Advertisement

Oxygenation Status of Urogenital Tumors

  • Peter VaupelEmail author
  • Michael Hoeckel
  • Arnulf Mayer
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 701)

Abstract

In malignant urogenital tumors, tissue oxygenation is compromised and very heterogeneous,with steep and fluctuating spatio-temporal oxygen gradients signaling a complex instability in tumor oxygenation (complex “4D-heterogeneity”). Tumor hypoxia is highly dynamic, and rapidly changing pO2 gradients may be key factors driving hypoxia-dependent adaptive processes leading to malignant progression. The grand median oxygen tension in malignant urogenital tumors is 7–11 mmHg. In contrast, benign leiomyomas of the uterus are severely, but uniformly, hypoxicwith only shallow oxygen gradients (“static hypoxia”). In these benign tumors, the median pO2 is 1 mmHg and signs of hypoxia-driven processes are missing.

Keywords

Radiat Oncol Biol Phys Uterine Cervix Oxygenation Status None None Tumor Hypoxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoeckel M, Vaupel P (2001) Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266-276CrossRefGoogle Scholar
  2. 2.
    Semenza GL (2000) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35:71-103PubMedCrossRefGoogle Scholar
  3. 3.
    Giaccia AJ (1996) Hypoxic stress proteins: Survival of the fittest. Semin Radiat Oncol 6:46-58PubMedCrossRefGoogle Scholar
  4. 4.
    Denko NC, Fontana LA, Hudson KM et al (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22:5907-5914PubMedCrossRefGoogle Scholar
  5. 5.
    Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. The Oncologist 9:10-17PubMedCrossRefGoogle Scholar
  6. 6.
    HoeckelM,Vaupel P (2001) Biological consequences of tumor hypoxia. SeminOncol 28:36-41Google Scholar
  7. 7.
    Vaupel P, Mayer A, Hoeckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335-354PubMedCrossRefGoogle Scholar
  8. 8.
    Vaupel P, Mayer A (2007) Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev 26:225-239PubMedCrossRefGoogle Scholar
  9. 9.
    Vaupel P (2005) Pathophysiology of solid tumors. In: The Impact of Tumor Biology on Cancer Treatment andMultidisciplinary Strategies: (Eds.: Molls M,Vaupel P,NiederC et al), pp 51-92, Springer, Heidelberg, New YorkGoogle Scholar
  10. 10.
    Bristow RG, Hill RP (2008) Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180-192PubMedCrossRefGoogle Scholar
  11. 11.
    Vaupel P (2009) Physiological mechanisms of treatment resistance. In: The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies: (Eds.: Molls M, Vaupel P, Nieder C et al), pp 273-290, Springer, Heidelberg, New YorkGoogle Scholar
  12. 12.
    Brown JM (2007) Tumor hypoxia in cancer therapy. Methods Enzymol 435:297-321PubMedGoogle Scholar
  13. 13.
    Harrison L, Blackwell K (2004) Hypoxia and anemia: Factors in decreased sensitivity to radiation therapy and chemotherapy? The Oncologist 9:31-40PubMedCrossRefGoogle Scholar
  14. 14.
    Tannock IF (2001) Tumor physiology and drug resistance. Cancer Metastasis Rev 20:123-132PubMedCrossRefGoogle Scholar
  15. 15.
    Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: Role of hypoxia and anemia. Med Oncol 18:243-259PubMedCrossRefGoogle Scholar
  16. 16.
    Vaupel P, Hoeckel M (2008) Tumor hypoxia and therapeutic resistance. In: Nowrousian MR (ed) Recombinant Human Erythropoietin (rhEPO) in Clinical Oncology. 2nd edit, Springer, Wien, New York, pp 283-306Google Scholar
  17. 17.
    Vaupel P (2008) Hypoxia and aggressive tumor phenotype: Implications for therapy and prognosis. The Oncologist 13 (Suppl 3):21-36PubMedCrossRefGoogle Scholar
  18. 18.
    HoeckelM, Knoop C, Schlenger K et al (1993) Intra-tumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45-50CrossRefGoogle Scholar
  19. 19.
    HoeckelM, SchlengerK,AralBet al (1996)Association between tumor hypoxia andmalignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509-4515Google Scholar
  20. 20.
    Gatenby RA, Kessler HB, Rosenblum JS et al (1988) Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831-838PubMedCrossRefGoogle Scholar
  21. 21.
    Brizel DM, Scully SP, Harrelson JM et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941-943PubMedGoogle Scholar
  22. 22.
    Fyles A, Milosevic M, Wong R et al (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149-156PubMedCrossRefGoogle Scholar
  23. 23.
    Nordsmark M, Overgaard M, Overgaard J (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. RadiotherOncol 41:31-39Google Scholar
  24. 24.
    Vaupel P, Hoeckel M (2003) Tumor oxygenation and its relevance to tumor physiology and treatment. Adv Exp Med Biol 510:45-49PubMedCrossRefGoogle Scholar
  25. 25.
    Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198-206PubMedCrossRefGoogle Scholar
  26. 26.
    Vaupel P, Schlenger K, Knoop M et al (1991) Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51:3316-3322PubMedGoogle Scholar
  27. 27.
    Vaupel P, Hoeckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antiox Redox Signal 9:1221-1235CrossRefGoogle Scholar
  28. 28.
    MilosevicM, Chung P, Parker C et al (2007) Androgen withdrawal in patients reduces prostate cancer hypoxia: Implications for disease progression and radiation response. Cancer Res 67:6022-6025CrossRefGoogle Scholar
  29. 29.
    Vaupel P, Mayer A, Hoeckel M(2006) Oxygenation status of primary and recurrent squamous cell carcinomas of the vulva. Eur J Gynaecol Oncol 27:142-146PubMedGoogle Scholar
  30. 30.
    Vaupel P, Thews O, Mayer A et al (2002) Oxygenation status of gynecologic tumors: What is the optimal hemoglobin level? Strahlenther Onkol 178:727-731PubMedCrossRefGoogle Scholar
  31. 31.
    Stone JE, Parker R, Gilks CB et al (2005) Intratumoral oxygenation of invasive squamous cell carcinoma of the vulva is not correlated with regional lymph node metastasis. Eur J Gynaecol Oncol 26:31-35PubMedGoogle Scholar
  32. 32.
    Lawrentschuk N, Poon AMT, Foo SS et al (2005) Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU International 96:540-546PubMedCrossRefGoogle Scholar
  33. 33.
    Hoeckel M, Schlenger K, Knoop C et al (1991) Oxygenation of carcinomas of the uterine cervix: Evaluation of computerized O2 tension measurements. Cancer Res 51:6098-6102Google Scholar
  34. 34.
    Parker C,MilosevicM, Toi A et al (2004) Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 58:750-757PubMedCrossRefGoogle Scholar
  35. 35.
    Movsas B, Chapman JD, Horwitz EM et al (1999) Hypoxic regions exist in human prostate carcinoma. Urology 53:11-18PubMedCrossRefGoogle Scholar
  36. 36.
    Lyng H, Vorren AO, Sundfor K et al (2001) Intra- and intertumor heterogeneity in blood perfusion of human cervical cancer before treatment and after radiotherapy. Int JCancer 96:182-190CrossRefGoogle Scholar
  37. 37.
    Haider MA, Milosevic M, Fyles A et al (2005) Assessment of the tumor microenvironment in cervix cancer using dynamic contrast enhanced CT, interstitial fluid pressure and oxygen measurements. Int J Radiat Oncol Biol Phys 62:1100-1107PubMedCrossRefGoogle Scholar
  38. 38.
    Kershaw LE, Logue JP, Hutchinson CE et al (2008) Late tissue effects following radiotherapy and neoadjuvant hormone therapy of the prostate measured with quantitative magnetic resonance imaging. Radiother Oncol 88:127-134PubMedCrossRefGoogle Scholar
  39. 39.
    Mayer A, Hoeckel M, Wree A et al (2008) Lack of hypoxic response in uterine leiomyomas despite severe tissue hypoxia. Cancer Res 68:4719-4726PubMedCrossRefGoogle Scholar
  40. 40.
    Mayer A,Wree A, Hoeckel M et al (2004) Lack of correlation between expression of HIF-1.α protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix. Cancer Res 64:5876-5881PubMedCrossRefGoogle Scholar
  41. 41.
    Mayer A, Hoeckel M, Wree A et al (2005) Microregional expression of glucose transporter-1 and oxygenation status: Lack of correlation in locally advanced cervical cancers. Clin Cancer Res 11:2768-2773PubMedCrossRefGoogle Scholar
  42. 42.
    Mayer A, Hoeckel M, Vaupel P (2005) Carbonic anhydrase IX expression and tumor oxygenation status do not correlate at the microregional level in locally advanced cancers of the uterine cervix. Clin Cancer Res 11:7220-7225PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Radiooncology and RadiotherapyUniversity Medical CenterMainzGermany
  2. 2.Department of GynaecologyLeipzigGermany

Personalised recommendations