MicroRNases and the Regulated Degradation of Mature Animal miRNAs

  • Helge Großhans
  • Saibal Chatterjee
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 700)

Abstract

microRNAs (miRNAs) are small noncoding RNAs that regulate numerous target mRNAs through an antisense mechanism. Initially thought to be very stable with half-lives on the orderof days, mature miRNAs haverecently been shown to be subject to degradation by ‘microRNases’ (miRNases) in plants (the small RNA degrading nucleases, SDN) and animals (exoribonuclease 2/XRN-2/XRN2). Interference with these miRNA turnover pathways causes excess miRNA activity, consistent with an important contribution to miRNA homeostasis. Moreover, it is now emerging that long half-lives are not an invariant feature of miRNAs but that marked differences exist in the stabilities of individual miRNAs and that cellular states can further determine miRNA turnover rates. Although the means of regulation are still largely unclear, biochemical data suggest that target mRNA-binding can stabilize miRNAs within their Argonaute (AGO) effector complexes, providing one possible mechanism that may control miRNA half-lives. We will summarize here what is known about miRNA turnover in animals and how recent discoveries have established a new dynamic of miRNA-mediated gene regulation. We will highlight some of the open questions in this emerging area of research.

Keywords

Estrogen Serotonin Tamoxifen Triphosphate Saccharomyces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9:102–114.PubMedCrossRefGoogle Scholar
  2. 2.
    Lau NC, Lim LP, Weinstein EG et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294:858–862.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294:862–864.PubMedCrossRefGoogle Scholar
  4. 4.
    Lagos-Quintana M, Rauhut R, Lendeckel W et al. Identification of novel genes coding for small expressed RNAs. Science 2001; 294:853–858.PubMedCrossRefGoogle Scholar
  5. 5.
    Ding XC, Weiler J, Großhans H. Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends Biotechnol 2009; 27:27–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee Y, Hur I, Park SY et al. The role of PACT in the RNA silencing pathway. EMBO J 2006; 25:522–532.PubMedCrossRefGoogle Scholar
  7. 7.
    van Rooij E, Sutherland LB, Qi X et al. Control of stress-dependent cardiac growth and gene expression by a microRNA Science 2007; 316:575–579.PubMedCrossRefGoogle Scholar
  8. 8.
    Hwang HW, Wentzel EA, Mendell JT. A hexanucleotide element directs microRNA nuclear import. Science 2007; 315:97–100.PubMedCrossRefGoogle Scholar
  9. 9.
    Bhattacharyya SN, Habermacher R, Martine U et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125:1111–1124.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee Y, Ahn C, Han J et al. The nuclear RNase HI Drosha initiates microRNA processing. Nature 2003; 425:415–419.PubMedCrossRefGoogle Scholar
  11. 11.
    Haase AD, Jaskiewicz L, Zhang H et al. TRBP, a regulator of cellular PKR and HTV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 2005; 6:961–967.PubMedCrossRefGoogle Scholar
  12. 12.
    Yi R, Qin Y, Macara IG et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17:3011–3016.PubMedCrossRefGoogle Scholar
  13. 13.
    Lund E, Güttinger S, Calado A et al. Nuclear export of microRNA precursors. Science 2004; 303:95–98.PubMedCrossRefGoogle Scholar
  14. 14.
    Gatfield D, Le Martelot G, Vejnar CE et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 2009; 23:1313–1326.PubMedCrossRefGoogle Scholar
  15. 15.
    Nelson PT, Baldwin DA, Scearce LM et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 2004; 1:155–161.PubMedCrossRefGoogle Scholar
  16. 16.
    Lim LP, Lau NC, Weinstein EG et al. The microRNAs of Caenorhabditis elegans. Genes Dev 2003; 17:991–1008.PubMedCrossRefGoogle Scholar
  17. 17.
    Okamura K, Phillips MD, Tyler DM et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 2008; 15:354–363.PubMedCrossRefGoogle Scholar
  18. 18.
    Avril-Sassen S, Goldstein LD, Stingl J et al. Characterisation of microRNA expression in post-natal mouse mammary gland development. BMC Genomics 2009; 10:548.PubMedCrossRefGoogle Scholar
  19. 19.
    Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 2008; 321:1490–1492.PubMedCrossRefGoogle Scholar
  20. 20.
    Chatterjee S, Großhans H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 2009; 461:546–549.PubMedCrossRefGoogle Scholar
  21. 21.
    Gabel HW, Ruvkun G The exonuclease ERI-1 has a conserved dual role in 5.8S rRNA processing and RNAi. Nat Struct Mol Biol 2008; 15:531–533.PubMedCrossRefGoogle Scholar
  22. 22.
    Fukuda T, Yamagata K, Fujiyama S et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007; 9:604–611.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu H, Xu H, Miraglia LJ et al. Human RNase in is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 2000; 275:36957–36965.PubMedCrossRefGoogle Scholar
  24. 24.
    Jalal C, Uhlmann-Schiffler H, Stahl H. Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddxl7) in ribosome biogenesis and cell proliferation. Nucleic Acids Res 2007; 35:3590–3601.PubMedCrossRefGoogle Scholar
  25. 25.
    Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10:126–139.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee Y, Kim M, Han J et al. microRNA genes are transcribed by RNA polymerase H. EMBO J 2004; 23:4051–4060.PubMedCrossRefGoogle Scholar
  27. 27.
    Bracht J, Hunter S, Eachus R et al. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA 2004; 10:1586–1594.PubMedCrossRefGoogle Scholar
  28. 28.
    Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10:1957–1966.PubMedCrossRefGoogle Scholar
  29. 29.
    Rodriguez A, Griffiths-Jones S, Ashurst JL et al. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14:1902–1910.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J 2007; 26:775–783.PubMedCrossRefGoogle Scholar
  31. 31.
    Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004; 10:185–191.PubMedCrossRefGoogle Scholar
  32. 32.
    Yi R, Qin Y, Macara IG et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17:3011–3016.PubMedCrossRefGoogle Scholar
  33. 33.
    Hutvagner G, McLachlan J, Pasquinelli AE et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293:834–838.PubMedCrossRefGoogle Scholar
  34. 34.
    Grishok A, Pasquinelli AE, Conte D et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106:23–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Ketting RF, Fischer SE, Bernstein E et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15:2654–2659.PubMedCrossRefGoogle Scholar
  36. 36.
    Eulalio A, Tritschler F, Izaurralde E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA 2009; 15:1433–1442.PubMedCrossRefGoogle Scholar
  37. 37.
    Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136:642–655.PubMedCrossRefGoogle Scholar
  38. 38.
    Bousquet-Antonelli C, Presutti C, Tollervey D. Identification of aregulated pathway for nuclear pre-mRNA turnover. Cell 2000; 102:765–775.PubMedCrossRefGoogle Scholar
  39. 39.
    Luke B, Panza A, Redon S et al. The Ratlp 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 2008; 32:465–477.PubMedCrossRefGoogle Scholar
  40. 40.
    Petfalski E, Dandekar T, Henry Y et al. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol Cell Biol 1998; 18:1181–1189.PubMedGoogle Scholar
  41. 41.
    Henry Y, Wood H, Morrissey JP et al. The 5’ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J 1994; 13:2452–2463.PubMedGoogle Scholar
  42. 42.
    Geerlings TH, Vos JC, Raué HA. The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5′—>3′ exonucleases. RNA 2000; 6:1698–1703.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim M, Krogan NJ, Vasiljeva L et al. The yeast Rati exonuclease promotes transcription termination by RNA polymerase n. Nature 2004; 432:517–522.PubMedCrossRefGoogle Scholar
  44. 44.
    West S, Gromak N, Proudfoot NJ. Human 5′ —>3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 2004; 432:522–525.PubMedCrossRefGoogle Scholar
  45. 45.
    Luo W, Johnson AW, Bentley DL. The role of Rat 1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev 2006; 20:954–965.PubMedCrossRefGoogle Scholar
  46. 46.
    Banerjee A, Sammarco MC, Ditch S et al. A novel tandem reporter quantifies RNA polymerase II termination in mammalian cells. PLoS One 2009; 4:e6193.PubMedCrossRefGoogle Scholar
  47. 47.
    Morlando M, Ballarino M, Gromak Netal. Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 2008; 15:902–990.PubMedCrossRefGoogle Scholar
  48. 48.
    Ballarino M, Pagano F, Girardi E et al. Coupled RNA processing and transcription of intergenic primary microRNAs. Mol Cell Biol 2009.Google Scholar
  49. 49.
    Gy I, Gasciolli V, Lauressergues D et al. Arabidopsis FIERY 1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 2007; 19:3451–3461.PubMedCrossRefGoogle Scholar
  50. 50.
    Johnson AW. Ratlp and Xrnlp are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol Cell Biol 1997; 17:6122–6130.PubMedGoogle Scholar
  51. 51.
    Villa T, Ceradini F, Presutti C et al. Processing of the intron-encoded U18 small nucleolar RNA in the yeast Saccharomyces cerevisiae relies on both exo-and endonucleolytic activities. Mol Cell Biol 1998; 18:3376–3383.PubMedGoogle Scholar
  52. 52.
    Poole TL, Stevens A. Comparison of features of the RNase activity of 5′-exonuclease-1 and 5 '-exonuclease-2 of Saccharomyces cerevisiae. Nucleic Acids Symp Ser 1995; 79–81.Google Scholar
  53. 53.
    Kenna M, Stevens A, McCammon M et al. An essential yeast gene with homology to the exonuclease-encoding XRN1/KEM1 gene also encodes a protein with exoribonuclease activity. Mol Cell Biol 1993; 13:341–350.PubMedGoogle Scholar
  54. 54.
    Stevens A, Poole TL. 5′-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-l. J Biol Chem 1995; 270:16063–16069.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang Y, Sheng G, Juranek S et al. Structure of the guide-strand-containing argonaute silencing complex. Nature 2008; 456:209–213.PubMedCrossRefGoogle Scholar
  56. 56.
    Xiang S, Cooper-Morgan A, Jiao X et al. Structure and function of the 5'—>3′ exoribonuclease Rat1 and its activating partner Rail. Nature 2009; 458:784–788.PubMedCrossRefGoogle Scholar
  57. 57.
    Chen Y, Pane A, Schüpbach T. Cutoff and aubergine mutations result in retrotransposon upregulation and checkpoint activation in Drosophila. Curr Biol 2007; 17:637–642.PubMedCrossRefGoogle Scholar
  58. 58.
    Lu Y, Liu P, James M et al. Genetic variants cis-regulating Xrn2 expression contribute to the risk of spontaneous lung tumor. Oncogene 2009.Google Scholar
  59. 59.
    Büssing I, Slack FJ, Großhans H. let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 2008; 14:400–409.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhou JY, Ma WL, Liang S et al. Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells. BMB Rep 2009; 42:593–598.PubMedCrossRefGoogle Scholar
  61. 61.
    Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 2009; 459:100–104.PubMedCrossRefGoogle Scholar
  62. 62.
    Schratt GM, Tuebing F, Nigh EA et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439:283–289.PubMedCrossRefGoogle Scholar
  63. 63.
    Rajasethupathy P, Fiumara F, Sheridan R et al. Characterization of small RNAs in aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 2009; 63:803–817.PubMedCrossRefGoogle Scholar
  64. 64.
    Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139:693–706.PubMedCrossRefGoogle Scholar
  65. 65.
    Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 2008; 14:1539–1549.PubMedCrossRefGoogle Scholar
  66. 66.
    Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science 2008; 320:97–100.PubMedCrossRefGoogle Scholar
  67. 67.
    Rybak A, Fuchs H, Smirnova L et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 2008; 10:987–993.PubMedCrossRefGoogle Scholar
  68. 68.
    Lehrbach NJ, Armisen J, Lightfoot HL et al. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 2009; 16:1016–1020.PubMedCrossRefGoogle Scholar
  69. 69.
    Heo I, Joo C, Cho J et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol Cell 2008; 32:276–284.PubMedCrossRefGoogle Scholar
  70. 70.
    Heo I, Joo C, Kim YK et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 2009; 138:696–708.PubMedCrossRefGoogle Scholar
  71. 71.
    Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchcl1 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 2009; 16:1021–1025.PubMedCrossRefGoogle Scholar
  72. 72.
    Katoh T, Sakaguchi Y, Miyauchi K et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 2009; 23:433–438.PubMedCrossRefGoogle Scholar
  73. 73.
    Sood P, Krek A, Zavolan M et al. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA 2006; 103:2746–2751.PubMedCrossRefGoogle Scholar
  74. 74.
    Khan AA, Betel D, Miller ML et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 2009; 27:549–555.PubMedCrossRefGoogle Scholar
  75. 75.
    Diederichs S, Haber DA. Dual role for argonautes in microRNA processing and post-transcriptional regulation of microRNA expression. Cell 2007; 131:1097–1108.PubMedCrossRefGoogle Scholar
  76. 76.
    O’Carroll D, Mecklenbrauker I, Das PP et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 2007; 21:1999–2004.PubMedCrossRefGoogle Scholar
  77. 77.
    Kedde M, Strasser MJ, Boldajipour B et al. RNA-binding protein dndl inhibits microRNA access to target mRNA. Cell 2007; 131:1273–1286.PubMedCrossRefGoogle Scholar
  78. 78.
    Huang J, Liang Z, Yang B et al. Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 G (APOBEC3G) and its family members. J Biol Chem 2007; 282:33632–33640.PubMedCrossRefGoogle Scholar
  79. 79.
    Ibrahim F, Rymarquis LA, Kim E et al. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci USA 2010; 107:3906–3911.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Helge Großhans
    • 1
  • Saibal Chatterjee
    • 1
  1. 1.Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland

Personalised recommendations