Intra- and Extracellular Microrheology of Endothelial Cells in a 3D Matrix

  • Stephanie I. Fraley
  • Christopher M. Hale
  • Ryan J. Bloom
  • Alfredo Celedon
  • Jerry S. H. Lee
  • Denis Wirtz
Chapter

Abstract

Limited progress in our understanding of molecular cell functions in 3D is due, in part, to the lack of quantitative assays to probe cells in the physiological three-dimensional (3D) milieu. We have recently developed quantitative methods to probe the micromechanical properties of live cells inside a 3D matrix and monitor the dynamics of localized matrix remodeling during 3D cell motility. Conventional biophysical methods are unsuitable for cells fully embedded inside a matrix because these methods require direct physical contact between the probe (i.e. AFM cantilever, magnetic bead, or micropipette tip) and the cell surface. To measure local intracellular micromechanics in live cells, the spontaneous movements of submicron beads lodged in the cytoplasm of the matrix-embedded cells are monitored at a distance with nanometer resolution. The mean squared displacements of the beads are transformed into elastic and viscous moduli, which describe the propensity of the cytoplasm to flow or resist shear stresses. To map extracellular matrix remodeling, the cell-mediated movements of large beads tightly embedded in the matrix are monitored around individual cells in 3D. Here we describe the fundamentals and use of both particle-tracking intracellular microrheology and particle-tracking matrix traction mechanics to probe changes in the micromechanical properties of individual human endothelial cells embedded in 3D matrix and subjected to biochemical stimuli or pharmacological treatments compared with the response of cells on conventional flat substrates.

References

  1. 1.
    Folkman, J. and Haudenschild, C. (1980). Angiogenesis in vitro. Nature 288, 551–556.CrossRefADSGoogle Scholar
  2. 2.
    Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: integrating signals from front to back. Science 302, 1704–1709.CrossRefADSGoogle Scholar
  3. 3.
    Wirtz, D. (2009). Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys 38, 301–326.CrossRefGoogle Scholar
  4. 4.
    Lee, J.S., Panorchan, P., Hale, C.M., Khatau, S.B., Kole, T.P., Tseng, Y., and Wirtz, D. (2006). Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J Cell Sci 119, 1760–1768.CrossRefGoogle Scholar
  5. 5.
    Tseng, Y., Kole, T.P., and Wirtz, D. (2002). Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys J 83, 3162–3176.CrossRefGoogle Scholar
  6. 6.
    Suh, J., Wirtz, D., and Hanes, J. (2003). Efficient active transport of gene nanocarriers to the cell nucleus. Proc Natl Acad Sci USA 100, 3878–3882.CrossRefADSGoogle Scholar
  7. 7.
    McGrath, J.L., Hartwig, J.H., and Kuo, S.C. (2000). The mechanics of F-actin microenvironments depend on the chemistry of probing surfaces. Biophys J 79, 3258–3266.CrossRefGoogle Scholar
  8. 8.
    Apgar, J., Tseng, Y., Federov, E., Herwig, M.B., Almo, S.C., and Wirtz, D. (2000). Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles. Biophys J 79, 1095–1106.CrossRefGoogle Scholar
  9. 9.
    Kole, T.P., Tseng, Y., and Wirtz, D. (2004). Intracellular microrheology as a tool for the measurement of the local mechanical properties of live cells. Methods Cell Biol. 78, 45–64.CrossRefGoogle Scholar
  10. 10.
    Tseng, Y., Lee, J.S., Kole, T.P., Jiang, I., and Wirtz, D. (2004). Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J Cell Sci 117, 2159–2167.CrossRefGoogle Scholar
  11. 11.
    Gupton, S.L., Anderson, K.L., Kole, T.P., Fischer, R.S., Ponti, A., Hitchcock-DeGregori, S.E., Danuser, G., Fowler, V.M., Wirtz, D., Hanein, D., and Waterman-Storer, C.M. (2005). Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J Cell Biol 168, 619–631.CrossRefGoogle Scholar
  12. 12.
    Kole, T.P., Tseng, Y., Jiang, I., Katz, J.L., and Wirtz, D. (2005). Intracellular mechanics of migrating fibroblasts. Mol Biol Cell 16, 328–338.CrossRefGoogle Scholar
  13. 13.
    Daniels, B.R., Masi, B.C., and Wirtz, D. (2006). Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys J 90, 4712–4719.CrossRefGoogle Scholar
  14. 14.
    Panorchan, P., Lee, J.S., Kole, T.P., Tseng, Y., and Wirtz, D. (2006). Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix. Biophys J 91, 3499–3507.CrossRefGoogle Scholar
  15. 15.
    Lee, J.S., Hale, C.M., Panorchan, P., Khatau, S.B., George, J.P., Tseng, Y., Stewart, C.L., Hodzic, D., and Wirtz, D. (2007). Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys J 93, 2542–2552.CrossRefGoogle Scholar
  16. 16.
    Panorchan, P., Lee, J.S., Daniels, B.R., Kole, T.P., Tseng, Y., and Wirtz, D. (2007). Probing cellular mechanical responses to stimuli using ballistic intracellular nanorheology. Methods Cell Biol 83, 115–140.Google Scholar
  17. 17.
    Mason, T.G., Ganesan, K., van Zanten, J.V., Wirtz, D., and Kuo, S.C. (1997). Particletracking microrheology of complex fluids. Phys Rev Lett 79, 3282–3285.CrossRefADSGoogle Scholar
  18. 18.
    Atilgan, E., Wirtz, D., and Sun, S.X. (2005). Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophys J 89, 3589–3602.CrossRefGoogle Scholar
  19. 19.
    Luby-Phelps, K., Castle, P.E., Taylor, D.L., and Lanni, F. (1987). Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci USA 84, 4910–4913.CrossRefADSGoogle Scholar
  20. 20.
    Luby-Phelps, K. (1993). Physical properties of cytoplasm. Curr Opin Cell Biol 6, 3–9.CrossRefGoogle Scholar
  21. 21.
    Lukacs, G.L., Haggie, P., Seksek, O., Lechardeur, D., Freedman, N., and Verkman, A.S. (2000). Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275, 1625–1629.CrossRefGoogle Scholar
  22. 22.
    Seksek, O., Biwersi, J., and Verkman, A.S. (1997). Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138, 131–142.CrossRefGoogle Scholar
  23. 23.
    Stewart-Hutchinson, P.J., Hale, C.M., Wirtz, D., and Hodzic, D. (2008). Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp Cell Res 314, 1892–1905.CrossRefGoogle Scholar
  24. 24.
    Hale, C.M., Shrestha, A.L., Khatau, S.B., Stewart-Hutchinson, P.J., Hernandez, L., Stewart, C.L., Hodzic, D., and Wirtz, D. (2008). Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys J 95, 5462–5475.CrossRefGoogle Scholar
  25. 25.
    Pajerowski, J.D., Dahl, K.N., Zhong, F.L., Sammak, P.J., and Discher, D.E. (2007). Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci USA 104, 15619–15624.CrossRefADSGoogle Scholar
  26. 26.
    Khatau, S.B., Hale, C.M., Stewart-Hutchinson, P.J., Patel, M.S., Stewart, C.L., Searson, P.C., Hodzic, D., and Wirtz, D. (2009). A perinuclear actin cap regulates nuclear shape. Proc Natl Acad Sci USA 106, 19017–19022.CrossRefADSGoogle Scholar
  27. 27.
    Heidemann, S.R. and Wirtz, D. (2004). Towards a regional approach to cell mechanics. Trends Cell Biol 14, 160–166.CrossRefGoogle Scholar
  28. 28.
    Hoh, J.H. and Schoenenberger, C.A. (1994). Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci 107, 1105–1114.Google Scholar
  29. 29.
    Lee, J.S., Chang, M.I., Tseng, Y., and Wirtz, D. (2005). Cdc42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress. Mol Biol Cell 16, 871–880.CrossRefGoogle Scholar
  30. 30.
    Mizuno, D., Tardin, C., Schmidt, C.F., and Mackintosh, F.C. (2007). Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373.CrossRefADSGoogle Scholar
  31. 31.
    Hale, C.M., Sun, S.X., and Wirtz, D. (2009). Resolving the role of actoymyosin contractility in cell microrheology. PLoS One 4, e7054.CrossRefADSGoogle Scholar
  32. 32.
    Bloom, R.J., George, J.P., Celedon, A., Sun, S.X., and Wirtz, D. (2008). Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys J 95, 4077–4088.CrossRefGoogle Scholar
  33. 33.
    Ghosh, P.K., Vasanji, A., Murugesan, G., Eppell, S.J., Graham, L.M., and Fox, P.L. (2002). Membrane microviscosity regulates endothelial cell motility. Nat Cell Biol 4, 894–900.CrossRefGoogle Scholar
  34. 34.
    Byzova, T.V., Goldman, C.K., Pampori, N., Thomas, K.A., Bett, A., Shattil, S.J., and Plow, E.F. (2000). A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6, 851–860.Google Scholar
  35. 35.
    Gong, C., Stoletov, K.V., and Terman, B.I. (2004). VEGF treatment induces signaling pathways that regulate both actin polymerization and depolymerization. Angiogenesis 7, 313–322.CrossRefGoogle Scholar
  36. 36.
    van Nieuw Amerongen, G.P., Koolwijk, P., Versteilen, A., and van Hinsbergh, V.W. (2003). Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 23, 211–217.CrossRefGoogle Scholar
  37. 37.
    Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248.CrossRefADSGoogle Scholar
  38. 38.
    Rousseau, S., Houle, F., Kotanides, H., Witte, L., Waltenberger, J., Landry, J., and Huot, J. (2000). Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275, 10661–10672.CrossRefGoogle Scholar
  39. 39.
    Somlyo, A.V., Phelps, C., Dipierro, C., Eto, M., Read, P., Barrett, M., Gibson, J.J., Burnitz, M.C., Myers, C., and Somlyo, A.P. (2003). Rho kinase and matrix metalloproteinase inhibitors cooperate to inhibit angiogenesis and growth of human prostate cancer xenotransplants. FASEB J 17, 223–234.CrossRefGoogle Scholar
  40. 40.
    Sabeh, F., Shimizu-Hirota, R., and Weiss, S.J. (2009). Protease-dependent versus – independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185, 11–19.CrossRefGoogle Scholar
  41. 41.
    Friedl, P. and Wolf, K. (2003). Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochem Soc Symp 70, 277–285.Google Scholar
  42. 42.
    Sahai, E. and Marshall, C.J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5, 711–719.CrossRefGoogle Scholar
  43. 43.
    Corbitt, C.A., Lin, J., and Lindsey, M.L. (2007). Mechanisms to inhibit matrix metalloproteinase activity: where are we in the development of clinically relevant inhibitors? Recent Pat Anticancer Drug Discov 2, 135–142.CrossRefGoogle Scholar
  44. 44.
    Zaman, M.H., Trapani, L.M., Sieminski, A.L., MacKellar, D., Gong, H., Kamm, R.D., Wells, A., Lauffenburger, D.A., and Matsudaira, P. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci USA 103, 10889–10894.CrossRefADSGoogle Scholar
  45. 45.
    Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U.H., Deryugina, E.I., Strongin, A.Y., Brocker, E.B., and Friedl, P. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160, 267–277.CrossRefGoogle Scholar
  46. 46.
    Hotary, K., Li, X.Y., Allen, E., Stevens, S.L., and Weiss, S.J. (2006). A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev 20, 2673–2686.CrossRefGoogle Scholar
  47. 47.
    Demou, Z.N., Awad, M., McKee, T., Perentes, J.Y., Wang, X., Munn, L.L., Jain, R.K., and Boucher, Y. (2005). Lack of telopeptides in fibrillar collagen I promotes the invasion of a metastatic breast tumor cell line. Cancer Res 65, 5674–5682.CrossRefGoogle Scholar
  48. 48.
    Woodley, D.T., Yamauchi, M., Wynn, K.C., Mechanic, G., and Briggaman, R.A. (1991). Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction. J Invest Dermatol 97, 580–585.CrossRefGoogle Scholar
  49. 49.
    Celedon, A., Nodelman, I.M., Wildt, B., Dewan, R., Searson, P., Wirtz, D., Bowman, G.D., and Sun, S.X. (2009). Magnetic tweezers measurement of single molecule torque. Nano Lett 9, 1720–1725.CrossRefADSGoogle Scholar
  50. 50.
    Meshel, A.S., Wei, Q., Adelstein, R.S., and Sheetz, M.P. (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 7, 157–164.CrossRefGoogle Scholar
  51. 51.
    Chang, M.I., Panorchan, P., Dobrowsky, T.M., Tseng, Y., and Wirtz, D. (2005). Single-molecule analysis of human immunodeficiency virus type 1 gp120-receptor interactions in living cells. J Virol 79, 14748–14755.CrossRefGoogle Scholar
  52. 52.
    Grinnell, F. (2000). Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol 10, 362–365.CrossRefGoogle Scholar
  53. 53.
    Ridley, A.J. (2001). Rho GTPases and cell migration. J Cell Sci 114, 2713–2722.Google Scholar
  54. 54.
    Delanoe-Ayari, H., Al Kurdi, R., Vallade, M., Gulino-Debrac, D., and Riveline, D. (2004). Membrane and acto-myosin tension promote clustering of adhesion proteins. Proc Natl Acad Sci USA 101, 2229–2234.CrossRefADSGoogle Scholar
  55. 55.
    Pankov, R., Endo, Y., Even-Ram, S., Araki, M., Clark, K., Cukierman, E., Matsumoto, K., and Yamada, K.M. (2005). A Rac switch regulates random versus directionally persistent cell migration. J Cell Biol 170, 793–802.CrossRefGoogle Scholar
  56. 56.
    Ramamurthy, B., Yengo, C.M., Straight, A.F., Mitchison, T.J., and Sweeney, H.L. (2004). Kinetic mechanism of blebbistatin inhibition of nonmuscle myosin IIB. Biochemistry 43, 14832–14839.CrossRefGoogle Scholar
  57. 57.
    Shu, S., Liu, X., and Korn, E.D. (2005). Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in Dictyostelium. Proc Natl Acad Sci USA 102, 1472–1477.CrossRefADSGoogle Scholar
  58. 58.
    Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M., and Narumiya, S. (1999). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994.CrossRefADSGoogle Scholar
  59. 59.
    Kole, T.P., Tseng, Y., Huang, L., Katz, J.L., and Wirtz, D. (2004). Rho kinase regulates the intracellular micromechanical response of adherent cells to rho activation. Mol Biol Cell 15, 3475–3484.CrossRefGoogle Scholar
  60. 60.
    Carragher, N.O., Walker, S.M., Scott Carragher, L.A., Harris, F., Sawyer, T.K., Brunton, V.G., Ozanne, B.W., and Frame, M.C. (2006). Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene 25, 5726–5740.CrossRefGoogle Scholar
  61. 61.
    Gao, Y., Dickerson, J.B., Guo, F., Zheng, J., and Zheng, Y. (2004). Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101, 7618–7623.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stephanie I. Fraley
  • Christopher M. Hale
  • Ryan J. Bloom
  • Alfredo Celedon
  • Jerry S. H. Lee
  • Denis Wirtz
    • 1
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Johns Hopkins Physical Sciences-Oncology CenterThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations