Wound Healing in Diabetes: Hemorheological and Microcirculatory Aspects

  • Giuseppe CiccoEmail author
  • Francesco Giorgino
  • Sebastiano Cicco
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 701)


Diabetes is associated with many hemorheological alterations. The decrease of RBC deformability, increase of aggregability, vasoconstriction, increase of blood viscosity and decrease of oxygen supply have a significant effect on wound healing, such as in foot ulcers. Basically, there is endothelial dysfunction and alteration of permeability; these impair wound healing in diabetic patients. Microcirculation still functions and there is blood flow, even when there is a decrease in vessel diameter, without anatomical lesions in vessel walls. It is necessary to maintain a good oxygen supply. Analyzing microcirculation and hemorheology in diabetes and considering methodologies to treat diabetic foot ulcers (e.g., hyperbaric oxygen therapy, laser, and vacuum) may help in the treatment of patient pathologies.


Negative Pressure Wound Therapy Peripheral Occlusive Arterial Disease Hyperbaric Oxygen Therapy Blood Rheology Negative Pressure Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Forconi S. (2006) Il microcircolo nella malattia diabetica – Microangiologia. Centro Scientif Edr. Torino;1:1-42.Google Scholar
  2. 2.
    Nathan DM, Cleary PA, Backlund JY. et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med ;353:2643-53.PubMedCrossRefGoogle Scholar
  3. 3.
    Chien Shu et al (1971) Present state of blood rheology in hemodilution, theoretical basis and clinical application Int Symp Rottach-Egern, ; Karger Basel 1972:1-45.Google Scholar
  4. 4.
    Goldsmith HL. (1968) The microrheology of red blood cell suspension J Gen Physiol :52-8.Google Scholar
  5. 5.
    Schmid-Schönbein H,Wells RE. (1971) Rheological properties of human erythrocytes. Egern Physiol : 63-146.Google Scholar
  6. 6.
    Di Perri T. et al (1981) Aspetti Fisiopatologici e Clinici delle Sindromi da iperviscosità ematica. La Ric Clin Lab ;1,11:73-84.Google Scholar
  7. 7.
    Dintenfass L. Hyperviscosity and hyperviscosaemia MTP Press Lancaster, 1985.Google Scholar
  8. 8.
    Baskurt OK. Mechanisms of Blood Rheology Alterations. Handbook of Hemorheology. IOS Press 2007;170-90.Google Scholar
  9. 9.
    Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress and antioxidants: a review. J Biochem Mal Toxicol 2003;17,24-38.CrossRefGoogle Scholar
  10. 10.
    Nishikawa T, Edelstein D, Du XL. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404,787-90.PubMedCrossRefGoogle Scholar
  11. 11.
    Neu B, Meiselman HJ. Red Blood Cell Aggregation. Handbook of Hemorheology, IOS Press 2007;114-36.Google Scholar
  12. 12.
    Caimi G, Lo Presti RL. Techniques to evaluate erythrocyte deformability in diabetes mellitus. Acta Diabetologica 2004;41,99-103.Google Scholar
  13. 13.
    Bryszewska M, Watala C, Torzecka W. Changes in fluidity and composition of erythrocyte membranes and in composition of plasma lipids in type 1 diabetes Br J Haemat 1986;62:111- 6.Google Scholar
  14. 14.
    McMillanDE. Plasmaprotein changes, blood viscosity and diabetic microangiopathy. Diabetes 1976;25;858-64.Google Scholar
  15. 15.
    Volger E, Schmid-Schönbein H, Mehnert H. Microrheological changes of blood in diabetes mellitus. Bibl Anat 1975;13:97-8.PubMedGoogle Scholar
  16. 16.
    Schmid-Schönbein H, Volger E. Red cell aggregation and red cell deformability in diabetes. Diabetes 1976;25:897-902.PubMedGoogle Scholar
  17. 17.
    Baskurt OK,Temiz A, Meiselman HJ. Effect of superoxide anions on red blood cell rheologic properties. Free Radic Biol Med 1998;24:102-10.PubMedCrossRefGoogle Scholar
  18. 18.
    Braun RD, Fisher TC, Meiselman HJ. et al. Decreased deformability of polymorphonuclear leukocytes in diabetic cats Microcirculation 1996;3:271-8.Google Scholar
  19. 19.
    Caimi G, Canino B, Montana M. et al., Polymorphonuclear leukocyte membrane fluidity and cytosolic calcium concentration in diabetes mellitus. Acta Diabetol 1998;35:158-60.PubMedCrossRefGoogle Scholar
  20. 20.
    Sham SV, Wallin JD, Ellen SD. Chemiluminescence and superoxide anion production by leukocytes from diabetic patients. J Clin Endocrinol Metab 1983; 57:402-9.CrossRefGoogle Scholar
  21. 21.
    Sagel J, Colwell JA, Crock L. et. al., Increased platelet aggregation in early diabetes mellitus. Ann Int Med 1975;82:733-8.Google Scholar
  22. 22.
    Knobler H, Savion N, Shenkman B. et al., Adhesion and aggregation on sub-endothelium are increased in diabetic patients Thromb Res 1998;90:181-90.Google Scholar
  23. 23.
    Hunt TK. et al., The role of perfusion and oxygenation in wound healing.Wound Care Textbook 1998.Google Scholar
  24. 24.
    Laurie M. Rappl. Physiological changes in tissues denervated by SCI and possible effects on wound healing. Int Wound J 2008;5:435-44.PubMedCrossRefGoogle Scholar
  25. 25.
    Kindig CA, SextonWl, FeddeMR. et al. Skeletal muscle microcirculatory structure and hemodynamics in diabetes. Respir Physiol 1998;111:163-75.Google Scholar
  26. 26.
    MacRury SM, Lowe GD. Blood rheology in diabetes mellitus. Diab Med 1990;7:285-91.CrossRefGoogle Scholar
  27. 27.
    International Consensus on Diabetic Foot 2000 - Mediserve Edr. Naples, ItalyGoogle Scholar
  28. 28.
    Cicco G. et al. Peripheral perfusion and tissue oxygenation AEMB Plenum Press New York USA 1997;31:261-6.Google Scholar
  29. 29.
    Wagner FW. Foot Ankle Classification 1981 In: “Int. Cons. on Diab. Foot” Mediserve Naples, Italy 2000;13.Google Scholar
  30. 30.
    Lavery LA. Texas Wound Classification In: “Int. Cons. Diab. Foot” Mediserve Naples, Italy 2000,14.Google Scholar
  31. 31.
    Modena MG. et al. Diabetic arteriopathy Min Med 2004;12:81-9.Google Scholar
  32. 32.
    Nasole E. Ossigeno terapia Iperbarica in: “Arteriopatia Diabetica degli arti inferiori” edr Stella A. Min. Medica Torino 004;36:245-54.Google Scholar
  33. 33.
    Niinikoski J. Oxygen and wound healing Clin Plast Surg 1997;4:361-4.Google Scholar
  34. 34.
    Niinikoski J, Hunt TK. Oxygen and wound healing. In: Handbook of HOT. Springer edr. 1996;485-507.Google Scholar
  35. 35.
    Marangoni O, Longo L. Laser in phlebology. Trieste 2006; 5-24.Google Scholar
  36. 36.
    Masahiro Shibata et al. Wound repair and regeneration. Wound Rep Reg 2008;16:460-5.CrossRefGoogle Scholar
  37. 37.
    Mendoca DA, Papini R, Price PE. Negative pressure wound therapy: a snapshot of evidence. Int Wound J 2006;3:261-71.CrossRefGoogle Scholar
  38. 38.
    Pham CT. et al., The safety and efficacy of topical negative pressure in non healing wounds: a systematic review. J Wound Care 2006;15:240-50.PubMedGoogle Scholar
  39. 39.
    Wasiak I, Cleveland H. Topical negative pressure (TNP) for partial thickness burns. Cochrane Database System Review 2007:3.Google Scholar
  40. 40.
    Nelson EA. Vacuum assisted closure for chronic wounds: a review of the evidence. EWMA J 2007;7:5-11.Google Scholar
  41. 41.
    Ubbink DT, Vermeulen H. A systemic review of topical negative pressure therapy for acute and chronic wounds. Br J Surg 2008;95:685-92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Giuseppe Cicco
    • 1
    Email author
  • Francesco Giorgino
    • 2
  • Sebastiano Cicco
    • 1
  1. 1.Hemorheology and Microcirculation Research UnitUniversity of BariBariItaly
  2. 2.Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ TransplantationUniversity of BariBariItaly

Personalised recommendations