., Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiother Oncol, 2003. 67(1): p. 35–44.CrossRefGoogle Scholar
  208. 208.
    Rumsey, W.L., J.M. Vanderkooi, and D.F. Wilson, Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science, 1988. 241(4873): p. 1649–51.ADSCrossRefGoogle Scholar
  209. 209.
    Acosta, M.A., et al., Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds. Biomaterials, 2009. 30(17): p. 3068–74.CrossRefGoogle Scholar
  210. 210.
    Calabrese, C., et al., A perivascular niche for brain tumor stem cells. Cancer Cell, 2007. 11(1): p. 69–82.CrossRefGoogle Scholar
  211. 211.
    Sung, J.H., C. Kam, and M.L. Shuler, A microfluidic device for a pharmacokinetic-­pharmacodynamic (PK-PD) model on a chip. Lab Chip, 2010. 10(4): p. 446–55.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David W. Infanger
  • Siddharth P. Pathi
  • Claudia Fischbach
    • 1
  1. 1.Department of Biomedical EngineeringCornell UniversityIthacaUSA

Personalised recommendations