Fusion Concepts for the Future

  • Francis F. Chen


Some day the inhabitants of this planet will look back at the clumsy magnetic bottle, the D–T tokamak, which is described in the previous chapters. The tokamak will seem like an old IBM Selectric typewriter with font balls compared to Microsoft Word on a 2-GHz notebook computer. The deuterium–tritium reaction is a terrible fusion reaction, but we have to start with it because it is easy to ignite. It generates power in neutrons, which make everything radioactive so you cannot go near the reactor. The neutrons are hard to capture and also damage the whole structure of the machine. And you have to breed the tritium and keep it out of the environment. There are much cleaner fusion fuels that we can use in next-generation magnetic bottles.


Field Line Stimulate Raman Scattering Rotate Magnetic Field Cold Fusion Confinement Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.-S. Bosch, G.M. Hale, Nucl. Fusion 32, 611 (1992). for deuterium fusionADSCrossRefGoogle Scholar
  2. 2.
    W.M. Nevins, R. Swain, Nucl. Fusion 40, 865 (2000). for boron fusionADSCrossRefGoogle Scholar
  3. 3.
    L.J. Wittenberg, J.F. Santarius, G.L. Kulcinski, Lunar source of 3He for commercial fusion power. Fusion Technol. 10, 167 (1986)Google Scholar
  4. 4.
    J.F. Santarius, Role of Advanced-Fuel and Innovative Concept Fusion in the Nuclear Renaissance, 48th Annual Meeting of the Division of Plasma Physics, Philadelphia, PA, Oct. 31, 2006 (Bull. Amer. Phys. Soc. Abstract No. BAPS.2006.DPP.JM2.4)Google Scholar
  5. 5.
    F. Najmabadi, R.W. Conn, et al. The ARIES-III D-He 3 Tokamak Reactor Study, 14th Symposium on Fusion Engineering, San Diego, CA, 1991 (IEEE No. 91CH3035-3, p. 213) (IEEE, Piscataway, 1992)Google Scholar
  6. 6.
    E. Fermi, Nuclear Physics, Notes by J. Orear, A.H. Rosenfeld, R.A. Schluter (University of Chicago Press, 1950), p. 152Google Scholar
  7. 7.
    R. Feldbacher, The AEP Barnbook (Alternate Energy Physics Program, Institute for Theory of Physics, Graz, Austria, 1987). Published by the International Atomic Energy Agency, Nuclear Data SectionGoogle Scholar
  8. 8.
    H.-S. Bosch (Max-Planck Institute), Construction of Wendelstein 7-X: Engineering a Steady State Stellarator. 23rd Symposium on Fusion Engineering, San Diego, CA 2009Google Scholar
  9. 9.
    J.B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)ADSCrossRefGoogle Scholar
  10. 10.
    J.F. Lyon (Oak Ridge National Laboratory), The World Stellarator Program, Fusion Power Associates Symposium, Washington, DC, 2006Google Scholar
  11. 11.
    A.H. Boozer, Plasma Phys. Control Fusion 50, 124005 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    H. Neilson (Princeton Plasma Physics Laboratory), The Promise and Status of Compact Stellarators, Fusion Power Associates Symposium, Gaithersburg, MD, 2004Google Scholar
  13. 13.
    F. Najmabadi and the ARIES Team (University of California, San Diego), ARIES-CS Compact Stellarator Study, Report UCSD-CER-06-05 (2006).Google Scholar
  14. 14.
    A.A. Ivanov, Paper EX/P5-43, 22th IAEA fusion energy conference, Geneva, Switzerland, 2008Google Scholar
  15. 15.
    A. Sykes (Culham), The Development of the Spherical Tokamak. International Conference on Plasma Physics, Fukuoka, Japan, 2008Google Scholar
  16. 16.
    Y.-K.M. Peng, D.J. Strickler, Nucl. Fusion 26, 769 (1986)CrossRefGoogle Scholar
  17. 17.
    J.T. Slough et al., Phys. Plasmas 2, 2286 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    P.M. Bellan, Spheromaks (Imperial College Press, London, UK, 2000)Google Scholar
  19. 19.
    S. Woodruff (University of California, Berkeley), Alternative Pathways to Fusion Energy, Fusion Power Associates Meeting, Washington, DC, 2006Google Scholar
  20. 20.
    H. Alfvén, L. Lindberg, P. Mitlid, J. Nucl. Energy Part C Plasma Phys. 1, 116 (1959)ADSCrossRefGoogle Scholar
  21. 21.
    M.S. Ioffe, J. Nucl. Energy, Part C Plasma Phys. 7, 501 (1965)CrossRefGoogle Scholar
  22. 22.
    M.C. Myers et al., Nucl. Fusion 44, S247–S253 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    A Livermore drawing. See, for instance, Richard F. Post, Thoughts on Fusion Energy Development, Fusion Power Associates Meeting, Livermore, CA, December 2008.Google Scholar
  24. 24.
    K. Yatsu et al., Nucl. Fusion 43, 358–361 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    T. Cho et al., Paper EX/9-6Rd, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004Google Scholar
  26. 26.
    W. Horton et al., Axisymmetric tandem mirror D-T neutron source (2008),
  27. 27.
    T. Simonen et al., The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant, Summary of workshop held in Berkeley, CA, September 8–9, 2008.Google Scholar
  28. 28.
    K. Ishida (RIKEN), Muon catalyzed fusion, recent progress and future plan, International Workshop on Neutrino Factories and Superbeams, Irvine, CA, 2006.Google Scholar
  29. 29.
    FY 2010 estimates: Phys. Today, April 2010Google Scholar
  30. 30.
    J. Sarff (University of Wisconsin), Physics Progress of Reversed Field Pinch Magnetic Confinement, American Physics Society Division of Plasma Physics Meeting, Atlanta, GA, 2009Google Scholar
  31. 31.
    R. Lorenzini et al. (Padua), Nat. Phys. Lett. (online), June 14, 2009Google Scholar
  32. 32.
    H.Y. Guo et al., Phys. Plasmas 14, 112502 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    R.D. Milroy et al. (Redmond), FRC Formation and Sustainment with RMF Current Drive, American Physics Society Division of Plasma Physics Meeting, Atlanta, GA, 2009Google Scholar
  34. 34.
    J.F. Santarius et al., Field-Reversed Configuration Power Plant Critical Issues, University of Wisconsin Report UWFDM-1084 (1998).Google Scholar
  35. 35.
    N. Rostoker, A. Qerushi, Phys. Plasmas 9, 3057 (2002). 3068MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    R.B. Spielman et al., Phys. Plasmas 5, 2105 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    C. Deeney et al., Phys. Rev. Lett. 81, 4883 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    F. Suzuki-Vidal et al., IEEE Trans. Plasma Sci. 38(Part 1), 581 (2010)CrossRefGoogle Scholar
  39. 39.
    V.A. Gribkov et al., Physica Scripta 81, 035502 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    D.S. Clark et al., Phys. Plasmas 17, 952703 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed., vol. 1: “Plasma Physics” (Plenum, New York, 1984), p. 309ff.Google Scholar
  42. 42.
    J.D. Sethian et al., IEEE Trans. Plasma Sci. 38, 690 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    J.J. Duderstadt, G.A. Moses, Inertial Confinement Fusion (Wiley, New York, 1982)Google Scholar
  44. 44.
    D. Clark et al. (LLNL), Indirect Drive Fast Ignition Target Designs for the National Ignition Facility, FESAC Subpanel Workshop, Washington, DC, August 2008.Google Scholar
  45. 45.
    D.T. Goodin et al., Nucl. Fusion 44, S254 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    R.B. Spielman et al., Plasma Phys. Control Fusion 42, B157 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    F. Najmabadi et al., Fusion Sci. Technol. 46, 401 (2004)Google Scholar
  48. 48.
    A.R. Raffray et al., Fusion Sci. Technol. 46, 417 (2004)Google Scholar
  49. 49.
    S.E. Jones, Nature 321, 127 (1986)ADSCrossRefGoogle Scholar
  50. 50.
    E. Coleman, Greek Fire: Nicholas Christofilos and the Astron Project in America’s Fusion Program,
  51. 51.
    R.L. Hirsch, J. Appl. Phys. 38, 4522 (1067)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Francis F. Chen
    • 1
  1. 1.Department of Electrical EngineeringUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations