Skip to main content

Classic and Quantum Computation

  • Chapter
  • First Online:
Quantum Attacks on Public-Key Cryptosystems
  • 1411 Accesses

Abstract

In this chapter, we shall first give an account of the basic concepts and results in classical computability and complexity and then, the quantum computability and complexity, which will be used throughout the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hilbert space is defined to be a complete inner-product space. The set of all sequences x = (x 1, x 2, ⋯ ) of complex numbers (where \(\sum _{i=1}^{\infty }\vert x_{i}{\vert }^{2}\) is finite) is a good example of a Hilbert space, where the sum x + y is defined as \((x_{1} + y_{1},x_{2} + y_{2},\cdots \,)\), the product ax as \((ax_{1},ax_{2},\cdots \,)\), and the inner product as \((x,y) =\sum _{ i=1}^{\infty }\overline{x}_{i}y_{i}\), where \(\overline{x}_{i}\) is the complex conjugate of x i , x = (x 1, x 2, ⋯ ) and y = (y 1, y 2, ⋯ ). In modern quantum mechanics all possible physical states of a system are considered to correspond to space vectors in a Hilbert space.

References

  1. L.M. Adleman, J. DeMarrais, M.-D.A. Huang, Quantum computability. SIAM J. Comput. 26(5), 1524–1540 (1996)

    Article  MathSciNet  Google Scholar 

  2. P. Benioff, The computer as a physical system – a microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22, 563–591 (1980)

    Article  MathSciNet  Google Scholar 

  3. C.H. Bennett, Strengths and weakness of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature 404, 247–255 (2000)

    Article  Google Scholar 

  5. E. Bernstein, U. Vazirani, Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. I.L. Change, R. Laflamme, P. Shor, W.H. Zurek, Quantum computers, factoring, and decoherence. Science 270, 1633–1635 (1995)

    Article  MathSciNet  Google Scholar 

  7. A. Church, An unsolved problem of elementary number theory. Am. J. Math. 58, 345–363 (1936)

    Article  MathSciNet  Google Scholar 

  8. A. Church, Book review: on computable numbers, with an application to the Entscheidungsproblem by Turing. J. Symbolic Log. 2, 42–43 (1937)

    Google Scholar 

  9. H. Cohen, in A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138 (Springer, Berlin, 1993)

    Google Scholar 

  10. S. Cook, The complexity of theorem-proving procedures, in Proceedings of the 3rd Annual ACM Symposium on the Theory of Computing, New York, 1971, pp. 151–158

    Google Scholar 

  11. S. Cook, The importance of the P versus NP question. J. ACM 50(1), 27–29 (2003)

    Article  MathSciNet  Google Scholar 

  12. S. Cook, The P versus NP problem, in The Millennium Prize Problems, ed. by J. Carlson, A. Jaffe, A. Wiles. (Clay Mathematics Institute/American Mathematical Society, Providence, 2006), pp. 87–104

    Google Scholar 

  13. T.H. Cormen, C.E. Ceiserson, R.L. Rivest, Introduction to Algorithms, 3rd edn. (MIT, Cambridge, 2009)

    MATH  Google Scholar 

  14. R. Crandall, C. Pomerance, Prime Numbers – A Computational Perspective, 2nd edn. (Springer, Berlin, 2005)

    MATH  Google Scholar 

  15. D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A 400, 96–117 (1985)

    Google Scholar 

  16. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  17. R.P. Feynman, in Feynman Lectures on Computation, ed. by A.J.G. Hey, R.W. Allen (Addison-Wesley, Reading, 1996)

    Google Scholar 

  18. M.R. Garey, D.S. Johnson, Computers and Intractability – A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979)

    MATH  Google Scholar 

  19. O. Goldreich, Foundations of Cryptography: Basic Tools (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  20. O. Goldreich, Foundations of Cryptography: Basic Applications (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  21. O. Goldreich, P, NP, and NP-Completeness (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  22. J. Grustka, Quantum Computing (McGraw-Hill, New York, 1999)

    Google Scholar 

  23. M. Hirvensalo, Quantum Computing, 2nd edn. (Springer, Berlin, 2004)

    MATH  Google Scholar 

  24. J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory, Languages, and Computation, 3rd edn. (Addison-Wesley, Reading, 2007)

    Google Scholar 

  25. R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, ed. by R.E. Miller, J.W. Thatcher (Plenum, New York, 1972), pp. 85–103

    Chapter  Google Scholar 

  26. D.E. Knuth, The Art of Computer Programming II – Seminumerical Algorithms, 3rd edn. (Addison-Wesley, Reading, 1998)

    Google Scholar 

  27. M. Le Bellac, A Short Introduction to Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  28. H.R. Lewis, C.H. Papadimitrou, Elements of the Theory of Computation (Prentice-Hall, Englewood Cliffs, 1998)

    Google Scholar 

  29. P. Linz, An Introduction to Formal Languages and Automata, 5th edn. (Jones and Bartlett Publishers, Burlington, Massachusetts, 2011)

    Google Scholar 

  30. N.D. Mermin, Quantum Computer Science (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  31. M.A. Nielson, I.L. Chuang, Quantum Computation and Quantum Information, 10th Anniversary edn. (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  32. C.H. Papadimitrou, Computational Complexity (Addison Wesley, Reading, 1994)

    Google Scholar 

  33. E. Rieffel, W. Polak, Quantum Computing: A Gentle Introduction (MIT, Cambridge, 2011)

    MATH  Google Scholar 

  34. H. Riesel, Prime Numbers and Computer Methods for Factorization (Birkhäuser, Boston, 1990)

    Google Scholar 

  35. P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Silver Spring, 1994), pp. 124–134

    Google Scholar 

  36. P. Shor, Polynomial-Tme algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  Google Scholar 

  37. P. Shor, Quantum computing. Documenta Math. Extra Volume ICM I, 467–486 (1998)

    Google Scholar 

  38. P. Shor, Introduction to quantum algorithms. AMS Proc. Symp. Appl. Math. 58, 17 (2002)

    MathSciNet  Google Scholar 

  39. P. Shor, Why haven’t more quantum algorithms been found? J. ACM 50(1), 87–90 (2003)

    Article  MathSciNet  Google Scholar 

  40. D.R. Simon, On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Sipser, Introduction to the Theory of Computation, 2nd edn. (Thomson, Boston, 2006)

    MATH  Google Scholar 

  42. W. Trappe, L. Washington, Introduction to Cryptography with Coding Theory, 2nd edn. (Prentice-Hall, Englewood Cliffs, 2006)

    MATH  Google Scholar 

  43. A. Turing, On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. Ser. 2 42, 230–260 (1937); 43, 544–546 (1937)

    Google Scholar 

  44. C.P. Williams, S.H. Clearwater, in Explorations in Quantum Computation. The Electronic Library of Science (TELOS) (Springer, Berlin, 1998)

    Google Scholar 

  45. U.V. Vazirani, On the power of quantum computation. Phil. Trans. R. Soc. Lond. A356, 1759–1768 (1998)

    Google Scholar 

  46. U.V. Vazirani, Fourier transforms and quantum computation, in Proceedings of Theoretical Aspects of Computer Science (Springer, Berlin, 2000), pp. 208–220

    Google Scholar 

  47. U.V. Vazirani, A survey of quantum complexity theory. AMS Proc. Symp. Appl. Math. 58, 28 (2002)

    MathSciNet  Google Scholar 

  48. J. Watrous, Quantum computational complexity, in Encyclopedia of Complexity and System Science (Springer, Berlin, 2009), pp. 7174–7201

    Google Scholar 

  49. C.P. Williams, Explorations in Quantum Computation, 2nd edn. (Springer, Berlin, 2011)

    Book  Google Scholar 

  50. N.S. Yanofsky, M.A. Mannucci, Quantum Computing for Computer Scientists (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  51. A. Yao, Classical physics and the Church Turing thesis. J. ACM 50(1), 100–105 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yan, S.Y. (2013). Classic and Quantum Computation. In: Quantum Attacks on Public-Key Cryptosystems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7722-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7722-9_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7721-2

  • Online ISBN: 978-1-4419-7722-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics