Advertisement

Hypoxia and Matrix Manipulation for Vascular Engineering

  • Hasan E. Abaci
  • Donny Hanjaya-Putra
  • Sharon GerechtEmail author
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

The great majority of cell types are known to be capable of sensing changes in O2 tension and in the extracellular matrix (ECM), resulting in various responses depending on the cell type and other factors in the microenvironment, such as cell–cell interactions. A growing body of evidence suggests that hypoxia greatly influences the processes of angiogenesis/vasculogenesis through the transcription of several genes, including vascular endothelial growth factor (VEGF), the major regulatory protein of angiogenesis/vasculogenesis. At the same time, the spatial and temporal distribution of ECM components affects ECM properties and growth factor (GF) availability, which, in turn, regulates vascular development. This chapter will discuss how hypoxia and the ECM influence vascular morphogenesis. It seeks a better understanding of vascular development by considering recent research and emerging technologies focused on controlling O2 tension and manipulating ECM properties. The first part of the chapter focuses on the influences of O2 tension and ECM distribution on vascular formation. The second part presents strategies for manipulating the microenvironment using synthetic biomaterials. Control over O2 in three-dimensional (3D) microenvironments is thoroughly highlighted, along with the currently available O2 measurement techniques and mathematical models that are necessary to monitor O2 gradients in 3D microenvironments. Finally, the chapter discusses the state-of-the-art technology in microfluidics and smart biomaterials to provide insight into its future direction.

Keywords

Vascular Endothelial Growth Factor Cell Seeding Density Vascular Niche Synthetic Biomaterial Prolyl Hydroxylase Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to acknowledge funding from the AHA-Scientist Development grant, March of Dimes Basil O’Conner Starter Scholar award (both to S.G), and the National Institute of Health grant U54CA143868.

References

  1. 1.
    Abaci HE, Truitt R, Luong E, Drazer G, and Gerecht S. Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. Am J Physiol Cell Physiol 298: C1527–C1537, 2010.CrossRefGoogle Scholar
  2. 2.
    Adelman DM, Maltepe E, and Simon MC. Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev 13: 2478–2483, 1999.CrossRefGoogle Scholar
  3. 3.
    Airley R, Loncaster J, Davidson S, Bromley M, Roberts S, Patterson A, Hunter R, Stratford I, and West C. Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin Cancer Res 7: 928–934, 2001.Google Scholar
  4. 4.
    Akita T, Murohara T, Ikeda H, Sasaki K, Shimada T, Egami K, and Imaizumi T. Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Lab Invest 83: 65–73, 2003.Google Scholar
  5. 5.
    Albina JE, Mastrofrancesco B, Vessella JA, Louis CA, Henry WL, Jr., and Reichner JS. HIF-1 expression in healing wounds: HIF-1alpha induction in primary inflammatory cells by TNF-alpha. Am J Physiol Cell Physiol 281: C1971–C1977, 2001.Google Scholar
  6. 6.
    Almany L and Seliktar D. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26: 2467–2477, 2005.CrossRefGoogle Scholar
  7. 7.
    Artuc M, Hermes B, Steckelings UM, Grutzkau A, and Henz BM. Mast cells and their mediators in cutaneous wound healing – active participants or innocent bystanders? Exp Dermatol 8: 1–16, 1999.CrossRefGoogle Scholar
  8. 8.
    Asahara T and Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287: C572–C579, 2004.CrossRefGoogle Scholar
  9. 9.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, and Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228, 1999.Google Scholar
  10. 10.
    Astrof S, Crowley D, and Hynes RO. Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Dev Biol 311: 11–24, 2007.CrossRefGoogle Scholar
  11. 11.
    Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM, Fukumura D, Scadden DT, and Jain RK. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111: 1302–1305, 2008.CrossRefGoogle Scholar
  12. 12.
    Au P, Tam J, Fukumura D, and Jain RK. Bone marrow derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111: 4551–4558, 2008.CrossRefGoogle Scholar
  13. 13.
    Band M, Joel A, Hernandez A, and Avivi A. Hypoxia-induced BNIP3 expression and mitophagy: in vivo comparison of the rat and the hypoxia-tolerant mole rat, Spalax ehrenbergi. FASEB J 23: 2327–2335, 2009.CrossRefGoogle Scholar
  14. 14.
    Banerjee SD and Toole BP. Hyaluronan-binding protein in endothelial cell morphogenesis. J Cell Biol 119: 643–652, 1992.CrossRefGoogle Scholar
  15. 15.
    Bekker A, Holland HD, Wang PL, Rumble D, III, Stein HJ, Hannah JL, Coetzee LL, and Beukes NJ. Dating the rise of atmospheric oxygen. Nature 427: 117–120, 2004.ADSCrossRefGoogle Scholar
  16. 16.
    Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, and Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29: 2570–2581, 2009.CrossRefGoogle Scholar
  17. 17.
    Ben-Yosef Y, Miller A, Shapiro S, and Lahat N. Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol Cell Physiol 289: C1321–C1331, 2005.CrossRefGoogle Scholar
  18. 18.
    Berg JT, Breen EC, Fu Z, Mathieu-Costello O, and West JB. Alveolar hypoxia increases gene expression of extracellular matrix proteins and platelet-derived growth factor-B in lung parenchyma. Am J Respir Crit Care Med 158: 1920–1928, 1998.Google Scholar
  19. 19.
    Bettinger CJ, Zhang Z, Gerecht S, Borenstein J, and Langer R. Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv Mater 20: 99–103, 2008.CrossRefGoogle Scholar
  20. 20.
    Bianchi F, Rosi M, Vozzi G, Emanueli C, Madeddu P, and Ahluwalia A. Microfabrication of fractal polymeric structures for capillary morphogenesis: applications in therapeutic angiogenesis and in the engineering of vascularized tissue. J Biomed Mater Res B Appl Biomater 81: 462–468, 2007.Google Scholar
  21. 21.
    Boveris A, Costa LE, Poderoso JJ, Carreras MC, and Cadenas E. Regulation of mitochondrial respiration by oxygen and nitric oxide. Ann NY Acad Sci 899: 121–135, 2000.ADSCrossRefGoogle Scholar
  22. 22.
    Brown DA, MacLellan WR, Laks H, Dunn JC, Wu BM, and Beygui RE. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnol Bioeng 97: 962–975, 2007.CrossRefGoogle Scholar
  23. 23.
    Bruick RK and McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294: 1337–1340, 2001.ADSCrossRefGoogle Scholar
  24. 24.
    Burggren WW. What is the purpose of the embryonic heart beat? Or how facts can ultimately prevail over physiological dogma. Physiol Biochem Zool 77: 333–345, 2004.CrossRefGoogle Scholar
  25. 25.
    Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro Jr A, Kubalak S, Klewer SE, and McDonald JA. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106: 349–360, 2000.CrossRefGoogle Scholar
  26. 26.
    Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, Gepstein L, and Levenberg S. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100: 263–272, 2007.CrossRefGoogle Scholar
  27. 27.
    Ceradini DJ and Gurtner GC. Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 15: 57–63, 2005.CrossRefGoogle Scholar
  28. 28.
    Cheema U, Brown RA, Alp B, and MacRobert AJ. Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model. Cell Mol Life Sci 65: 177–186, 2008.CrossRefGoogle Scholar
  29. 29.
    Cheresh DA and Stupack DG. Regulation of angiogenesis: apoptotic cues from the ECM. Oncogene 27: 6285–6298, 2008.CrossRefGoogle Scholar
  30. 30.
    Chin K, Khattak SF, Bhatia SR, and Roberts SC. Hydrogel-perfluorocarbon composite scaffold promotes oxygen transport to immobilized cells. Biotechnol Prog 24: 358–366, 2008.CrossRefGoogle Scholar
  31. 31.
    Chiu LLY and Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials 31: 226–241, 2010.CrossRefGoogle Scholar
  32. 32.
    Chow DC, Wenning LA, Miller WM, and Papoutsakis ET. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh’s model. Biophys J 81: 675–684, 2001.CrossRefGoogle Scholar
  33. 33.
    Chung S and Andrew DJ. The formation of epithelial tubes. J Cell Sci 121: 3501–3504, 2008.CrossRefGoogle Scholar
  34. 34.
    Colville-Nash PR and Scott DL. Angiogenesis and rheumatoid arthritis: pathogenic and therapeutic implications. Ann Rheum Dis 51: 919–925, 1992.CrossRefGoogle Scholar
  35. 35.
    Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, and Keith B. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20: 557–570, 2006.CrossRefGoogle Scholar
  36. 36.
    Critser PJ, Kreger ST, Voytik-Harbin SL, and Yoder MC. Collagen matrix physical properties modulate endothelial colony forming cell-derived vessels in vivo. Microvasc Res 80: 23–30, 2010.CrossRefGoogle Scholar
  37. 37.
    Daphne M. A mechanochemical model of angiogenesis and vasculogenesis. Esaim Math Model Numer Anal 37: 581–599, 2003.zbMATHCrossRefGoogle Scholar
  38. 38.
    Davis GE and Camarillo CW. Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Exp Cell Res 216: 113–123, 1995.CrossRefGoogle Scholar
  39. 39.
    Davis GE, Koh W, and Stratman AN. Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res C Embryo Today 81: 270–285, 2007.CrossRefGoogle Scholar
  40. 40.
    Davis GE and Senger DR. Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Curr Opin Hematol 15: 197–203, 2008.CrossRefGoogle Scholar
  41. 41.
    Deroanne CF, Lapiere CM, and Nusgens BV. In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc Res 49: 647–658, 2001.CrossRefGoogle Scholar
  42. 42.
    Dickinson LE, Ho CC, Wang GM, Stebe KJ, and Gerecht S. Functional surfaces for high-resolution analysis of cancer cell interactions on exogenous hyaluronic acid. Biomaterials 31: 5472–5478, 2010.CrossRefGoogle Scholar
  43. 43.
    Drake CJ and Fleming PA. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95: 1671–1679, 2000.Google Scholar
  44. 44.
    Eble JA and Niland S. The extracellular matrix of blood vessels. Curr Pharm Des 15: 1385–1400, 2009.CrossRefGoogle Scholar
  45. 45.
    Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, Wood J, Burri PH, Hubbell JA, and Zisch AH. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94: 1124–1132, 2004.CrossRefGoogle Scholar
  46. 46.
    Ehrbar M, Metters A, Zammaretti P, Hubbell JA, and Zisch AH. Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101: 93–109, 2005.CrossRefGoogle Scholar
  47. 47.
    Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, and Giaccia AJ. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15: 35–44, 2009.CrossRefGoogle Scholar
  48. 48.
    Evanko SP, Parks WT, and Wight TN. Intracellular hyaluronan in arterial smooth muscle cells: association with microtubules, RHAMM, and the mitotic spindle. J Histochem Cytochem 52: 1525–1535, 2004.CrossRefGoogle Scholar
  49. 49.
    Evans AM, Mustard KJ, Wyatt CN, Peers C, Dipp M, Kumar P, Kinnear NP, and Hardie DG. Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? J Biol Chem 280: 41504–41511, 2005.CrossRefGoogle Scholar
  50. 50.
    Ezashi T, Das P, and Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 102: 4783–4788, 2005.ADSCrossRefGoogle Scholar
  51. 51.
    Fahling M, Perlewitz A, Doller A, and Thiele BJ. Regulation of collagen prolyl 4-hydroxylase and matrix metalloproteinases in fibrosarcoma cells by hypoxia. Comp Biochem Physiol C Toxicol Pharmacol 139: 119–126, 2004.CrossRefGoogle Scholar
  52. 52.
    Figallo E, Cannizzaro C, Gerecht S, Burdick JA, Langer R, Elvassore N, and Vunjak-Novakovic G. Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7: 710–719, 2007.CrossRefGoogle Scholar
  53. 53.
    Folkman J, Haudenschild CC, and Zetter BR. Long-term culture of capillary endothelial cells. Proc Natl Acad Sci USA 76: 5217–5221, 1979.ADSCrossRefGoogle Scholar
  54. 54.
    Fong GH. Regulation of angiogenesis by oxygen sensing mechanisms. J Mol Med 87: 549–560, 2009.CrossRefGoogle Scholar
  55. 55.
    Forristal CE, Wright KL, Hanley NA, Oreffo RO, and Houghton FD. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139: 85–97, 2010.CrossRefGoogle Scholar
  56. 56.
    Fraisl P, Mazzone M, Schmidt T, and Carmeliet P. Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16: 167–179, 2009.CrossRefGoogle Scholar
  57. 57.
    Francis SE, Goh KL, Hodivala-Dilke K, Bader BL, Stark M, Davidson D, and Hynes RO. Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 22: 927–933, 2002.CrossRefGoogle Scholar
  58. 58.
    Frei R, Gaucher C, Poulton SW, and Canfield DE. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461: 250–253, 2009.ADSCrossRefGoogle Scholar
  59. 59.
    Fukumura D, Kashiwagi S, and Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer 6: 521–534, 2006.CrossRefGoogle Scholar
  60. 60.
    Gafni Y, Zilberman Y, Ophir Z, Abramovitch R, Jaffe M, Gazit Z, Domb A, and Gazit D. Design of a filamentous polymeric scaffold for in vivo guided angiogenesis. Tissue Eng 12: 3021–3034, 2006.CrossRefGoogle Scholar
  61. 61.
    Galban CJ and Locke BR. Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold. Biotechnol Bioeng 65: 121–132, 1999.CrossRefGoogle Scholar
  62. 62.
    Galban CJ and Locke BR. Effects of spatial variation of cells and nutrient and product concentrations coupled with product inhibition on cell growth in a polymer scaffold. Biotechnol Bioeng 64: 633–643, 1999.CrossRefGoogle Scholar
  63. 63.
    Garedew A, Kammerer U, and Singer D. Respiratory response of malignant and placental cells to changes in oxygen concentration. Respir Physiol Neurobiol 165: 154–160, 2009.CrossRefGoogle Scholar
  64. 64.
    Gerecht-Nir S, Cohen S, Ziskind A, and Itskovitz-Eldor J. Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol Bioeng 88: 313–320, 2004.CrossRefGoogle Scholar
  65. 65.
    Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, and Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 104: 11298–11303, 2007.ADSCrossRefGoogle Scholar
  66. 66.
    Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, and Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277: 225–228, 1997.CrossRefGoogle Scholar
  67. 67.
    Gobin AS and West JL. Cell migration through defined, synthetic extracellular matrix analogues. FASEB J 16(7): 751–753, 2002.Google Scholar
  68. 68.
    Guaccio A, Borselli C, Oliviero O, and Netti PA. Oxygen consumption of chondrocytes in agarose and collagen gels: a comparative analysis. Biomaterials 29: 1484–1493, 2008.CrossRefGoogle Scholar
  69. 69.
    Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, and Binder C. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25: 1543–1549, 2004.CrossRefGoogle Scholar
  70. 70.
    Hanjaya-Putra D and Gerecht S. Vascular engineering using human embryonic stem cells. Biotechnol Prog 25: 2–9, 2009.CrossRefGoogle Scholar
  71. 71.
    Hanjaya-Putra D, Yee J, Ceci D, Truitt R, Yee D, and Gerecht S. Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells. J Cell Mol Med 14: 2436–2447, 2010.  doi: 10.1111/j.1582-4934.2009.00981.x.Google Scholar
  72. 72.
    Hanjaya-Putra D and Gerecht S. Mending the failing heart with a vascularized cardiac patch. Cell Stem Cell 5(6): 575–576, 2009.CrossRefGoogle Scholar
  73. 73.
    Harrison JS, Rameshwar P, Chang V, and Bandari P. Oxygen saturation in the bone marrow of healthy volunteers. Blood 99: 394, 2002.CrossRefGoogle Scholar
  74. 74.
    Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, and Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109: 625–637, 2002.CrossRefGoogle Scholar
  75. 75.
    Helmlinger G, Endo M, Ferrara N, Hlatky L, and Jain RK. Formation of endothelial cell networks. Nature 405: 139–141, 2000.ADSCrossRefGoogle Scholar
  76. 76.
    Hirota K and Semenza GL. Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem Biophys Res Commun 338: 610–616, 2005.CrossRefGoogle Scholar
  77. 77.
    Hirschi KK and D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res 32: 687–698, 1996.Google Scholar
  78. 78.
    Hirschi KK, Ingram DA, and Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28: 1584–1595, 2008.CrossRefGoogle Scholar
  79. 79.
    Hirschi KK, Rohovsky SA, and D’Amore PA. PDGF, TGF-β, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141: 805–814, 1998.CrossRefGoogle Scholar
  80. 80.
    Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, and Myllyharju J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278: 30772–30780, 2003.CrossRefGoogle Scholar
  81. 81.
    Hofmann UB, Westphal JR, Van Kraats AA, Ruiter DJ, and Van Muijen GN. Expression of integrin alpha(v)beta(3) correlates with activation of membrane-type matrix metalloproteinase-1 (MT1-MMP) and matrix metalloproteinase-2 (MMP-2) in human melanoma cells in vitro and in vivo. Int J Cancer 87: 12–19, 2000.CrossRefGoogle Scholar
  82. 82.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, and Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994–1998, 1999.CrossRefGoogle Scholar
  83. 83.
    Holash J, Wiegand SJ, and Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18: 5356–5362, 1999.CrossRefGoogle Scholar
  84. 84.
    Hopf HW and Rollins MD. Wounds: an overview of the role of oxygen. Antioxid Redox Signal 9: 1183–1192, 2007.CrossRefGoogle Scholar
  85. 85.
    Horino Y, Takahashi S, Miura T, and Takahashi Y. Prolonged hypoxia accelerates the posttranscriptional process of collagen synthesis in cultured fibroblasts. Life Sci 71: 3031–3045, 2002.CrossRefGoogle Scholar
  86. 86.
    Huber TL, Kouskoff V, Fehling HJ, Palis J, and Keller G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432: 625–630, 2004.ADSCrossRefGoogle Scholar
  87. 87.
    Silver IA. Cellular microenvironment in healing and non-healing wounds. In: Soft and hard tissue repair, edited by Hunt TK. New York: Praeger, 1984, pp. 50–66.Google Scholar
  88. 88.
    Igarashi S, Tanaka J, and Kobayashi H. Micro-patterned nanofibrous biomaterials. J Nanosci Nanotechnol 7: 814–817, 2007.CrossRefGoogle Scholar
  89. 89.
    Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91: 877–887, 2002.CrossRefGoogle Scholar
  90. 90.
    Ingber DE and Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109: 317–330, 1989.CrossRefGoogle Scholar
  91. 91.
    Rajasekhar VK, Vemuri MC, Iwasaki H, and Suda T. The niche regulation of hematopoietic stem cells. In: Regulatory networks in stem cells. Humana Press, 2009. pp. 165–173.Google Scholar
  92. 92.
    Iyer RK, Radisic M, Cannizzaro C, and Vunjak-Novakovic G. Synthetic oxygen carriers in cardiac tissue engineering. Artif Cells Blood Substit Immobil Biotechnol 35: 135–148, 2007.CrossRefGoogle Scholar
  93. 93.
    Jain RK. Molecular regulation of vessel maturation. Nat Med 9: 685–693, 2003.CrossRefGoogle Scholar
  94. 94.
    Jain RK, Au P, Tam J, Duda DG, and Fukumura D. Engineering vascularized tissue. Nat Biotechnol 23: 821–823, 2005.CrossRefGoogle Scholar
  95. 95.
    Jauniaux E, Gulbis B, and Burton GJ. The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus – a review. Placenta 24 Suppl A: S86–S93, 2003.CrossRefGoogle Scholar
  96. 96.
    Ji L, Liu YX, Yang C, Yue W, Shi SS, Bai CX, Xi JF, Nan X, and Pei XT. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha. J Cell Physiol 221: 54–66, 2009.CrossRefGoogle Scholar
  97. 97.
    Jiang M, Wang B, Wang C, He B, Fan H, Guo TB, Shao Q, Gao L, and Liu Y. Angiogenesis by transplantation of HIF-1 alpha modified EPCs into ischemic limbs. J Cell Biochem 103: 321–334, 2008.CrossRefGoogle Scholar
  98. 98.
    Jones CI, III, Han Z, Presley T, Varadharaj S, Zweier JL, Ilangovan G, and Alevriadou BR. Endothelial cell respiration is affected by the oxygen tension during shear exposure: role of mitochondrial peroxynitrite. Am J Physiol Cell Physiol 295: C180–C191, 2008.CrossRefGoogle Scholar
  99. 99.
    Kellner K, Liebsch G, Klimant I, Wolfbeis OS, Blunk T, Schulz MB, and Gopferich A. Determination of oxygen gradients in engineered tissue using a fluorescent sensor. Biotechnol Bioeng 80: 73–83, 2002.CrossRefGoogle Scholar
  100. 100.
    Khetan S, Chung C, and Burdick JA. Tuning hydrogel properties for applications in tissue engineering. Conf Proc IEEE Eng Med Biol Soc 1: 2094–2096, 2009.Google Scholar
  101. 101.
    Kilarski WW, Samolov B, Petersson L, Kvanta A, and Gerwins P. Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15: 657–664, 2009.CrossRefGoogle Scholar
  102. 102.
    Kloxin AM, Kasko AM, Salinas CN, and Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324: 59–63, 2009.ADSCrossRefGoogle Scholar
  103. 103.
    Klumb LA and Horbett TA. Design of insulin delivery devices based on glucose sensitive membranes. J Control Release 18: 59–80, 1992.CrossRefGoogle Scholar
  104. 104.
    Koay EJ and Athanasiou KA. Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality. Osteoarthritis Cartilage 16: 1450–1456, 2008.CrossRefGoogle Scholar
  105. 105.
    Koh W, Stratman AN, Sacharidou A, and Davis GE. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443: 83–101, 2008.CrossRefGoogle Scholar
  106. 106.
    Koike N, Fukumura D, Gralla O, Au P, Schechner JS, and Jain RK. Tissue engineering: creation of long-lasting blood vessels. Nature 428: 138, 2004.ADSCrossRefGoogle Scholar
  107. 107.
    Korin N, Bransky A, Dinnar U, and Levenberg S. Periodic “flow-stop” perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture. Biomed Microdevices 11: 87–94, 2009.CrossRefGoogle Scholar
  108. 108.
    Kreger ST and Voytik-Harbin SL. Hyaluronan concentration within a 3D collagen matrix modulates matrix viscoelasticity, but not fibroblast response. Matrix Biol 28: 336–346, 2009.CrossRefGoogle Scholar
  109. 109.
    Kumar R, Panoskaltsis N, Stepanek F, and Mantalaris A. Coupled oxygen-carbon dioxide transport model for the human bone marrow. Food Bioprod Process 86: 211–219, 2008.CrossRefGoogle Scholar
  110. 110.
    Kumar R, Stepanek F, and Mantalaris A. A conceptual model for oxygen transport in the human marrow. Ifac Symp Series 365–370 538, 2003.Google Scholar
  111. 111.
    Kumar R, Stepanek F, and Mantalaris A. An oxygen transport model for human bone marrow microcirculation. Food and Bioproducts 82(C2): 105–116, 2004.CrossRefGoogle Scholar
  112. 112.
    Landman KA and Cai AQ. Cell proliferation and oxygen diffusion in a vascularising scaffold. Bull Math Biol 69: 2405–2428, 2007.zbMATHMathSciNetCrossRefGoogle Scholar
  113. 113.
    Langer R and Tirrell DA. Designing materials for biology and medicine. Nature 428: 487–492, 2004.ADSCrossRefGoogle Scholar
  114. 114.
    Lanza V, Ambrosi D, and Preziosi, L. Exogenous control of vascular network formation in vitro: a mathematical model. Networks Heterogen Media 1: 621–638, 2006.zbMATHMathSciNetGoogle Scholar
  115. 115.
    Lee YM, Jeong CH, Koo SY, Son MJ, Song HS, Bae SK, Raleigh JA, Chung HY, Yoo MA, and Kim KW. Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev Dyn 220: 175–186, 2001.CrossRefGoogle Scholar
  116. 116.
    Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D’Amore PA, and Langer R. Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23: 879–884, 2005.CrossRefGoogle Scholar
  117. 117.
    Lewis MC, Macarthur BD, Malda J, Pettet G, and Please CP. Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol Bioeng 91: 607–615, 2005.CrossRefGoogle Scholar
  118. 118.
    Li C, Issa R, Kumar P, Hampson IN, Lopez-Novoa JM, Bernabeu C, and Kumar S. CD105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci 116: 2677–2685, 2003.CrossRefGoogle Scholar
  119. 119.
    Limper AH and Roman J. Fibronectin. A versatile matrix protein with roles in thoracic development, repair and infection. Chest 101: 1663–1673, 1992.CrossRefGoogle Scholar
  120. 120.
    Lubarsky B and Krasnow MA. Tube morphogenesis: making and shaping biological tubes. Cell 112: 19–28, 2003.CrossRefGoogle Scholar
  121. 121.
    Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, and Dickinson ME. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134: 3317–3326, 2007.CrossRefGoogle Scholar
  122. 122.
    Lutolf MP. Biomaterials: spotlight onF hydrogels. Nat Mater 8: 451–453, 2009.ADSCrossRefGoogle Scholar
  123. 123.
    Lutolf MP and Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23: 47–55, 2005.CrossRefGoogle Scholar
  124. 124.
    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, and Hubbell JA. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100: 5413–5418, 2003.ADSCrossRefGoogle Scholar
  125. 125.
    Ma T, Grayson WL, Frohlich M, and Vunjak-Novakovic G. Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog 25: 32–42, 2009.CrossRefGoogle Scholar
  126. 126.
    Maltepe E and Simon MC. Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J Mol Med 76: 391–401, 1998.CrossRefGoogle Scholar
  127. 127.
    Mamchaoui K and Saumon G. A method for measuring the oxygen consumption of intact cell monolayers. Am J Physiol Lung Cell Mol Physiol 278: L858–L863, 2000.Google Scholar
  128. 128.
    Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, Aderman CM, Mostoslavsky G, Smith LEH, and Ingber DE. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457: 1103–1108, 2009.ADSCrossRefGoogle Scholar
  129. 129.
    Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, and Semenza GL. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105: 659–669, 2005.CrossRefGoogle Scholar
  130. 130.
    Martorell L, Gentile M, Rius J, Rodriguez C, Crespo J, Badimon L, and Martinez-Gonzalez J. The hypoxia-inducible factor 1/NOR-1 axis regulates the survival response of endothelial cells to hypoxia. Mol Cell Biol 29: 5828–5842, 2009.CrossRefGoogle Scholar
  131. 131.
    Massabuau JC. From low arterial- to low tissue-oxygenation strategy. An evolutionary theory. Respir Physiol 128: 249–261, 2001.CrossRefGoogle Scholar
  132. 132.
    Massabuau JC. Primitive, and protective, our cellular oxygenation status? Mech Ageing Dev 124: 857–863, 2003.CrossRefGoogle Scholar
  133. 133.
    Mehta G, Mehta K, Sud D, Song JW, Bersano-Begey T, Futai N, Heo YS, Mycek MA, Linderman JJ, and Takayama S. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomed Microdevices 9: 123–134, 2007.CrossRefGoogle Scholar
  134. 134.
    Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, and Bischoff J. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103: 194–202, 2008.CrossRefGoogle Scholar
  135. 135.
    Moon JJ, Hahn MS, Kim I, Nsiah BA, and West JL. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng Part A 15: 579–585, 2009.CrossRefGoogle Scholar
  136. 136.
    Moon JJ, Saik JE, Poché RA, Leslie-Barbick JE, Lee S-H, Smith AA, Dickinson ME, and West JL. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31: 3840–3847, 2010.CrossRefGoogle Scholar
  137. 137.
    Myllyharju J and Schipani E. Extracellular matrix genes as hypoxia-inducible targets. Cell Tissue Res 339: 19–29, 2010.CrossRefGoogle Scholar
  138. 138.
    Niebruegge S, Bauwens CL, Peerani R, Thavandiran N, Masse S, Sevaptisidis E, Nanthakumar K, Woodhouse K, Husain M, Kumacheva E, and Zandstra PW. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng 102: 493–507, 2009.CrossRefGoogle Scholar
  139. 139.
    Ottino P, Finley J, Rojo E, Ottlecz A, Lambrou GN, Bazan HE, and Bazan NG. Hypoxia activates matrix metalloproteinase expression and the VEGF system in monkey choroid-retinal endothelial cells: involvement of cytosolic phospholipase A2 activity. Mol Vis 10: 341–350, 2004.Google Scholar
  140. 140.
    Papandreou I, Cairns RA, Fontana L, Lim AL, and Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3: 187–197, 2006.CrossRefGoogle Scholar
  141. 141.
    Papandreou I, Lim AL, Laderoute K, and Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15: 1572–1581, 2008.CrossRefGoogle Scholar
  142. 142.
    Park TG and Hoffman AS. Synthesis and characterization of PH- and or temperature-­sensitive hydrogels. J Appl Polym Sci 46: 659–671, 1992.CrossRefGoogle Scholar
  143. 143.
    Parmar K, Mauch P, Vergilio JA, Sackstein R, and Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104: 5431–5436, 2007.ADSCrossRefGoogle Scholar
  144. 144.
    Phelps EA, Landázuri N, Thulé PM, Taylor WR, García AJ. Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci USA 107: 3323–3328, 2010.ADSCrossRefGoogle Scholar
  145. 145.
    Phillips PG, Birnby LM, and Narendran A. Hypoxia induces capillary network formation in cultured bovine pulmonary microvessel endothelial cells. Am J Physiol 268: L789–L800, 1995.Google Scholar
  146. 146.
    Pierschbacher MD and Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309: 30–33, 1984.ADSCrossRefGoogle Scholar
  147. 147.
    Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ, and Ratcliffe PJ. Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 416: 387–394, 2008.CrossRefGoogle Scholar
  148. 148.
    Popel AS. Theory of oxygen transport to tissue. Crit Rev Biomed Eng 17: 257–321, 1989.Google Scholar
  149. 149.
    Prado-Lopez S, Conesa A, Arminan A, Martinez-Losa M, Escobedo-Lucea C, Gandia C, Tarazona S, Melguizo D, Blesa D, Montaner D, Sanz-Gonzalez S, Sepulveda P, Gotz S, O’Connor JE, Moreno R, Dopazo J, Burks DJ, and Stojkovic M. Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium. Stem Cells 28: 407–418, 2010.Google Scholar
  150. 150.
    Prasad SM, Czepiel M, Cetinkaya C, Smigielska K, Weli SC, Lysdahl H, Gabrielsen A, Petersen K, Ehlers N, Fink T, Minger SL, and Zachar V. Continuous hypoxic culturing maintains activation of Notch and allows long-term propagation of human embryonic stem cells without spontaneous differentiation. Cell Prolif 42: 63–74, 2009.CrossRefGoogle Scholar
  151. 151.
    Radisic M, Deen W, Langer R, and Vunjak-Novakovic G. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol 288: H1278–H1289, 2005.CrossRefGoogle Scholar
  152. 152.
    Risau W. Mechanisms of angiogenesis. Nature 386: 671–674, 1997.ADSCrossRefGoogle Scholar
  153. 153.
    Robins SP. Biochemistry and functional significance of collagen cross-linking. Biochem Soc Trans 35: 849–852, 2007.CrossRefGoogle Scholar
  154. 154.
    Rodesch F, Simon P, Donner C, and Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol 80: 283–285, 1992.Google Scholar
  155. 155.
    Roeder BA, Kokini K, Sturgis JE, Robinson JP, and Voytik-Harbin SL. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng 124: 214–222, 2002.CrossRefGoogle Scholar
  156. 156.
    Romer LH, Birukov KG, and Garcia JG. Focal adhesions: paradigm for a signaling nexus. Circ Res 98: 606–616, 2006.CrossRefGoogle Scholar
  157. 157.
    Sage EH and Vernon RB. Regulation of angiogenesis by extracellular matrix: the growth and the glue. J Hypertens Suppl 12: S145–S152, 1994.Google Scholar
  158. 158.
    Saunders WB, Bayless KJ, and Davis GE. MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. J Cell Sci 118: 2325–2340, 2005.CrossRefGoogle Scholar
  159. 159.
    Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW, Chu X, and Anbar AD. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452: 456–459, 2008.ADSCrossRefGoogle Scholar
  160. 160.
    Segura I, Serrano A, De Buitrago GG, Gonzalez MA, Abad JL, Claveria C, Gomez L, Bernad A, Martinez AC, and Riese HH. Inhibition of programmed cell death impairs in vitro vascular-like structure formation and reduces in vivo angiogenesis. FASEB J 16: 833–841, 2002.CrossRefGoogle Scholar
  161. 161.
    Seliktar D, Zisch AH, Lutolf MP, Wrana JL, and Hubbel JA. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A 68: 704–716, 2004.CrossRefGoogle Scholar
  162. 162.
    Shaw AD, Li Z, Thomas Z, and Stevens CW. Assessment of tissue oxygen tension: comparison of dynamic fluorescence quenching and polarographic electrode technique. Crit Care 6: 76–80, 2002.CrossRefGoogle Scholar
  163. 163.
    Shen YH, Shoichet MS, and Radisic M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater 4: 477–489, 2008.CrossRefGoogle Scholar
  164. 164.
    Shweiki D, Neeman M, Itin A, and Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci USA 92: 768–772, 1995.ADSCrossRefGoogle Scholar
  165. 165.
    Sieminski AL, Hebbel RP, and Gooch KJ. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res 297: 574–584, 2004.CrossRefGoogle Scholar
  166. 166.
    Sieminski AL, Was AS, Kim G, Gong H, and Kamm RD. The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell Biochem Biophys 49: 73–83, 2007.CrossRefGoogle Scholar
  167. 167.
    Siggaard-Andersen O and Huch R. The oxygen status of fetal blood. Acta Anaesthesiol Scand Suppl 107: 129–135, 1995.CrossRefGoogle Scholar
  168. 168.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, and Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303: 1352–1355, 2004.ADSCrossRefGoogle Scholar
  169. 169.
    Sorrell JM, Baber MA, and Caplan AI. A self-assembled fibroblast-endothelial cell co-culture system that supports in vitro vasculogenesis by both human umbilical vein endothelial cells and human dermal microvascular endothelial cells. Cells Tissues Organs 186: 157–168, 2007.CrossRefGoogle Scholar
  170. 170.
    Sottile J and Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13: 3546–3559, 2002.CrossRefGoogle Scholar
  171. 171.
    Soucy PA and Romer LH. Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix. Matrix Biol 28: 273–283, 2009.CrossRefGoogle Scholar
  172. 172.
    Springett R and Swartz HM. Measurements of oxygen in vivo: overview and perspectives on methods to measure oxygen within cells and tissues. Antioxid Redox Signal 9: 1295–1301, 2007.CrossRefGoogle Scholar
  173. 173.
    Steinlechner-Maran R, Eberl T, Kunc M, Margreiter R, and Gnaiger E. Oxygen dependence of respiration in coupled and uncoupled endothelial cells. Am J Physiol 271: C2053–C2061, 1996.Google Scholar
  174. 174.
    Stephanou A, Meskaoui G, Vailhe B, and Tracqui P. The rigidity in fibrin gels as a contributing factor to the dynamics of in vitro vascular cord formation. Microvasc Res 73: 182–190, 2007.CrossRefGoogle Scholar
  175. 175.
    Stratman AN, Saunders WB, Sacharidou A, Koh W, Fisher KE, Zawieja DC, Davis MJ, and Davis GE. Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114: 237–247, 2009.CrossRefGoogle Scholar
  176. 176.
    Stupack DG and Cheresh DA. ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci STKE 2002: pe7, 2002.CrossRefGoogle Scholar
  177. 177.
    Sun G and Chu C-C. Synthesis, characterization of biodegradable dextran-allyl isocyanate-ethylamine/polyethylene glycol-diacrylate hydrogels and their in vitro release of albumin. Carbohydr Polym 65: 273–287, 2006.CrossRefGoogle Scholar
  178. 178.
    Sun G, Shen Y-I, Ho CC, Kusuma S, and Gerecht S. Functional groups affect physical and biological properties of dextran-based hydrogels. J Biomed Mater Res A 93: 1080–1090, 2010.Google Scholar
  179. 179.
    Sun GM, Zhang XZ, and Chu CC. Formulation and characterization of chitosan-based hydrogel films having both temperature and pH sensitivity. J Mater Sci Mater Med 18: 1563–1577, 2007.CrossRefGoogle Scholar
  180. 180.
    Tajima R, Kawaguchi N, Horino Y, Takahashi Y, Toriyama K, Inou K, Torii S, and Kitagawa Y. Hypoxic enhancement of type IV collagen secretion accelerates adipose conversion of 3T3-L1 fibroblasts. Biochim Biophys Acta 1540: 179–187, 2001.CrossRefGoogle Scholar
  181. 181.
    Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, and McDonald DM. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286: 2511–2514, 1999.CrossRefGoogle Scholar
  182. 182.
    Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, and Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med 13: 87–102, 2009.CrossRefGoogle Scholar
  183. 183.
    Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW, and Yu H. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7: 302–309, 2007.CrossRefGoogle Scholar
  184. 184.
    Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol 12: 79–87, 2001.CrossRefGoogle Scholar
  185. 185.
    Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4: 528–539, 2004.CrossRefGoogle Scholar
  186. 186.
    Tsai AG, Johnson PC, and Intaglietta M. Oxygen gradients in the microcirculation. Physiol Rev 83: 933–963, 2003.Google Scholar
  187. 187.
    Urbich C and Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95: 343–353, 2004.CrossRefGoogle Scholar
  188. 188.
    Ushio-Fukai M and Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266: 37–52, 2008.CrossRefGoogle Scholar
  189. 189.
    Vo E, Hanjaya-Putra D, Zha Y, Kusuma S, and Gerecht S. Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro. Stem Cell Rev 6: 237–247, 2010.CrossRefGoogle Scholar
  190. 190.
    Walls JR, Coultas L, Rossant J, and Henkelman RM. Three-dimensional analysis of vascular development in the mouse embryo. PLoS One 3: e2853, 2008.ADSCrossRefGoogle Scholar
  191. 191.
    Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, and Isner JM. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105: 3017–3024, 2002.CrossRefGoogle Scholar
  192. 192.
    Ward JP. Oxygen sensors in context. Biochim Biophys Acta 1777: 1–14, 2008.CrossRefGoogle Scholar
  193. 193.
    Webster KA. Puma joins the battery of BH3-only proteins that promote death and infarction during myocardial ischemia. Am J Physiol Heart Circ Physiol 291: H20–H22, 2006.CrossRefGoogle Scholar
  194. 194.
    Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, and Nickenig G. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 93: e17–e24, 2003.CrossRefGoogle Scholar
  195. 195.
    Wijelath ES, Rahman S, Namekata M, Murray J, Nishimura T, Mostafavi-Pour Z, Patel Y, Suda Y, Humphries MJ, and Sobel M. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res 99: 853–860, 2006.CrossRefGoogle Scholar
  196. 196.
    Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, and Kemp PJ. Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306: 2093–2097, 2004.ADSCrossRefGoogle Scholar
  197. 197.
    Wolin MS, Ahmad M, and Gupte SA. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 289: L159–L173, 2005.CrossRefGoogle Scholar
  198. 198.
    Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C, Dweik RA, Tuder RM, Stuehr DJ, and Erzurum SC. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 104: 1342–1347, 2007.ADSCrossRefGoogle Scholar
  199. 199.
    Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, Kuriyama T, Cheng SH, Gregory RJ, and Jiang C. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93: 664–673, 2003.CrossRefGoogle Scholar
  200. 200.
    Yoshida Y, Takahashi K, Okita K, Ichisaka T, and Yamanaka S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5: 237–241, 2009.CrossRefGoogle Scholar
  201. 201.
    Yung CW, Wu LQ, Tullman JA, Payne GF, Bentley WE, and Barbari TA. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res A 83A: 1039–1046, 2007.CrossRefGoogle Scholar
  202. 202.
    Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, and Semenza GL. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892–10903, 2008.CrossRefGoogle Scholar
  203. 203.
    Zhang X, Liu L, Wei X, Tan YS, Tong L, Chang R, Ghanamah MS, Reinblatt M, Marti GP, Harmon JW, and Semenza GL. Impaired angiogenesis and mobilization of circulating angiogenic cells in HIF-1alpha heterozygous-null mice after burn wounding. Wound Repair Regen 18: 198–201, 2010.CrossRefGoogle Scholar
  204. 204.
    Zhou X, Rowe RG, Hiraoka N, George JP, Wirtz D, Mosher DF, Virtanen I, Chernousov MA, and Weiss SJ. Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev 22: 1231–1243, 2008.CrossRefGoogle Scholar
  205. 205.
    Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, and Hubbell JA. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17: 2260–2262, 2003.Google Scholar
  206. 206.
    Zisch AH, Lutolf MP, and Hubbell JA. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12: 295–310, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hasan E. Abaci
  • Donny Hanjaya-Putra
  • Sharon Gerecht
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations