Digital Holographic Microscopy

Part of the Springer Series in Optical Sciences book series (SSOS, volume 162)


Microscopy is one of the main research and application areas of digital holography. Direct access to the phase as well as amplitude profiles makes quantitative phase microscopy by digital holography (DH-QPM) particularly powerful and versatile. A number of techniques of DH are developed especially for microscopy imaging and these are made possible because of the particular imaging characteristics of DH. Digital holographic and interferometric principles are the basis of many other techniques of QPM with novel capabilities. A survey is given of the wide and very active field of research in DHM techniques and applications. We begin with a brief background on optical microscopy.


Differential Interference Contrast Digital Holography Zehnder Interferometer Total Internal Reflection Fluorescence Microscopy Holographic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. C. Holst, and T. S. Lomheim, CMOS/CCD sensors and camera systems (JCD Publishing, 2007).Google Scholar
  2. 2.
    D. B. Murphy, Fundamentals of light microscopy and electronic imaging (Wiley-Liss, 2001).Google Scholar
  3. 3.
    J. Mertz, Introduction to Optical Microscopy (Roberts & Co, 2009).Google Scholar
  4. 4.
    W. J. Qu, C. O. Choo, V. R. Singh, Y. J. Yu, and A. Asundi, “Quasi-physical phase compensation in digital holographic microscopy,” Journal of the Optical Society of America a-Optics Image Science and Vision 26, 2005–2011 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Optics Letters 31, 1211–1213 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    M. Kim, S. Hong, S. Shim, K. Soh, S. Shin, J. Y. Son, J. Lee, and J. Kim, “Plane wave illumination for correct phase analysis and alternative phase unwrapping in dual-type, transmission and reflection. three-dimensional digital holographic microscopy,” Optical Engineering 49, 055801 (2010).Google Scholar
  7. 7.
    B. Kemper, D. Carl, A. Hoink, G. Von Bally, I. Bredebusch, and J. Schnekenburger, “Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells,” SPIE 6191, 61910 T (2006).CrossRefGoogle Scholar
  8. 8.
    F. Charriere, B. Rappaz, J. Kuhn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Optics Express 15, 8818–8831 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, “(1, N) spatial phase-shifting technique in digital speckle pattern interferometry and digital shearography for nondestructive evaluation,” Optical Engineering 46, 051009 (2007).CrossRefGoogle Scholar
  10. 10.
    T. Lenart, M. Gustafsson, and V. Owall, “A hardware acceleration platform for digital holographic imaging,” J. Signal Process. Syst. Signal Image Video Technol. 52, 297–311 (2008).CrossRefGoogle Scholar
  11. 11.
    T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Optics Express 16, 11776–11781 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).CrossRefGoogle Scholar
  13. 13.
    T. Nakatsuji, and K. Matsushima, “Free-viewpoint images captured using phase-shifting synthetic aperture digital holography,” Applied Optics 47, D136-D143 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the refractive index in biological cells,” Physics in Medicine and Biology 41, 369–382 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Optics Letters 24, 291–293 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Applied Optics 38, 6994–7001 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    J. Kuhn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Measurement Science & Technology 19, 074007 (2008).Google Scholar
  18. 18.
    C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Optics Express 13, 8693–8698 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Optics Express 13, 9361–9373 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    B. Rappaz, A. Barbul, F. Charriere, J. Kuhn, P. Marquet, R. Korenstein, C. Depeursinge, and P. J. Magistretti, “Erythrocytes analysis with a digital holographic microscope,” SPIE 6631, 66310 H (2007).ADSCrossRefGoogle Scholar
  22. 22.
    B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).CrossRefGoogle Scholar
  23. 23.
    B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).CrossRefGoogle Scholar
  24. 24.
    B. Rappaz, F. Charriere, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Optics Letters 33, 744–746 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).CrossRefGoogle Scholar
  26. 26.
    B. Kemper, and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Applied Optics 47, A52-A61 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    D. Carl, B. Kemper, G. Wernicke, and G. Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536–6544 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).Google Scholar
  29. 29.
    A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Optics Express 16, 10900–10911 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    W. M. Ash, and M. K. Kim, “Digital holography of total internal reflection,” Optics Express 16, 9811–9820 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    L. F. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. P. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Optics Express 17, 12031–12038 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).CrossRefGoogle Scholar
  33. 33.
    M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12, 064002 (2007).CrossRefGoogle Scholar
  34. 34.
    A. Ligresti, L. De Petrocellis, D. H. P. de la Ossa, R. Aberturas, L. Cristino, A. S. Moriello, A. Finizio, M. E. Gil, A. I. Torres, J. Molpeceres, and V. Di Marzo, “Exploiting Nanotechnologies and TRPV1 Channels to Investigate the Putative Anandamide Membrane Transporter,” PLoS One 5, 10239 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    D. Axelrod, “Cell-Substrate Contacts Illuminated by Total Internal-Reflection Fluorescence,” Journal of Cell Biology 89, 141–145 (1981).CrossRefGoogle Scholar
  36. 36.
    A. S. G. Curtis, “Mechanism of Adhesion of Cells to Glass - Study by Interference Reflection Microscopy,” Journal of Cell Biology 20, 199–215amp; (1964).Google Scholar
  37. 37.
    H. Verschueren, “Interference Reflection Microscopy in Cell Biology - Methodology and Applications,” Journal of Cell Science 75, 279–301 (1985).Google Scholar
  38. 38.
    J. Schilling, K. Sengupta, S. Goennenwein, A. Bausch, and E. Sackmann, “Absolute interfacial distance measurements by dual-wavelength reflection interference contrast microscopy,” Phys. Rev. E 69, 021901 (2004).ADSCrossRefGoogle Scholar
  39. 39.
    L. Limozin, and K. Sengupta, “Quantitative Reflection Interference Contrast Microscopy (RICM) in Soft Matter and Cell Adhesion,” Chemphyschem 10, 2752–2768 (2009).CrossRefGoogle Scholar
  40. 40.
    P. S. Carney, and J. C. Schotland, "Three-dimensional total internal reflection microscopy," Opt. Lett. 26, 1072 (2001).Google Scholar
  41. 41.
    W. M. Ash, L. G. Krzewina, and M. K. Kim, “Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy,” Applied Optics 48, H144–H152 (2009).CrossRefGoogle Scholar
  42. 42.
    C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-in-one multifunctional optical microscope with a single holographic measurement,” Optical Engineering 47, 087001 (2008).Google Scholar
  43. 43.
    S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689–694 (2005).ADSCrossRefGoogle Scholar
  44. 44.
    F. Dubois, and P. Grosfils, “Dark-field digital holographic microscopy to investigate objects that are nanosized or smaller than the optical resolution,” Optics Letters 33, 2605–2607 (2008).ADSCrossRefGoogle Scholar
  45. 45.
    M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Optics Letters 33, 500–502 (2008).ADSCrossRefGoogle Scholar
  46. 46.
    E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, and D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Optics Express 18, 780–786 (2010).ADSCrossRefGoogle Scholar
  47. 47.
    N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Optics Express 18, 3264–3273 (2010).ADSCrossRefGoogle Scholar
  48. 48.
    W. J. Qu, K. Bhattacharya, C. O. Choo, Y. J. Yu, and A. Asundi, “Transmission digital holographic microscopy based on a beam-splitter cube interferometer,” Applied Optics 48, 2778–2783 (2009).ADSCrossRefGoogle Scholar
  49. 49.
    W. J. Qu, Y. J. Yu, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Optics Letters 34, 1276–1278 (2009).ADSCrossRefGoogle Scholar
  50. 50.
    C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Optics Express 18, 4717–4726 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Optics Express 18, 11181–11191 (2010).ADSCrossRefGoogle Scholar
  52. 52.
    G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Optics Letters 29, 2503–2505 (2004).ADSCrossRefGoogle Scholar
  53. 53.
    N. Lue, W. S. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007).ADSCrossRefGoogle Scholar
  54. 54.
    C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point diffraction interferometer,” Optics Express 13, 1885–1891 (2005).ADSCrossRefGoogle Scholar
  55. 55.
    V. Mico, J. Garcia, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Optics Letters 34, 1492–1494 (2009).ADSCrossRefGoogle Scholar
  56. 56.
    T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Optics Letters 30, 1165–1167 (2005).ADSCrossRefGoogle Scholar
  57. 57.
    N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31, 2759–2761 (2006).ADSCrossRefGoogle Scholar
  58. 58.
    N. Lue, J. Bewersdorf, M. D. Lessard, K. Badizadegan, R. R. Dasari, M. S. Feld, and G. Popescu, “Tissue refractometry using Hilbert phase microscopy,” Optics Letters 32, 3522–3524 (2007).ADSCrossRefGoogle Scholar
  59. 59.
    G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Optics Letters 31, 775–777 (2006).ADSCrossRefGoogle Scholar
  60. 60.
    Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).ADSCrossRefGoogle Scholar
  61. 61.
    S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008).CrossRefGoogle Scholar
  62. 62.
    D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Optics Letters 35, 2370–2372 (2010).ADSCrossRefGoogle Scholar
  63. 63.
    P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Optics Letters 31, 1405–1407 (2006).ADSCrossRefGoogle Scholar
  64. 64.
    A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).ADSCrossRefGoogle Scholar
  65. 65.
    S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Optics Letters 30, 1953–1955 (2005).ADSCrossRefGoogle Scholar
  66. 66.
    S. Bernet, A. Jesacher, S. Furhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Optics Express 14, 3792–3805 (2006).ADSCrossRefGoogle Scholar
  67. 67.
    X. H. Li, T. Yamauchi, H. Iwai, Y. Yamashita, H. J. Zhang, and T. Hiruma, “Full-field quantitative phase imaging by white-light interferometry with active phase stabilization and its application to biological samples,” Optics Letters 31, 1830–1832 (2006).ADSCrossRefGoogle Scholar
  68. 68.
    T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Optics Express 16, 12227–12238 (2008).ADSCrossRefGoogle Scholar
  69. 69.
    M. Roy, G. Cox, and P. Hariharan, “Low-coherence interference microscopy with an improved switchable achromatic phase-shifter,” Opt. Express 13, 9125–9130 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of South FloridaTampaUSA

Personalised recommendations