Advertisement

A Half-Century of Progress

  • Francis F. Chen

Abstract

A controlled fusion reaction requires holding together for a long enough time a plasma that is hot enough and dense enough. These critical conditions can be quantified by the triple product Tnτ, a modification of the Lawson criterion explained in Chap.5. Here, T is the temperature of the ions, the reacting species; n is the density of either the ions or the electrons, since the plasma is quasineutral; and τ (tau) is the energy confinement time, a measure of how fast (or slowly) energy must be applied to keep T constant. Over the years, over 200 tokamaks have been built, and the value of Tnτ achieved in each has been calculated. Some of these are plotted in Fig. 8.1 as a function of time. This measure of success has increased over 100,000 times in four decades, recently doubling every two years.

Keywords

Triple Product Runaway Electron Poloidal Field Fusion Energy Fusion Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.S. Bishop, Project Sherwood (Addison-Wesley, Reading, 1958)Google Scholar
  2. 2.
    H. Wilhelmsson, Fusion, a Voyage Through the Plasma Universe (Institute of Physics Publishing, Bristol, 2000)Google Scholar
  3. 3.
    G. McCracken, P. Stott, Fusion, the Energy of the Universe (Elsevier, Amsterdam, 2005)Google Scholar
  4. 4.
    T.K. Fowler, The Fusion Quest (Johns Hopkins Univ. Press, Baltimore, 1997)Google Scholar
  5. 5.
    J.L. Bromberg, Fusion: Science, Politics, and the Invention of a New Energy Source (MIT Press, Cambridge, 1982)Google Scholar
  6. 6.
    R. Herman, Fusion, the Search for Endless Energy (Cambridge Univ. Press, Cambridge, 1990)Google Scholar
  7. 7.
    G.J. Weisel, Properties and phenomena: basic plasma physics and fusion research in postwar America. Phys. Perspect. 10, 1 (2008)CrossRefGoogle Scholar
  8. 8.
    I.B. Bernstein, E.A. Frieman, M.D. Kruskal, R.M. Kulsrud, Proc. Roy. Soc. A244, 17 (1958)MathSciNetADSGoogle Scholar
  9. 9.
    T. Ohkawa et al., Phys. Fluids 11, 2265 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    F.F. Chen, Intro. to Plasma Physics, 1st edn. (Plenum, New York, 1974)Google Scholar
  11. 11.
    F.F. Chen, Alternate concepts in magnetic fusion. Phys. Today 32(5), 36 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    F.F. Chen, Alternate Concepts in Controlled Fusion: Summaries of Four Workshops, Electric Power Research Institute Rept. ER-429-SR (1977)Google Scholar
  13. 13.
    M.A. Krebs et al., A restructured fusion energy sciences program: advisory report, J. Fusion Energy 15, 183 (1996)CrossRefGoogle Scholar
  14. 14.
    F. Jenko et al., Phys. Plasmas 7, 1904 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    M. Greenwald, Verification and Validation for Magnetic Fusion: Moving Toward Predictive Capability, Annual Meeting, Div. of Plasma Physics, Amer. Phys. Soc., Atlanta, GA, November 2009Google Scholar
  16. 16.
    ITER physics basis 1999, chap.  1 . Nuclear Fusion 39, 2137 (1999)Google Scholar
  17. 17.
  18. 18.
    H. Zohm, Plasma Phys. Control. Fusion 38, 105 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    P.B. Snyder et al., Nuclear Fusion 44, 320 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    T.E. Evans et al., Nuclear Fusion 45, 595 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    K. McGuire et al., Phys. Rev. Lett. 50, 891 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    L. Chen, R.B. White, Phys. Rev. Lett. 52, 1122 (1984)ADSCrossRefGoogle Scholar
  23. 23.
    B. Coppi, F. Porcelli, Phys. Rev. Lett. 57, 2272 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    R.B. White, M.N. Bussac, F. Romanelli, Phys. Rev. Lett. 62, 539 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    ITER physics basis 1999, chap. 3. Nuclear Fusion 39, 2321 (1999)Google Scholar
  26. 26.
    ITER physics basis 2007, chap.  3 . Nuclear Fusion 47, S161 (2007)
  27. 27.
    R.S. Granetz et al., Nuclear Fusion 36, 545 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    M. Greenwald et al., Nuclear Fusion 28, 2199 (1988)CrossRefGoogle Scholar
  29. 29.
    M.Z. Tokar, Phys. Plasmas 16, 020704 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    F. Troyon et al., Plasma Phys. Control. Fusion 26, 209 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    J.M. Noterdaeme, 12th International Conference on Emerging Nuclear Energy Systems (ICENES), Brussels, Belgium (2005)Google Scholar
  32. 32.
    G. Janeschitz, The Physics and Technology Basis of ITER and Its Mission on the Path to DEMO, Symposium on Fusion Engineering, San Diego, CA, June 2009Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Francis F. Chen
    • 1
  1. 1.Department of Electrical EngineeringUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations