Skip to main content

Hormonal Repression of miRNA Biosynthesis Through a Nuclear Steroid Hormone Receptor

  • Chapter
Regulation of microRNAs

Abstract

The maturation of primary microrRNAs (pri-miRNAs) to precursor miRNAs (pre-miRNAs) is mediated by the “microprocessor” complex minimally comprimising two core components, Drosha and DGCR8. However, the roles of RNA-binding proteins associated with these core units in the large Drosha complex remain to be defined. While signal-dependent regulation of miRNA biogenesis is assumed, such regulation remains to be described. here, we provide a short review based on our recent findings of hormonally-regulated pri-miRNA processing by nuclear estrogen receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gregory RI, Yan KP, Amuthan G et al. The Microprocessor complex mediates the genesis of microrRNAs. Nature 2004; 432(7014):235–240.

    Article  PubMed  CAS  Google Scholar 

  2. Fukuda T, Yamagata K, Fujiyama S et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNa and a subset of microrRNAs. Nat Cell Biol 2007; 9(5):604–611.

    Article  PubMed  CAS  Google Scholar 

  3. Endoh H, Maruyama K, Masuhiro Y et al. Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 1999; 19(8):5363–5372.

    PubMed  CAS  Google Scholar 

  4. Watanabe M, Yanagisawa J, Kitagawa H et al. A subfamily of RNA-binding DEED-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J 2001; 20(6):1341–1352.

    Article  PubMed  CAS  Google Scholar 

  5. Yamagata K, Fujiyama S, Ito S et al. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell 2009; 36(2):340–347.

    Article  PubMed  CAS  Google Scholar 

  6. Bleichert F, Baserga SJ. The long unwinding road of RNA helicases. Mol Cell 2007; 27(3):339–352.

    Article  PubMed  CAS  Google Scholar 

  7. Lamm GM, Nicol SM, Fuller-Pace FV et al. p72: a human nuclear DEaD box protein highly related to p68. Nucleic Acids Res 1996; 24(19):3739–3747.

    Article  PubMed  CAS  Google Scholar 

  8. Ogilvie VC, Wilson BJ, Nicol SM et al. The highly related DEaD box RNA helicases p68 and p72 exist as heterodimers in cells. Nucleic Acids Res 2003; 31(5):1470–1480.

    Article  PubMed  CAS  Google Scholar 

  9. Neubauer G, King A, Rappsilber J et al. Mass spectrometry and ESt-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet 1998; 20(1):46–50.

    Article  PubMed  CAS  Google Scholar 

  10. Zhou Z, Licklider LJ, Gygi SP et al. Comprehensive proteomic analysis of the human spliceosome. Nature 2002; 419(6903):182–185.

    Article  PubMed  CAS  Google Scholar 

  11. Liu ZR. p68 RNA helicase is an essential human splicing factor that acts at the u1 snRNA-5’ splice site duplex. Mol Cell Biol 2002; 22(15):5443–5450.

    Article  PubMed  CAS  Google Scholar 

  12. Lee CG. RH70, a bidirectional RNA helicase, copurifies with U1snRNP. J Biol Chem 2002; 277(42):39679–39683.

    Article  PubMed  CAS  Google Scholar 

  13. Bond AT, Mangus Da, He F et al. Absence of Dbp2p alters both nonsense-mediated mRNA decay and rmRNA processing. Mol Cell Biol 2001; 21(21):7366–7379.

    Article  PubMed  CAS  Google Scholar 

  14. Jalal C, Uhlmann-Schiffler H, Stahl H. Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and Cell proliferation. Nucleic Acids Res 2007; 35(11):3590–3601.

    Article  PubMed  CAS  Google Scholar 

  15. Yang L, Lin C, Liu ZR. p68 RNA helicase mediates PDGf-induced epithelial mesenchymal transition by displacing axin from beta-catenin. Cell 2006; 127(1): 139–155.

    Article  PubMed  CAS  Google Scholar 

  16. Fuller-Pace FV, Ali S. The DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx 17): novel transcriptional coregulators. Biochem Soc Trans 2008; 36(Pt 4):609–612.

    Article  PubMed  CAS  Google Scholar 

  17. Stevenson RJ, Hamilton SJ, Maccallum DE et al. Expression of the ‘dead box’ RNA helicase p68 is developmentally and growth regulated and correlates with organ differentiation/maturation in the fetus. J Pathol 1998; 184(4):351–359.

    Article  PubMed  CAS  Google Scholar 

  18. Ip FC, Chung SS, Fu WY et al. Developmental and tissue-specific expression of DEAD box protein p72. Neuroreport 2000; 11(3):457–462.

    Article  PubMed  CAS  Google Scholar 

  19. Wang Y, Medvid R, Melton C et al. DGCR8 is essential for microrNa biogenesis and silencing of embryonic stem Cell self-renewal. Nat Genet 2007; 39(3):380–385.

    Article  PubMed  CAS  Google Scholar 

  20. Krege JH, Hodgin HB, Couse JF et al. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci USA 1998; 95(26): 15677–15682.

    Article  PubMed  CAS  Google Scholar 

  21. Weihua Z, Saji S, Makinen S et al. Estrogen receptor (Er) beta, a modulator of ERalpha in the uterus. Proc Natl acad Sci USA 2000; 97(11):5936–5941.

    Article  PubMed  CAS  Google Scholar 

  22. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 1999; 20(3):358–417.

    Article  PubMed  CAS  Google Scholar 

  23. Bocchinfuso WP, Korach KS. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 1997; 2(4):323–334.

    Article  PubMed  CAS  Google Scholar 

  24. Tam J, Danilovich N, Nilsson K et al. Chronic estrogen deficiency leads to molecular aberrations related to neurodegenerative changes in follitropin receptor knockout female mice. Neuroscience 2002; 114(2):493–506.

    Article  PubMed  CAS  Google Scholar 

  25. Nakamura T, Imai Y, Matsumoto T et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of fas ligand in osteoclasts. Cell 2007; 130(5):811–823.

    Article  PubMed  CAS  Google Scholar 

  26. Smith CL, O’Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 2004; 25(1):45–71.

    Article  PubMed  CAS  Google Scholar 

  27. Kato S, Sato T, Watanabe T et al. Function of nuclear sex hormone receptors in gene regulation. Cancer Chemother Pharmacol 2005; 56(Suppl 1):4–9.

    Article  PubMed  Google Scholar 

  28. Tsai MJ, O’'Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994; 63:451–486.

    Article  PubMed  CAS  Google Scholar 

  29. Shiau AK, Barstad D, Loria PM et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998; 95(7):927–937.

    Article  PubMed  CAS  Google Scholar 

  30. Carroll JS, Liu XS, Brodsky AS et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 2005; 122(1):33–43.

    Article  PubMed  CAS  Google Scholar 

  31. Laganiere J, Deblois G, Lefebvre C et al. From the Cover: Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci USA 2005; 102(33):11651–11656.

    Article  PubMed  CAS  Google Scholar 

  32. Mckenna NJ, O’Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 2002; 108(4):465–474.

    Article  PubMed  CAS  Google Scholar 

  33. Shibata H, Spencer TE, Onate SA et al. Role of co-activators and corepressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 1997; 52:141–164; discussion 164–145.

    PubMed  CAS  Google Scholar 

  34. Mckenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 1999; 20(3):321–344.

    Article  PubMed  CAS  Google Scholar 

  35. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000; 14(2):121–141.

    PubMed  CAS  Google Scholar 

  36. Onate SA, Tsai SY, Tsai MJ et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270(5240):1354–1357.

    Article  PubMed  CAS  Google Scholar 

  37. Heery DM, Kalkhoven E, Hoare S et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387(6634):733–736.

    Article  PubMed  CAS  Google Scholar 

  38. McInerney EM, Rose DW, Flynn SE et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev 1998; 12(21):3357–3368.

    Article  PubMed  CAS  Google Scholar 

  39. Kamei Y, Xu L, Heinzel T et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85(3):403–414.

    Article  PubMed  CAS  Google Scholar 

  40. Torchia J, Glass C, Rosenfeld MG. Co-activators and corepressors in the integration of transcriptional responses. Curr Opin Cell Biol 1998; 10(3):373–383.

    Article  PubMed  CAS  Google Scholar 

  41. Xu W, Cho H, Evans RM. Acetylation and methylation in nuclear receptor gene activation. Methods Enzymol 2003; 364:205–223.

    PubMed  CAS  Google Scholar 

  42. Allis CD, Berger SL, Cote J et al. New nomenclature for chromatin-modifying enzymes. Cell 2007; 131(4):633–636.

    Article  PubMed  CAS  Google Scholar 

  43. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128(4):707–719.

    Article  PubMed  CAS  Google Scholar 

  44. Yang XJ, Ogryzko VV, Nishikawa J et al. A p300/CBP-associatedfactorthat competes with the adenoviral oncoprotein E1A. Nature 1996; 382(6589):319–324.

    Article  PubMed  CAS  Google Scholar 

  45. Yanagisawa J, Kitagawa H, Yanagida M et al. Nuclear receptor function requires a TFTC-type histone acetyl transferase complex. Mol Cell 2002; 9(3):553–562.

    Article  PubMed  CAS  Google Scholar 

  46. Berger SL. The complex language of chromatin regulation during transcription. Nature 2007; 447(7143):407–412.

    Article  PubMed  CAS  Google Scholar 

  47. Ichinose H, Garnier JM, Chambon P et al. Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNf2. Gene 1997; 188(1):95–100.

    Article  PubMed  CAS  Google Scholar 

  48. Direnzo J, Shang Y, Phelan M et al. BRG-1is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol Cell Biol 2000; 20(20):7541–7549.

    Article  PubMed  CAS  Google Scholar 

  49. Belandia B, Orford RL, Hurst HC et al. Targeting of SWI/SNf chromatin remodelling complexes to estrogen-responsive genes. Embo J 2002; 21(15):4094–4103.

    Article  PubMed  CAS  Google Scholar 

  50. Okada M, Takezawa S, Mezaki Y et al. Switching of chromatin-remodelling complexes for oestrogen receptor-alpha. EMBO Rep 2008; 9(6):563–568.

    Article  PubMed  CAS  Google Scholar 

  51. Lanz RB, Mckenna NJ, Onate SA et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 1999; 97(1): 17–27.

    Article  PubMed  CAS  Google Scholar 

  52. Mangelsdorf DJ, Thummel C, Beato M et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83(6):835–839.

    Article  PubMed  CAS  Google Scholar 

  53. Lonard DM, O’Malley BW. Nuclear receptor coregulators: judges, juries and executioners of cellular regulation. Mol Cell 2007; 27(5):691–700.

    Article  PubMed  CAS  Google Scholar 

  54. Mitchell DC, Ing NH. Estradiol stabilizes estrogen receptor messenger ribonucleic acid in sheep endometrium via discrete sequence elements in its 3’-untranslated region. Mol Endocrinol 2003; 17(4):562–574.

    Article  PubMed  CAS  Google Scholar 

  55. Flouriot G, Pakdel F, Valotaire Y. Transcriptional and post-transcriptional regulation of rainbow trout estrogen receptor and vitellogenin gene expression. Mol Cell Endocrinol 1996; 124(1–2):173–183.

    Article  PubMed  CAS  Google Scholar 

  56. Saceda M, Lindsey RK, Solomon H et al. Estradiol regulates estrogen receptor mrNa stability. J Steroid Biochem Mol Biol 1998; 66(3): 113–120.

    Article  PubMed  CAS  Google Scholar 

  57. Tseng L, Zhu HH. Regulation of progesterone receptor messenger ribonucleic acid by progestin in human endometrial stromal cells. Biol Reprod 1997; 57(6):1360–1366.

    Article  PubMed  CAS  Google Scholar 

  58. Yeap BB, Krueger RG, Leedman PJ. Differential post-transcriptional regulation of androgen receptor gene expression by androgen in prostate and breast cancer cells. Endocrinology 1999; 140(7):3282–3291.

    Article  PubMed  CAS  Google Scholar 

  59. Yeap BB, Voon DC, Vivian JP et al. Novel binding of HuR and poly(c)-binding protein to a conserved UC-rich motif within the 3’-untranslated region of the androgen receptor messenger rNa. J Biol Chem 2002; 277(30):27183–27192.

    Article  PubMed  CAS  Google Scholar 

  60. Schaaf MJ, Cidlowski JA. Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 2002; 83(1–5):37–48.

    Article  PubMed  CAS  Google Scholar 

  61. Ing NH. Steroid hormones regulate gene expression post-transcriptionally by altering the stabilities of messenger RNAs. Biol Reprod 2005; 72(6): 1290–1296.

    Article  PubMed  CAS  Google Scholar 

  62. Staton JM, Thomson AM, Leedman PJ. Hormonal regulation of mRNA stability and rNa-protein interactions in the pituitary. J Mol Endocrinol. 2000; 25(1): 17–34.

    Article  PubMed  CAS  Google Scholar 

  63. Li CF, Ross FP, Cao X et al. Estrogen enhances alpha v beta 3 integrin expression by avian osteoclast precursors via stabilization of beta 3 integrin mRNA. Mol Endocrinol 1995; 9(7):805–813.

    Article  PubMed  CAS  Google Scholar 

  64. Kumar P, Mark PJ, Ward BK et al. Estradiol-regulated expression of the immunophilins cyclophilin 40 and FKBP52 in Mcf-7 breast cancer cells. Biochem Biophys Res Commun 2001; 284(1):219–225.

    Article  PubMed  CAS  Google Scholar 

  65. Strehlow K, Rotter S, Wassmann S et al. Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 2003; 93(2): 170–177.

    Article  PubMed  CAS  Google Scholar 

  66. Kimura N, Arai K, Sahara Y et al. Estradiol transcriptionally and post-transcriptionally up-regulates thyrotropin-releasing hormone receptor messenger ribonucleic acid in rat pituitary cells. Endocrinology 1994; 134(1):432–440.

    Article  PubMed  CAS  Google Scholar 

  67. Ruohola JK, Valve EM, karkkainen MJ et al. Vascular endothelial growth factors are differentially regulated by steroid hormones and antiestrogens in breast cancer cells. Mol Cell Endocrinol 1999; 149(1–2):29–40.

    Article  PubMed  CAS  Google Scholar 

  68. Cheadle C, Fan J, Cho-Chung YS et al. Stability regulation of mRNA and the control of gene expression. Ann N Y Acad Sci 2005; 1058:196–204.

    Article  PubMed  CAS  Google Scholar 

  69. Kozak M. How strong is the case for regulation of the initiation step of translation by elements at the 3’ end of eukaryotic mRNAs? Gene 2004; 343(1):41–54.

    Article  PubMed  CAS  Google Scholar 

  70. Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science 2005; 309(5740):1519–1524.

    Article  PubMed  CAS  Google Scholar 

  71. Meister G. miRNAs get an early start on translational silencing. Cell 2007; 131(1):25–28.

    Article  PubMed  CAS  Google Scholar 

  72. Gu S, Jin L, Zhang F et al. Biological basis for restriction of microRNA targets to the 3’ untranslated region in mammalian mRNAs. Nat Struct Mol Biol 2009; 16(2): 144–150.

    Article  PubMed  CAS  Google Scholar 

  73. Davis BN, Hilyard AC, Lagna G et al. SMAD proteins control DROSHA-mediated microRNa maturation. Nature 2008; 454(7200):56–61.

    Article  PubMed  CAS  Google Scholar 

  74. Suzuki HI, Yamagata K, Sugimoto K et al. Modulation of microRNA processing by p53. Nature 2009; 460(7254):529–533.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fujiyama-Nakamura, S., Yamagata, K., Kato, S. (2010). Hormonal Repression of miRNA Biosynthesis Through a Nuclear Steroid Hormone Receptor. In: Großhans, H. (eds) Regulation of microRNAs. Advances in Experimental Medicine and Biology, vol 700. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7823-3_5

Download citation

Publish with us

Policies and ethics