Machine Translation from Text

  • Nizar Habash
  • Joseph Olive
  • Caitlin Christianson
  • John McCary
Chapter

Abstract

Machine translation (MT) from text, the topic of this chapter, is perhaps the heart of the GALE project. Beyond being a well defined application that stands on its own, MT from text is the link between the automatic speech recognition component and the distillation component. The focus of MT in GALE is on translating from Arabic or Chinese to English. The three languages represent a wide range of linguistic diversity and make the GALE MT task rather challenging and exciting.

References

  1. Aldous, D. 1985. Exchangeability and related topics. École d’été de probabilites de Saint-Flour XIII-1983, pp. 1–198. Springer: Berlin.Google Scholar
  2. Al-Onaizan, Y. 2005. IBM Arabic-to-English MT Submission. Presentation given at DARPA/TIDES Google Scholar
  3. Al-Onaizan, Y., J. Curin, M. Jahr, K. Knight, J. Lafferty, I. D. Melamed, N. A. Smith, F.J. Och, D. Purdy and D. Yarowsky. 1999. Statistical Machine Translation. CLSP Research Notes No. 42, Johns Hopkins University.Google Scholar
  4. Ando, R. K. and L. Lee. 2003. Mostly unsupervised statistical segmentation of Japanese kanji sequences. Journal of Natural Language Engineering, 9, pp. 127–149.Google Scholar
  5. Andrew, G. 2006. A Hybrid Markov/Semi-Markov Conditional Random Field for Sequence Segmentation. Proceedings of EMNLP, Sydney, Australia.Google Scholar
  6. Attnäs, M., P. Senellart and J. Senellart. 2005. Integration of SYSTRAN MT Systems in an Open Workflow. Proceedings of MT Summit X.Google Scholar
  7. Avramidis, E. and P. Koehn. 2008. Enriching Morphologically Poor Languages for Statistical Machine Translation. Proceedings of ACL/HLT, pp.763–770, Columbus, Ohio.Google Scholar
  8. Ayan, N.F., J. Zheng and W. Wang. 2008. Improving Alignments for Better Confusion Networks for Combining Machine Translation Systems. Proceedings of Coling , pp. 33-40.Google Scholar
  9. Badr, I., R. Zbib and J. Glass. 2008. Segmentation for English-to-Arabic Statistical Machine Translation. Proceedings of ACL/HLT, Short Papers, pp.153–156, Columbus, OH.Google Scholar
  10. Bahl, L.R., F. Jelinek and R.L. Mercer. 1983. A Maximum Likelihood Approach to Continuous Speech Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(2): pp. 179–190.CrossRefGoogle Scholar
  11. Banerjee, S. and A. Lavie. 2005. Meteor: An automatic metric for MT evaluation with improved correlation with human judgments. Proceedings of the 43th Annual Meeting of the Association for Computational Linguistics (ACL).Google Scholar
  12. Bangalore, S., G. Bordel and G. Riccardi. 2001. Computing Consensus Translation from Multiple Machine Translation Systems. Proceedings of ASRU, pp. 351-354.Google Scholar
  13. Bellman, R. 1957. Dynamic Programming. Princeton University Press: Princeton, NJ.MATHGoogle Scholar
  14. Bender, O., R. Zens, E. Matusov and H. Ney. 2004. Alignment Templates: the RWTH SMT System. Proceedings of IWSLT, pp. 79–84, Kyoto, Japan.Google Scholar
  15. Berger, A.L., V.D. Pietra and S.D. Pietra. 1996. A Maximum Entropy Approach to Natural Language Processing. Computational Linguistics, 22(1), pp. 39–71.Google Scholar
  16. Bertoldi, N., R. Zens and M. Federico. 2007. Speech Translation by Confusion Network Decoding. Proceedings of ICASSP, Honolulu, Hawaii.Google Scholar
  17. Bilmes, J. and K. Kirchhoff. 2003. Factored Language Models And Generalized Parallel Backoff. Proceedings of HLT.Google Scholar
  18. Birch, A., M. Osborne and P. Koehn. 2007. CCG Supertags in Factored Statistical Machine Translation. Proceedings of the Second Workshop on Statistical Machine Translation, pp. 9–16, Prague, Czech Republic.Google Scholar
  19. Blackwood, G. A. de Gispert and W. Byrne. 2008. Phrasal Segmentation Models for Statistical Machine Translation. Proceedings of Coling, Manchester, UK.Google Scholar
  20. Blackwood, G. A. de Gispert, J. Brunning and W. Byrne. 2008a. Large-scale Statistical Machine Translation with Weighted Finite State Transducers. Proceedings of Finite-State Methods and Natural Language Processing. Google Scholar
  21. Blei, D., A. Ng and M.I. Jordon. 2003. Latent Dirichlet Allocation. Journal of Machine Learning Re-search 3: pp. 1107-1135.MATHGoogle Scholar
  22. Blunsom, P. and T. Cohn. 2006. Discriminative Word Alignment with Conditional Random Fields. Proceedings of Coling/ACL, pp. 65– 72, Morristown, NJ.Google Scholar
  23. Blunsom, P., T. Cohn and M. Osborne. 2008. A Discriminative Latent Variable Model for Statistical Machine Translation. Proceedings of ACL.Google Scholar
  24. Bod, R., R. Scha and K. Sima’an, eds. 2003. Data-Oriented Parsing. CSLI Publications.Google Scholar
  25. Bojar, O. 2007. English-to-Czech Factored Machine Translation. Proceedings of the Second Workshop on Statistical Machine Translation, pp. 232–239, Prague, Czech Republic.Google Scholar
  26. Bonneau Maynard, H., A. Allauzen, D. D´echelotte and H. Schwenk. 2007. Combining morphosyntactic enriched representation with n-best reranking in statistical translation. Proceedings of NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pp. 65–71, Rochester, NY.Google Scholar
  27. Brants, T., A. C. Popat, P. Xu, F.J. Och and J. Dean. 2007. Large Language Models in Machine Translation. Proceedings of EMNLP-CoNLL, pp. 858–867.Google Scholar
  28. Brent, R. 1973. Algorithms for Minimization Without Derivatives. Prentice-Hall.Google Scholar
  29. Brown, P. F., V.J.D Pietra, S.A.D Pietra and R.L. Mercer. 1993. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics 19(2), pp. 263–311.Google Scholar
  30. Brown, R.D. 1996. Example-Based Machine Translation in the Pangloss System. Proceedings of Coling, pp.169-174.Google Scholar
  31. Brown, P.F., S. A. Della Pietra, V. J. Della Pietra and R. L. Mercer. 1993. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics 19(2): pp. 263–311.Google Scholar
  32. Brown, P., S. Della Pietra, V. Della Pietra and R. Mercer. 1991. Word-sense Disambiguation Using Statistical Methods. Proceedings of ACL, pp. 264-270, Berkeley, CA.Google Scholar
  33. Brown, P.F., J. Cocke, S.A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, R.L. Mercer and P.S. Roossin. 1990. A Statistical Approach to Machine Translation. Computational Linguistics, 16(2): pp. 79–85.Google Scholar
  34. Buckwalter, T. 2002. Buckwalter Arabic Morphological Analyzer Version 1.0. Linguistic Data Consortium, University of Pennsylvania. LDC Catalog No.: LDC2002L49.Google Scholar
  35. Bulyko, I., S. Matsoukas, R. Schwartz, L. Nguyen and J. Makhoul. 2007. Language Model Adaptation in Machine Translation from Speech. Proceedings of IEEE-ICASSP.Google Scholar
  36. Callison-Burch, C., C. Fordyce, P. Koehn, C. Monz and J. Schroeder. (Meta-) Evaluation of Machine Translation. 2007. Proceedings of 2nd ACL Workshop on Statistical Machine Translation, pp. 136-158.Google Scholar
  37. Callison-Burch, C., M. Osborne and P. Koehn. 2006. Re-evaluating the Role of BLEU in Machine Translation Research. Proceedings of EACL, pp. 249–256, Trento, Italy.Google Scholar
  38. Carpuat, M. and D. Wu. 2008. Evaluation of Context-dependent Phrasal Translation Lexicons for Statistical Machine Translation. Proceedings of LREC. European Language Resources Association (ELRA): Marrakech.Google Scholar
  39. Carpuat, W. and D. Wu. 2007. How Phrase Sense Disambiguation Outperforms Word Sense Disambiguation for Statistical Machine Translation. Proceedings of the Conference on Theoretical and Methodological Issues in Machine Translation, pp. 43-52. Skovde, Sweden.Google Scholar
  40. Carpuat, M. and D. Wu. 2007a. Improving Statistical Machine Translation using Word Sense Disambiguation. Proceedings of EMNLP-CoNLL, pp. 61-72. Prague, Czech Republic.Google Scholar
  41. Carpuat, M. and D. Wu. 2005. Word Sense Disambiguation vs. Statistical Machine Translation. Proceedings of ACL, pp.387-394. Ann Arbor, MI.Google Scholar
  42. Cettolo, M., F. Marcello, D. Pighin and N. Bertoldi. 2008. Shallow-syntax Phrase-Based Translation: Joint Versus Factored String-to-Chunk Models. Proceedings of AMTA. Google Scholar
  43. Chang, P., M. Galley and C.D. Manning. 2008. Optimizing Chinese Word Segmentation for Machine Translation Performance. Proceedings of the Third Workshop on Statistical Machine Translation. pp. 224-232, Columbus, Ohio.Google Scholar
  44. Chan, Y.S., H.T. Ng and D. Chiang. 2007. Word Sense Disambiguation Improves Statistical Machine Translation. Proceedings of ACL. Prague, Czech Republic.Google Scholar
  45. Chappelier, J. –C., and M. Rajman. (1998) A Generalized CYK Algorithm for Parsing Stochastic CFG. ftp://ftp.inria.fr/INRIA/Projects/Atoll/TAPD98/chappelier.ps.gz
  46. Charniak, E., K. Knight and K. Yamada. 2003. Syntax-based Language Models For Statistical Machine Translation. Proceedings of MT Summit IX.Google Scholar
  47. Charniak, E., S. Goldwater and M. Johnson. 1998. Edge-based Best-first Chart Parsing. Proceedings of the Sixth Workshop on Very Large Corpora, pp.127-133.Google Scholar
  48. Chen, B., M. Cettolo and M. Federico. 2006. Reordering Rules for Phrase-based Statistical Machine Translation. Proceedings of IWSLT. Kyoto, Japan.Google Scholar
  49. Chen, S.F. and J. Goodman. 1998. An Empirical Study of Smoothing Techniques for Language Modeling. Technical Report TR-10-98, Harvard University Center for Research in Computing Technology.Google Scholar
  50. Cheppalier, J., M. Rajman, R. Aragues and A. Rozenknop. 1999. Lattice Parsing for Speech Recognition. Proceedings of Conference sur le Traitement Automatique du Langage Naturel, pp. 95–104.Google Scholar
  51. Cheppelier, J.C. and M. Rajman. 1998. A Generalized CYK Algorithm for Parsing Stochastic CFG. Proceedings of the First Workshop on Tabulation in Parsing and Deduction (TAPD98), pp. 133–137.Google Scholar
  52. Cherry, C. and D. Lin. 2003. A Probability Model to Improve Word Alignment. Proceedings of ACL, pp.88–95, Sapporo, Japan.Google Scholar
  53. Chiang, D. and D. Wu, eds. 2008. Proceedings of Second Workshop on Syntax and Structure in Statistical Translation, at ACL/HLT. Columbus, OH.Google Scholar
  54. Chiang, D., Y. Marton and P. Resnik. 2008. Online Large-margin Training of Syntactic and Structural Translation Features. Proceedings of EMNLP, pp. 224–233. Hawaii.Google Scholar
  55. Chiang, D. 2007. Hierarchical phrase based translation. Computational Linguistics, 33(2), pp. 201–228.CrossRefGoogle Scholar
  56. Chiang, D. 2005. A Hierarchical Phrase-based Model for Statistical Machine Translation. Proceedings of ACL, pp. 263–270. Ann Arbor, MI.Google Scholar
  57. Collins, M. 2002. Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms. Proceedings of EMNLP.Google Scholar
  58. Collins, M. 2003. Head-driven Statistical Models for Natural Language Parsing. Computational Linguistics 29(4): pp. 589–673.MathSciNetCrossRefGoogle Scholar
  59. Collins, M., P. Koehn and I. Kucerova. 2005. Clause Restructuring for Statistical Machine Translation. Proceedings of ACL pp.531–540. Ann Arbor, MI.Google Scholar
  60. Corston-Oliver, S. and M. Gamon. 2004. Normalizing German and English Inflectional Morphology to Improve Statistical Word Alignment. Proceedings of AMTA, pp. 48–57.Google Scholar
  61. Costa-Jussa, M. R. and J.A.R. Fonollosa. 2006. Statistical Machine Reordering. Proceedings of EMNLP, pp. 70–76, Sydney, Australia.Google Scholar
  62. Costa-Jussa, M. R. and J.A.R. Fonollosa. 2007. Analysis of Statistical and Morphological Classes to Generate Weighted Reordering Hypotheses on a Statistical Machine Translation System. Proceedings of the Second Workshop on Statistical Machine Translation, pp. 171–176. Prague, Czech Republic.Google Scholar
  63. Cowan, B., I. Kucerova and M. Collins. 2006. A Discriminative Model for Tree-to-Tree Translation. Proceedings of EMNLP, pp. 232–241. Sydney, Australia.Google Scholar
  64. Crego, J. M. and N. Habash. 2008. Using Shallow Syntax Information to Improve Word Alignment and Reordering for SMT. Proceedings of the Third Workshop on Statistical Machine Translation, pp. 53–61, Columbus, Ohio.Google Scholar
  65. Crego, J. M. and J.B. Marino. 2007. Syntax-enhanced Ngram-based SMT. Proceedings of the MT Summit XI.Google Scholar
  66. Crego, J. M., A. de Gispert, P. Lambert, M.R. Costa-Jussa, M. Khalilov, R.E. Banchs, J.B. Marino and J.A.R. Fonollosa. 2006. N-gram-based SMT System Enhanced with Reordering Patterns. Proceedings of the Workshop on Statistical Machine Translation pp.162–165. New York, NY.Google Scholar
  67. Crego, J.M. and J.B. Marino. 2006. Integration of POStag-based Source Reordering into SMT Decoding by an Extended Search Graph. Proceedings of AMTA, pp. 29–36. Cambridge, MA.Google Scholar
  68. Dagan, I. and A. Itai. 1994. Word Sense Disambiguation Using a Second Language Monolingual Corpus. Computational Linguistics 20(4): pp. 563-596.Google Scholar
  69. de Gispert, A., S. Virpioja, M. Kurimo and W. Byrne. 2009. Minimum Bayes Risk Combination of Translation Hypotheses From Alternative Morphological Decompositions. Proceedings of NAACL-HLT.Google Scholar
  70. de Gispert, A. and J.B. Marino. 2008. On the Impact of Morphology in English to Spanish Statistical MT. Speech Communication 50: pp. 1034–1046.CrossRefGoogle Scholar
  71. de Gispert, A. 2006. Introducing Linguistic Knowledge into Statistical Machine Translation. Ph.D. thesis, Dept. Signal Theory and Communications, Universitat Politecnica de Catalunya. Google Scholar
  72. De Nero, J. and D. Klein. 2008. The Complexity of Phrase Alignment Problems. Proceedings of ACL-08, Companion volume, pp. 25–28. Columbus, OH.Google Scholar
  73. Della Pietra, S., V. Della Pietra and J. Lafferty. 1995. Inducing Features of Random Fields. Technical Report, Department of Computer Science, Carnegie-Mellon University, CMU-CS-95-144.Google Scholar
  74. Dempster, A.P., N. M. Laird and D. B. Rubin. 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1): pp. 1–38.MathSciNetMATHGoogle Scholar
  75. DeNeefe, S., K. Knight, W. Wang and D. Marcu. 2007. What Can Syntax-based MT Learn from Phrase-based MT? Proceedings of EMNLP-CoNLL.Google Scholar
  76. Deng, Y. and W. Byrne. 2008. HMM Word and Phrase Alignment for Statistical Machine Translation. IEEE Transactions on Audio, Speech and Language Processing 16(3): pp. 494–507.CrossRefGoogle Scholar
  77. Deng, Y. and W. Byrne. 2006. MTTK: An Alignment Toolkit for Statistical Machine Translation. Presented in the HLT-NAACL Demonstrations Program. Google Scholar
  78. Denoual, E. 2007. Analogical Translation of Unknown Words in a Statistical Machine Translation Framework. Proceedings of the MT Summit XI.Google Scholar
  79. Diab, M., M. Ghoneim and N. Habash. 2007. Arabic Diacritization in the Context of Statistical Machine Translation. Proceedings of the Machine Translation Summit.Google Scholar
  80. Ding, Y. and M. Palmer. 2005. Machine Translation using Probabilistic Synchronous Dependency Insertion Grammars. Proceedings of ACL, pp. 541–548. Ann Arbor, MI.Google Scholar
  81. Dorr, B. J. 1994. Machine Translation Divergences: a Formal Description and Proposed Solution. Computational Linguistics 20(4).Google Scholar
  82. Dreyfus, S.E. and A.M. Law. 1977. The Art and Theory of Dynamic Programming (Mathematics in Science and Engineering; vol. 130). Academic Press: New York, N.Y.Google Scholar
  83. Dugast, L., J. Senellart and P. Koehn. 2009. Statistical Post Editing and Dictionary Extraction. Proceedings of EACL, pp.110-114.Google Scholar
  84. Dugast, L., J. Senellart and P. Koehn. 2007. Statistical Postediting on SYSTRAN’s Rule-based Translation System. Proceedings of ACL, Workshop on Statistical Machine Translation, pp. 220-223.Google Scholar
  85. Durbin, R., S.R. Eddy, A. Krogh and G. Mitchison. 1998 Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press.Google Scholar
  86. Durgar El-Kahlout, I. and K. Oflazer. 2006. Initial Explorations in English to Turkish Statistical Machine Translation. Proceedings of the Workshop on Statistical Machine Translation, pp. 7–14. New York, NY.Google Scholar
  87. Dyer, C. J., S. Muresan and P. Resnik. 2008. Generalizing Word Lattice Translation. Proceedings of ACL/HLT pp.1012–1020. Columbus, OH.Google Scholar
  88. Dyer, C. J. 2007a. The “Noisier Channel”: Translation from Morphologically Complex Languages. Proceedings of the Second Workshop on Statistical Machine Translation, pp. 207–211. Prague, Czech.Google Scholar
  89. Dyer, C. J., 2007b. The University of Maryland Translation System for IWSLT 2007. Proceedings of IWSLT.Google Scholar
  90. Eck, M., S. Vogel and A. Waibel. 2005. Low Cost Portability for Statistical Machine Translation Based on N-gram Coverage. Proceedings of MT Summit X, pp.227-234.Google Scholar
  91. Eck, M., S. Vogel and A. Waibel. 2004. Language Model Adaptation for Statistical Machine Translation Based on Information Retrieval. Proceedings of LREC, pp.327-330.Google Scholar
  92. Eisner, J., E. Goldlust and N.A. Smith. 2005. Compiling Comp Ling: Weighted Dynamic Programming and the Dyna Language. Proceedings of HLT/EMNLP, pp.281-290.Google Scholar
  93. Eisner, J. 2003. Learning Non-isomorphic Tree Mappings for Machine Translation. Proceedings of ACL, companion volume, pp.205–208. Sapporo, Japan.Google Scholar
  94. Eisner, J. and G. Satta. 1999. Efficient Parsing for Bilexical Context-free Grammars and Head Automaton Grammars. Proceedings of ACL.Google Scholar
  95. El Isbihani, A., S. Khadivi, O. Bender and H. Ney. 2006. Morpho-syntactic Arabic Preprocessing for Arabic to English Statistical Machine Translation. Proceedings on the Workshop on Statistical Machine Translation, pp. 15–22. New York, NY.Google Scholar
  96. Elming, J. 2008a. Syntactic Reordering Integrated with Phrasebased SMT. Proceedings of Second Workshop on Syntax and Structure in Statistical Translation, at ACL/HLT. pp. 46–54. Columbus, OH.Google Scholar
  97. Elming, J. 2008b. Syntactic Reordering Integrated with Phrasebased SMT. Proceedings of Coling, pp.209–216. Manchester, UK.Google Scholar
  98. Emerson, T. 2005. The Second International Chinese Word Segmentation Bakeoff. Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, pp. 123–133.Google Scholar
  99. Erosheva, E., S. Fienberg and J. Lafferty. 2004. Mixed Membership Models of Scientific Publications. Proceedings of the National Academy of Sciences volume 101 of Suppl. 1.Google Scholar
  100. Evermann, G. and P.C. Woodland. 2000. Posterior Probability Decoding, Confidence Estimation and System Combination. Proceedings of Speech Transcription Workshop.Google Scholar
  101. Fellbaum, C. ed. 1998. An Electronic Lexical Database. MIT Press.Google Scholar
  102. Fiscus, J.G. 1997. A Post-Processing System to Yield Reduced Word Error Rates: Recognizer Output Voting Error Reduction (ROVER). Proceedings of ASRU, pp.347-354.Google Scholar
  103. Foster, G. and R. Kuhn. 2007. Mixture-Model Adaptation for SMT. Proceedings of 2nd ACL Workshop on Statistical Machine Translation, pp. 128-135.Google Scholar
  104. Fraser, A. and D. Marcu. 2007. Measuring Word Alignment Quality for Statistical Machine Translation. Computational Linguistics 33(3): pp. 293–303.MathSciNetCrossRefGoogle Scholar
  105. Fraser, A. and D. Marcu. 2006a. Semisupervised training for statistical word alignment. Proceedings of ACL/Coling, pp.769-776. Sydney, Australia.Google Scholar
  106. Fraser, A. and D. Marcu. 2006b. Measuring Word Alignment Quality for Statistical Machine Translation. Technical report, ISI-University of Southern California.Google Scholar
  107. Frederick, J. and R.L. Mercer. 1980. Interpolated Estimation Of Markov Source Parameters From Sparse Data. Proceedings of Workshop on Pattern Recognition in Practice. Amsterdam, The Netherlands.Google Scholar
  108. Freund, Y., H.S. Seung, E. Shamir and N. Tishby. 1997. Selective Sampling Using the Query by Committee Algorithm. Machine Learning 28(2-3): pp. 133.168.MATHCrossRefGoogle Scholar
  109. Fung, P., W. Zhaojun, Y. Yang and D. Wu. 2006. Automatic Learning of Chinese-English Semantic Structure Mapping. Proceedings of IEEE/ACL Workshop on Spoken Language Technology.Google Scholar
  110. Gale, W. and G. Sampson. 1996. Good-Turing Frequency Estimation without Tears. Journal of Quantitative Linguistics 2(3).Google Scholar
  111. Gale, W.A., K.W. Church and D. Yarowsky. 1992. A Method for Disambiguating Word Senses in a Large Corpus. Computers and the Humanities 26: pp. 415-439.CrossRefGoogle Scholar
  112. GALE. 2008. NIST Machine Translation Evaluation for GALE Home Page. http://www.nist.gov/speech/tests/gale.
  113. Galley, M., J. Graehl, K. Knight, D. Marcu, S. DeNeefe, W. Wang and I. Thayer. 2006. Scalable Inference and Training of Context-rich Syntactic Translation Models. Proceedings of ACL/Coling, pp. 961–968. Sydney, Australia.Google Scholar
  114. Galley, M., M. Hopkins, K. Knight and D. Marcu. 2004. What’s in a Translation Rule? Proceedings of HLT/NAACL 4: pp. 273–280.Google Scholar
  115. Gao, J., M. Li, A. Wu and C. Huang. 2005. Chinese Word Segmentation and Named Entity Recognition: A Pragmatic Approach. Computational Linguistics 31(4).Google Scholar
  116. Gao, Q. and S. Vogel. 2008. Parallel Implementations of Word Alignment Tool. Software Engineering, Testing and Quality Assurance for Natural Language Processing, pp. 49–57.Google Scholar
  117. Ge, N. 2004. Improvement in Word Alignments. Presentation given at DARPA/TIDES MT workshop. Google Scholar
  118. Geman, S. and D. Geman. 1984. Stochastic Relaxation, Gibbs Distribution and The Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6): pp. 721–741.MATHCrossRefGoogle Scholar
  119. Gildea, D. 2003. Loosely Tree-based Alignment for Machine Translation. Proceedings of the ACL companion volume, pp. 80–87. Sapporo, Japan.Google Scholar
  120. Gildea, D. and D. Jurafsky. 2002. Automatic Labeling of Semantic Roles. Computational Linguistics 28(3): pp. 256–288.CrossRefGoogle Scholar
  121. Gimenez, J. and L. Marquez. 2008. A Smorgasbord of Features for Automatic MT Evaluation. 3 rd ACL Workshop on Statistical Machine Translation, pp. 195-198. Columbus, OH.Google Scholar
  122. Gimenez, J. and L. Marquez. 2007a. Context-aware Discriminative Phrase Selection for Statistical Machine Translation. Proceedings of the Workshop on Statistical Machine Translation. Prague.Google Scholar
  123. Gimenez, J. and L. Marquez. 2007b. Linguistic Features for Automatic Evaluation of Heterogenous MT Systems. Proceedings of the Second Workshop on Statistical Machine Translation, pp. 256-264. Prague, Czech Republic.Google Scholar
  124. Goldwater, S., T. L. Griffiths and M. Johnson. 2006. Contextual Dependencies. Unsupervised Word Segmentation. Proceedings of ACL/Coling. Sydney, Australia.Google Scholar
  125. Goldwater, S. and D. McClosky. 2005. Improving Statistical MT through Morphological Analysis. Proceedings of HLT/EMNLP, pp. 676–683. Vancouver, Canada.Google Scholar
  126. Good, I.J. 1953. The Population Frequencies of Species and the Estimation of Population Parameters. Biometrika 40(3 and 4): pp. 237–264.MathSciNetMATHGoogle Scholar
  127. Goodman, J.T. 2001. A Bit of Progress in Language Modeling (extended version). Technical Report MSRTR-2001-72, Machine Learning and Applied Statistics Group, Microsoft Research: Redmond, WA.Google Scholar
  128. Goodman, J. 1999. Semiring Parsing. Computational Linguistics 25: pp. ,573–605.MathSciNetGoogle Scholar
  129. Graehl, J. and K. Knight. 2004. Training Tree Transducers. Proceedings of HLT/NAACL.Google Scholar
  130. Gropp, W., E. Lusk and A. Skjellum. 1999. Using MPI: Portable Parallel Programming with the Message-passing Interface. MIT Press: Cambridge, MA.Google Scholar
  131. Gupta, D. and N. Chatterjee. 2003. Identification of Divergence for English to Hindi EBMT. Proceedings of the MT Summit IX.Google Scholar
  132. Habash, N., A. Soudi and T. Buckwalter. 2007. On Arabic Transliteration. A. van den Bosch and A. Soudi, eds., Arabic Computational Morphology: Knowledge-based and Empirical Methods. Springer.Google Scholar
  133. Habash, N. 2007a. Arabic Morphological Representations for Machine Translation. A. van den Bosch and A. Soudi, eds., Arabic Computational Morphology: Knowledge-based and Empirical Methods. Springer.Google Scholar
  134. Habash, N. 2007b. Syntactic Preprocessing for Statistical Machine Translation. Proceedings of the MT Summit XI.Google Scholar
  135. Habash, N. and F. Sadat. 2006. Arabic Preprocessing Schemes for Statistical Machine Translation. Proceedings of HLT-NAACL, pp. 49–52. New York, NY.Google Scholar
  136. Habash, N. and O. Rambow. 2005. Arabic Tokenization, Part-of-Speech Tagging and Morphological Disambiguation in One Fell Swoop. Proceedings of ACL, pp. 573–580. Ann Arbor, MI.Google Scholar
  137. Habash, N. 2004. Large Scale Lexeme Based Arabic Morphological Generation. Proceedings of Conference sur le Traitement Automatique du Langage Naturel, pp. 271–276. Fez, Morocco.Google Scholar
  138. Hakkani-Tur, D., G. Riccardi and A. Gorin. 2002. Active Learning for Automatic Speech Recognition. Proceedings of IEEE - ICASSP.Google Scholar
  139. Hasan, S., R. Zens and H. Ney. 2007. Are Very Large N-best Lists Useful for SMT? Proceedings of HLT/NAACL Companion Volume, Short Papers, pp. 57–60. Rochester, NY.Google Scholar
  140. Hassan, H., K. Sima’an and A. Way. 2007. Supertagged Phrase-based Statistical Machine Translation. Proceedings of ACL, pp. 288–295. Prague, Czech Republic.Google Scholar
  141. He, X., M. Yang, J. Gao, P. Nguyen and R. Moore. 2008. Indirect-HMM-based Hypothesis Alignment for Combining Outputs from Machine Translation Systems. Proceedings of EMNLP, pp. 98-107.Google Scholar
  142. Held and Karp. 1962. A Dynamic Programming Approach to Sequencing Problems. SIAM 10(1): pp. 196–210.MathSciNetGoogle Scholar
  143. Hewavitharana, S., A. Lavie and S. Vogel. 2007. Experiments with a Noun-Phrase Driven Statistical Machine Translation System. Proceedings of the MT Summit XI.Google Scholar
  144. Hildebrand, A.S. and S. Vogel. 2008. Combination of Machine Translation Systems via Hypothesis Selection from Combined N-best Lists. Proceedings of AMTA, pp. 254–261. Waikiki, Hawaii.Google Scholar
  145. Hildebrand, A.S., M. Eck, S. Vogel and A. Waibel. 2005. Adaptation of the Translation Model for Statistical Machine Translation Based on Information Retrieval. Proceedings of EAMT, pp. 133–142, Budapest, Hungary.Google Scholar
  146. Hoang, H. and P. Koehn. 2009. Improving Mod-range Reordering using Templates of Factors. Proceedings of EACL. Athens, Greece.Google Scholar
  147. Huang, C. R. and K. J. Chen. 1995. Academic Sinica Balanced Corpus. Technical Report 95-02/98-04, Academic Sinica. Taipei, Taiwan.Google Scholar
  148. Huang, F. 2009. Confidence Measure For Word Alignment. Proceedings of ACL/AFNLP, pp. 932–940.Google Scholar
  149. Huang, L. 2008. Forest Reranking: Discriminative Parsing with Non-local Features. Proceedings of ACL.Google Scholar
  150. Huang, L. and D. Chiang. 2007. Forest Rescoring: Faster Decoding with Integrated Language Models. Proceedings of ACL pp. 144-151. Prague, Czech Republic.Google Scholar
  151. Huang, L. and D. Chiang. 2005. Better K-best Parsing. Proceedings of the 9th International Workshop on Parsing Technologies.Google Scholar
  152. Huang, L., K. Knight and A. Joshi. 2006. Statistical Syntax-directed Translation with Extended Domain of Locality. Proceedings of AMTA. Boston, MA.Google Scholar
  153. Huang, Z., D. Filimonov and M. Harper. 2008. Accuracy Enhancements for Mandarin Parsing. Technical report, University of Maryland. Google Scholar
  154. Hwa, R. 2004. Sample Selection for Statistical Parsing. Computational Linguistics 30(3).Google Scholar
  155. Ittycheriah, A. and S. Roukos. 2005. A Maximum Entropy Word Aligner for Arabic-English Machine Translation. Proceedings of HLT/EMNLP, pp. 89–96.Google Scholar
  156. Ittycheriah, A. and S. Roukos. 2007. Direct Translation Model 2. Proceedings of HLT/NAACL, pp. 57-64. Rochester, New York.Google Scholar
  157. IWSLT. 2007. International Workshop on Spoken Language Translation Home Page. http://www.slt.atr.jp/IWSLT2007.
  158. Iyer, R. and M. Ostendorf. 1999. Relevance Weighting for Combining Multi-domain Data for N-gram Language Modeling. Computer Speech and Language 13(3): pp. 267–282.CrossRefGoogle Scholar
  159. Jayaraman, S. and A. Lavie. 2005. Multi-Engine Machine Translation Guided by Explicit Word Matching. Proceedings of EAMT, pp.143-152.Google Scholar
  160. Jelinek, F. 1998. Statistical Methods for Speech Recognition. MIT Press: Cambridge, MA.Google Scholar
  161. Jiang, W., J. Zhao, Y. Guan and Z. Xu. 2005. Chinese Word Segmentation Based on Mixing Model. Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing.Google Scholar
  162. Jurafsky, D. and J.H. Martin. 2000. Speech and Language Processing. Prentice Hall.Google Scholar
  163. Kamm, T.M. and G.G.L. Meyer. 2002. Selective Sampling of Training Data for Speech Recognition. Proceedings of HLT.Google Scholar
  164. Karakos, D., J. Eisner, S. Khundanpur and M. Dreyer. 2008. Machine Translation System Combination using ITG-based Alignments. Proceedings of ACL/HLT. Google Scholar
  165. Kashioka, H., T. Maruyama and H. Tanaka. 2003. Building a Parallel Corpus for Monologue with Clause Alignment. Proceedings of the MT Summit IX.Google Scholar
  166. Kilgarriff, A. 2001. English Lexical Sample Task Description. Proceedings of Senseval-2, The Second InternationalWorkshop on Evaluating Word Sense Disambiguation Systems, pp. 17-20. Toulouse, France.Google Scholar
  167. Kilgarriff, A. and J. Rosenzweig. 1999. Framework and Results for English Senseval. Computers and the Humanities 34(1): pp. 15-48. Special issue on SENSEVAL.CrossRefGoogle Scholar
  168. Kirchhoff, K. and M. Yang. 2005. Improved Language Modeling for Statistical Machine Translation. Proceedings of the ACL Workshop on Building and Using Parallel Texts, pp. 125–128, Ann Arbor, MI.Google Scholar
  169. Klein, D. and C.D. Manning. 2003. A* Parsing: Fast Exact Viterbi Parse Selection. Proceedings of ACL/HLT, pp.40-47.Google Scholar
  170. Kneser, R. and H. Ney. 1995. Improved Backing-off for M-gram Language Modeling. Proceedings of ICASSP, pp. 181–184.Google Scholar
  171. Knight, K. 1999. Decoding Complexity in Word Replacement Translation Models. Computational Linguistics 25(4): pp. 607-615.Google Scholar
  172. Knight, K. and J. Graehl. 2005. An Overview of Probabilistic Tree Transducers for Natural Language Processing. Proceedings of CICLing.Google Scholar
  173. Koehn, P. 2009. Statistical Machine Translation. Cambridge University Press.Google Scholar
  174. Koehn, P. and H. Hoang. 2007. Factored Translation Models. Proceedings of EMNLP-CoNLL, pp. 868–876.Google Scholar
  175. Koehn, P., H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin and E. Herbst. 2007. Moses: Open Source Toolkit For Statistical Machine Translation. Proceedings of ACL pp.177-180, Prague, Czech Republic.Google Scholar
  176. Koehn, P., A. Axelrod, A.B. Mayne, C. Callison-Burch, M. Osborne and D. Talbot. 2005. Edinburgh System Description for the 2005 IWSLT Speech Translation Evaluation. Proceedings of IWSLT. Google Scholar
  177. Koehn, P. 2004a. Pharaoh: a Beam Search Decoder for Phrase-based Statistical Machine Translation Models. Proceedings of AMTA, pp. 115–124. Washington, DCGoogle Scholar
  178. Koehn, P. 2004b. Statistical Significance Tests for Machine Translation Evaluation. Proceedings of EMNLP. Barcelona, Spain.Google Scholar
  179. Koehn, P. and K. Knight. 2003. Feature-rich Statistical Translation of Noun Phrases. E. Hinrichs and D. Roth, eds. Proceedings of ACL, pp. 311–318.Google Scholar
  180. Koehn, P., F.J. Och and D. Marcu. 2003. Statistical Phrase-based Translation. Proceedings of HLT-NAACL, pp. 127–133, Edmonton, Canada.Google Scholar
  181. Koehn, P. and K. Knight. 2002. ChunkMT: Machine Translation with Richer Linguistic Knowledge. Unpublished.Google Scholar
  182. Komachi, M., M. Nagata and Y. Matsumoto. 2006. Phrase Reordering for Statistical Machine Translation Based on Predicate-argument Structure. Proceedings of IWSLT. Kyoto, Japan.Google Scholar
  183. Kumar, S. and W. Byrne. 2004. Minimum Bayes-risk Decoding for Statistical Machine Translation. Proceedings of HLT/NAACL, pp.169-176.Google Scholar
  184. Langlais, P. and A. Patry. 2007. Translating Unknown Words by Analogical Learning. Proceedings of EMNLP-CoNLL, pp. 877–886.Google Scholar
  185. LanguageWeaver. 2005. Language Weaver Inc.'s Chinese-to-English MT System, release v4.0. http://www.languageweaver.com.
  186. Lavie, A. and A. Agarwal. 2007. METEOR: An Automatic Metric for MT Evaluation with High Levels of Correlation with Human Judgments. Proceedings of the Second Workshop on Statistical Machine Translation, pp.228-231.Google Scholar
  187. LDC. 2003. Linguistic Data Consortium Chinese Resource Home Page. http://www.ldc.upenn.edu/Projects/Chinese.
  188. Lee, J., D. Lee and G.G. Lee. 2008. Transformation-based Sentence Splitting Method for Statistical Machine Translation. Proceedings of the Workshop on Technologies and Corpora for Asia-Pacific Speech Translation. Google Scholar
  189. Lee, Y.S. 2004. Morphological Analysis for Statistical Machine Translation. Proceedings of HLT-NAACL, pp. 57– 60. Boston, MA.Google Scholar
  190. Lee, Y.S., K. Papineni and S. Roukos. 2003. Language Model Based Arabic Word Segmentation. Proceedings of ACL, pp. 399–406. Sapporo, Japan.Google Scholar
  191. Leusch, G., N. Ueffing and H. Ney. 2003. A Novel String-to-String Distance Measure with Applications to Machine Translation Evaluation. Proceedings of MT Summit IX, pp. 240-247.Google Scholar
  192. Levow, G. A. 2006. The Third International Chinese Language Processing Bakeoff: Word Segmentation and Named Entity Recognition. Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing.Google Scholar
  193. Levow, G.A., D. Oard and P. Resnik. 2005. Dictionary-based Techniques for Cross-Language Information Retrieval. Information Processing and Management 41(3): pp. 523–547.CrossRefGoogle Scholar
  194. Li, C. H., M. Li, D. Zhang, M. Li, M. Zhou and Y. Guan. 2007. A Probabilistic Approach To Syntax-Based Reordering for Statistical Machine Translation. Proceedings of ACL, pp. 720–727. Prague, Czech Republic.Google Scholar
  195. Li, Z. and J. Eisner. 2009. First- and Second-order Expectation Semirings with Applications to Minimum-Risk Training on Translation Forests. Proceedings of EMNLP.Google Scholar
  196. Li, Z. and S. Khudanpur. 2009. Efficient Extraction of Oracle-best Translations from Hypergraphs. Proceedings of NAACL. Google Scholar
  197. Li, Z., C. Callison-Burch, C. Dyer, J. Ganitkevitch, S. Khudanpur, L. Schwartz, W. Thornton, J. Weese and O. Zaidan. 2009a. Joshua: An Open Source Toolkit for Parsing-based Machine Translation. Proceedings of the Fourth Workshop on Statistical Machine Translation.Google Scholar
  198. Li, Z., J. Eisner and S. Khudanpur. .2009b. Variational Decoding for Statistical Machine Translation. Proceedings of ACL.Google Scholar
  199. Li, Z. and S. Khudanpur. 2008. Large-scale Discriminative n-gram Language Models for Statistical Machine Translation. Proceedings of AMTA.Google Scholar
  200. Liang, P., A. Bouchard-Cote, D. Klein and B. Taskar. 2006a. An End-to-end Discriminative Approach to Machine Translation. Proceedings of Coling/ACL. Google Scholar
  201. Liang, P., B. Taskar and D. Klein. 2006b. Alignment by Agreement. Proceedings of HLT/NAACL, pp.104-111, New York, NY.Google Scholar
  202. Lopez, A. 2007. Hierarchical Phrase-based Translation with Suffix Arrays. Proceedings of EMNLP/CoNLL. Google Scholar
  203. Lowerre, B. and R. Reddy. 1980. The Harpy Speech Understanding System. Trends in Speech Recognition, W.A. Lea, ed. Prentice Hall: Englewood Cliffs, NJ.Google Scholar
  204. Lu, Y., J. Huang and Q. Liu. 2007. Improving Statistical Machine Translation Performance By Training Data Selection And Optimization. Proceedings of EMNLP-CoNLL, pp. 343-350.Google Scholar
  205. Maamouri, M. and A. Bies. 2004. Developing an Arabic Treebank: Methods, Guidelines Procedures and Tools. Proceeding of Coling. Google Scholar
  206. Magerman, D. 1995. Statistical Decision-tree Models for Parsing. Proceedings of ACL.Google Scholar
  207. Manber, U. and G. Myers. 1993. Suffix Arrays: a New Method for On-Line String Searches. SIAM J. Comput. 22(5), pp. 935–948.MathSciNetMATHCrossRefGoogle Scholar
  208. Manber, U. and G. Myers. 1990. Suffix Arrays: a New Method for On-line String Searches. SODA ’90: Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pp. 319–327. Society for Industrial and Applied Mathematics.Google Scholar
  209. Mangu, L., E. Brill and A. Stolcke. 2000. Finding Consensus in Speech Recognition: Word Error Minimization and Other Applications of Confusion Networks. Computer Speech and Language 14(4): pp. 373-400.CrossRefGoogle Scholar
  210. Marcu, D., W. Wang, A. Echihabi and K. Knight. 2006. SPMT: Statistical Machine Translation with Syntactified Target Language Phrases. Proceedings of EMNLP, pp. 44–52. Sydney, Australia.Google Scholar
  211. Marcus, M.P., B. Santorini and M.A. Marcinkiewicz. 1993. Building a Large Annotated Corpus of English: The Penn Treebank. Computational Linguistics 19(2):313–330.Google Scholar
  212. Marton, Y. and P. Resnik. 2008. Soft Syntactic Constraints for Hierarchical Phrased-Based Translation. Proceedings of ACL/HLT, pp. 1003–1011.Google Scholar
  213. Matusov, E., G. Leusch and H. Ney. 2009. Learning to Combine Machine Translation Systems. Learning machine translation (NIP Series), pp. 257-276. MIT Press.Google Scholar
  214. Matusov, E., G. Leusch, R.E. Banchs, N. Bertoldi, D. Dechelotte, M. Federico, M. Kolss, Y.S. Lee, J.B. Marino, M. Paulik, S. Roukos, H. Schwenk and H. Ney. 2008. System Combination for Machine Translation of Spoken and Written Language. IEEE Transactions on Audio, Speech and Language Processing 16(7): pp. 1222-1237.CrossRefGoogle Scholar
  215. Matusov, E., N. Ueffing and H. Ney. 2006. Computing Consensus Translation from Multiple Machine Translation Systems Using Enhanced Hypotheses Alignment. Proceedings of EACL, pp. 33-40.Google Scholar
  216. Matusov, E., R. Zens and H. Ney. 2004. Symmetric Word Alignments for Statistical Machine Translation. Proceedings of Coling, pp. 219-225.Google Scholar
  217. McDonald, R., K. Crammer and F. Pereira. 2005. Online Large-margin Training of Dependency Parsers. Proceedings of ACL.Google Scholar
  218. Melamed, I.D. 2004. Statistical Machine Translation by Parsing. Proceedings of ACL, pp. 653–660, Barcelona, Spain.Google Scholar
  219. Melamed, I.D., G. Satta and B. Wellington. 2004. Generalized Multitext Grammars. Proceedings of ACL. Barcelona, Spain.Google Scholar
  220. Mellebeek, B., K. Owczarzak, D. Groves, J. van Genabith and A. Way. 2006. A Syntactic Skeleton For Statistical Machine Translation. Proceedings of EAMT. Oslo, Norway.Google Scholar
  221. Mihalcea, R., T. Chklovski and A. Killgariff. 2004. The Senseval-3 English Lexical Sample Task. Proceedings of Senseval-3. pp. 25-28. Barcelona, Spain.Google Scholar
  222. Miller, G. 1990. Wordnet: An On-line Lexical Database. International Journal of Lexicography 3(4): pp. 235–244.CrossRefGoogle Scholar
  223. Minkov, E., K. Toutanova and H. Suzuki. 2007. Generating Complex Morphology For Machine Translation. Proceedings of ACL, pp. 128–135. Prague, Czech Republic.Google Scholar
  224. Minkov, E., R. Wang, A. Tomasic and W. Cohen. 2006. NER Systems that Suit Users’ Preferences: Adjusting the Recall-Precision Trade-Off for Entity Extraction. Proceedings of NAACL-HLT, Companion Volume: Short Papers, New York, NY..Google Scholar
  225. Moore, R.C. 2005. A Discriminative Framework for Bilingual Word Alignment. Proceedings of HLT/EMNLP, pp. 81-88. Morristown, NJ.Google Scholar
  226. Moore, R.C. and C. Quirk. 2007. Faster Beam-search Decoding for Phrasal Statistical Machine Translation. Proceedings of the Machine Translation Summit XI. Copenhagen, Denmark.Google Scholar
  227. Munteanu, D.S. and D. Marcu. 2005. Improving Machine Translation Performance By Exploiting Comparable Corpora. Computational Linguistics 31(4): pp. 477-504.CrossRefGoogle Scholar
  228. Murata, M., K. Uchimoto, Q. Ma and H. Isahara. 2001. Using a Support-vector Machine For Japanese-to-English Translation of Tense, Aspect and Modality. Proceedings of ACL. Google Scholar
  229. Ney, H., D. Mergel, A. Noll and A. Paeseler. 1992. Data Driven Search Organization for Continuous Speech Recognition in the SPICOS System. IEEE Transaction on Signal Processing 40(2): pp. 272–281.CrossRefGoogle Scholar
  230. Ng, H.T. and J.K. Low. 2004. Chinese Part-of-speech Tagging: One-at-a-time or All-at-once? Word-Based or Character-based? Proceedings of EMNLP. Google Scholar
  231. Nguyen, T. P. and A. Shimazu. 2006. Improving Phrase-based Statistical Machine Translation with Morpho-syntactic Analysis and Transformation. Proceedings of AMTA. Boston, MA.Google Scholar
  232. Niehues, J. and S. Vogel. 2008. Discriminative Word Alignment via Alignment Matrix Modeling. Proceedings of the Third Workshop on Statistical Machine Translation, pp. 18–25. Columbus, OH.Google Scholar
  233. Nießen, S. and H. Ney. 2004. Statistical Machine Translation with Scarce Resources using Morpho-syntactic Information. Computational Linguistics 30(2).Google Scholar
  234. Nießen, S. and H. Ney. 2001. Toward Hierarchical Models For Statistical Machine Translation Of Inflected Languages. Proceedings of ACL, pp. 47–54.Google Scholar
  235. Nikoulina, V. and M. Dymetman. 2008. Experiments in Discriminating Phrase-based Translations on the Basis of Syntactic Coupling Features. Proceedings of ACL/HLT, the Second Workshop on Syntax and Structure in Statistical Translation, pp. 55–60. Columbus, OH.Google Scholar
  236. Och, F. J., D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain, Z. Jin and D. Radev. 2004. A Smorgasbord of Features for Statistical Machine Translation. Proceedings of HLT-NAACL. Google Scholar
  237. Och, F.J. and H. Ney. 2004. The Alignment Template Approach to Statistical Machine Translation. Computational Linguistics 30(4): pp. 417–450.CrossRefGoogle Scholar
  238. Och, F.J. 2003. Minimum Error Rate Training in Statistical Machine Translation. Proceedings of ACL, pp. 160–167. Sapporo, Japan.Google Scholar
  239. Och, F. J. and H. Ney. 2003. A Systematic Comparison of Various Statistical Alignment Models. Computational Linguistics 29(1): pp. 19–51.CrossRefGoogle Scholar
  240. Och, F. J. and Ney, H. 2002. Discriminative Training and Maximum Entropy Models for Statistical Machine Translations. Proceedings of ACL, pp. 295–302. Philadelphia, PA.Google Scholar
  241. Och, F. J. and H. Ney. 2000. Improved Statistical Alignment Models. Proceedings of ACL.Google Scholar
  242. Och, F.J., C. Tillmann and H. Ney. 1999. Improved Alignment Models for Statistical Machine Translation. Proceedings of the Joint SIGDAT Conf. on Empirical Methods in Natural Language Processing and Very Large Corpora, pp. 20-28. College Park, MD.Google Scholar
  243. Odell, J. 1995. The Use of Context in Large Vocabulary Speech Recognition. Ph.D. Thesis, Cambridge University Engineering University.Google Scholar
  244. Oflazer, K. and I. Durgar El-Kahlout. 2007. Exploring Different Representational Units in English-to-Turkish Statistical Machine Translation. Proceedings of the Second Workshop on Statistical Machine Translation, pp. 25–32. Prague, Czech Republic.Google Scholar
  245. Olive, J. 2005. Global Autonomous Language Exploitation (GALE). DARPA/IPTO Proposer Information Pamphlet.Google Scholar
  246. Ostendorf, M., A. Kannan, S. Austin, O. Kimball, R. Schwartz and J.R. Rohlicek. 1991. Integration of Diverse Recognition Methodologies through Reevaluation of N-best Sentence Hypotheses. Proceedings of the Fourth DARPA Speech and Natural Language Workshop, pp. 83-87.Google Scholar
  247. Owczarzak, K., B. Mellebeek, D. Groves, J. van Genabith and A. Way. 2006. Wrapper Syntax For Example-based Machine Translation. Proceedings of AMT. Google Scholar
  248. Palmer, M., D. Gildea and P. Kingsbury. 2005. The Proposition Bank: an Annotated Corpus of Semantic Roles. Computational Linguistics 31(1): pp. 71-105CrossRefGoogle Scholar
  249. Papineni, K., S. Roukos, T. Ward and W.J. Zhu. 2002. Bleu: a Method For Automatic Evaluation Of Machine Translation. Proceedings of ACL, pp. 311-318, Philadelphia, PA.Google Scholar
  250. Papineni, K., S. Roukos and T. Ward. 2001. Bleu: a method for automatic evaluation of machine translation. IBM Research Report, RC22176. Google Scholar
  251. Papineni, K., S. Roukos and R.T. Ward. 1997. Feature-based Language Understanding. Proceedings of EUROSPEECH, pp. 1435–1438. Rhodes, Greece.Google Scholar
  252. Paul, M., E. Sumita and S. Yamamoto. 2002. Corpus-based Generation of Numeral Classifiers Using Phrase Alignment. Proceedings of Coling.Google Scholar
  253. Paul, Michael. 2006. Overview of the IWSLT06 Evaluation Campaign. Proceedings of IWSLT. Kyoto, Japan.Google Scholar
  254. Paulik, M., K. Rottmann, J. Niehues, S. Hildebrand and S. Vogel. 2007. The ISL Phrase-based MT System for the 2007 ACL Workshop on SMT. Proceedings of ACL Second Workshop on SMT.Google Scholar
  255. Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Publishers.Google Scholar
  256. Ponte, J.M. and W.B. Croft. 1998. A Language Modeling Approach to Information Retrieval. Research and Development in Information Retrieval, pp. 275–281.Google Scholar
  257. Popovic, M., D. Vilar, H. Ney, S. Jovicic and Z. Saric. 2005. Augmenting a Small Parallel Text with Morpho-syntactic Language. Proceedings of the ACL Workshop on Building and Using Parallel Texts, pp. 41–48. Ann Arbor, MI.Google Scholar
  258. Pradhan, S., K. Hacioglu, V. Krugler, W. Ward, J.H. Martin and D. Jurafsky. 2005. Support Vector Learning for Semantic Argument Classification. Machine Learning 60(1-3): pp. 11–39.CrossRefGoogle Scholar
  259. Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery. 2007. Numerical Recipes: the Art Of Scientific Computing. Cambridge University Press. 3rd Edition.Google Scholar
  260. Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. 2002. Numerical Recipes in C++. Cambridge University Press: Cambridge, UK.Google Scholar
  261. Pritchard, J., M. Stephens and P. Donnell. 2000. Inference of Population Structure Using Multilocus Genotype Data. Genetics 155: pp. 945–959.Google Scholar
  262. Quirk, C., A. Menezes and C. Cherry. 2005. Dependency Treelet Translation: Syntactically Informed Phrasal SMT. Proceedings of ACL, pp. 271–279. Ann Arbor, MI.Google Scholar
  263. Ramanathan, A., J. Hegde, R.M. Shah, P. Bhattacharyya and M. Sasikumar. 2008. Simple Syntactic And Morphological Processing Can Help English-Hindi Statistical Machine Translation. Proceedings of the International Joint Conference on Natural Language Processing.Google Scholar
  264. Resnik, P. and N. A. Smith. 2003. The Web as a Parallel Corpus. Computational Linguistics 29(3): pp. 349-380.CrossRefGoogle Scholar
  265. Riesa, J. and D. Yarowsky. 2006. Minimally Supervised Morphological Segmentation with Applications to Machine Translation. Proceedings of AMTA. Boston, MA.Google Scholar
  266. Roark, B., M. Saraclar and M. Collins. 2007. Discriminative N-gram Language Modeling. Computer Speech and Language 21(2): pp. 373-392.CrossRefGoogle Scholar
  267. Rosenfeld, R. 1994. Adaptive Statistical Language Modeling: A Maximum Entropy Approach. Ph.D. thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, April. TR CMU-CS-94-138.Google Scholar
  268. Rosti, A.V.I., B. Zhang, S. Matsoukas and R. Schwartz. 2009. Incremental Hypothesis Alignment with Flexible Matching for Building Confusion Networks: BBN System Description for WMT09 System Combination Task. Proceedings of the Fourth Workshop on Statistical Machine Translation, pp.61-65.Google Scholar
  269. Rosti, A.V.I, B. Zhang, S. Matsoukas and R. Schwartz. 2008. Incremental Hypothesis Alignment for Building Confusion Networks with Application to Machine Translation System Combination. Proceedings of the Third Workshop on Statistical Machine Translation, pp.183—186.Google Scholar
  270. Rosti, A.V.I., S. Matsoukas and R. Schwartz. 2007a. Improved Word-Level System Combination for Machine Translation. Proceedings of ACL, pp.312-319.Google Scholar
  271. Rosti, A.V.I., B. Xiang, S. Matsoukas, R. Schwartz, N.F. Ayan and B.J. Dorr. 2007b. Combining Outputs from Multiple Machine Translation Systems. Proceedings of HLT/NAACL, pp.228-235.Google Scholar
  272. Sadat F. and N. Habash. 2006. Combination of Arabic Preprocessing Schemes for Statistical Machine Translation. Proceedings of Coling/ACL, pp. 1–8, Sydney, Australia.Google Scholar
  273. Sadat, F., H. Johnson, A. Agbago, G. Foster, R. Kuhn, J. Martin and A. Tikuisis. 2005. Portage: A Phrase-based Machine Translation System. Proceedings of the ACL 2005 Workshop on Building and Using Parallel Texts. Ann Arbor, MI..Google Scholar
  274. Saiz, J.C. 2008. Novel Statistical Approaches to Text Classification, Machine Translation and Computer-Assisted Translation. Ph.D. thesis, Universidad Poltecnica de valencia.Google Scholar
  275. Saon, G., D. Povey and G. Zweig. 2005. Anatomy of an Extremely Fast LVCSR Decoder. Proceedings of Interspeech. Google Scholar
  276. Schafer, C. and D. Yarowsky. 2003a. Statistical Machine Translation Using Coercive Two-Level Syntactic Transduction. Proceedings of EMNLP, pp. 9–16.Google Scholar
  277. Schafer, C. and D. Yarowsky. 2003b. A Two-level Syntax-Based Approach to Arabic-English Statistical Machine Translation. Proceedings of the MT Summit IX Workshop on Machine Translation for Semitic Languages: Issues and Approaches. Google Scholar
  278. Schiehlen, M. 1998. Learning Tense Translation From Bilingual Corpora. Proceedings of ACL.Google Scholar
  279. Schohn, G. and D. Cohn. 2000. Less Is More: Active Learning with Support Vector Machines. Proceedings of 17th International Conference on Machine Learning, pp. 839-846.Google Scholar
  280. Seung, H.S., M. Opper and H. Sompolinsky. 1992. Query by Committee. Computational Learning Theory, pp. 287-294.Google Scholar
  281. Shapira, D. and J.A. Storer. 2002. Edit Distance with Move Operations. Proceedings of the 13th Annual Symposium on Combinatorial Pattern Matching, pp. 85-98.Google Scholar
  282. Shen, L., J. Xu and R. Weischedel. 2008. A New String-to-Dependency Machine Translation Algorithm With a Target Dependency Language Model. Proceedings of ACL. Google Scholar
  283. Shen, L., A. Sarkar and F.J. Och. 2004. Discriminative Reranking for Machine Translation. Proceedings of HLT/NAACL.Google Scholar
  284. Shen, W., R. Zens, N. Bertoldi and M. Federico. 2006. The JHU Workshop 2006 IWSLT System. Proceedings of IWSLT. Kyoto, Japan.Google Scholar
  285. Shen, Y., C. Lo, M. Carpuat and D. Wu. 2007. HKUST Statistical Machine Translation Experiments for IWSLT 2007. Proceedings of IWSLT, pp. 84-88. Trento, Italy.Google Scholar
  286. Shi, Y. and M. Wang. 2007. A Dual-layer CRFS Based Joint Decoding Method For Cascaded Segmentation and Labeling Tasks. Proceedings of the International Joint Conference on Artificial Intelligence. Google Scholar
  287. Shieber, S., Y. Schabes and F. C. N. Pereira. 1995. Principles and Implementation of Deductive Parsing. Journal of Logic Programming 24: pp. 3–36.MathSciNetMATHCrossRefGoogle Scholar
  288. Shieber, S. and Y. Schabes. 1990. Synchronous Tree Adjoining Grammars. Proceedings of COLING The 13th Int. Conferemce on Computational Linguistics.Google Scholar
  289. Sim, K.C., W.J. Byrne, M.J.F. Gales, H. Sahbi and P.C. Woodland. 2007. Consensus Network Decoding for Statistical Machine Translation System Combination. Proceedings of IEEE ICASSP, pp.105-108.Google Scholar
  290. Simard, M., C. Goutte and P. Isabelle. Statistical Phrase-based Post-Editing. 2007a. Proceedings of HLT-NAACL, pp. 508-515.Google Scholar
  291. Simard, M., N. Ueffing, P. Isabelle and R. Kuhn. 2007b. Rule-based Translation with Statistical Phrase-based Postediting. Proceedings of the 2nd ACL Workshop on Statistical Machine Translation, pp. 203-206.Google Scholar
  292. Sjolander, K., K. Karplus, M. Brown, R. Hughey, A. Krogh, I.S. Mian and D. Haussler. 1996. Dirichlet Mixtures: A Method for Improving Detection of Weak but Significant Protein Sequence Homology. Computer Applications in the Bio-sciences 12.Google Scholar
  293. Smith, D.A. and J. Eisner. 2006. Minimum Risk Annealing for Training Log-linear Models. Proceedings of ACL. Google Scholar
  294. Smith, N.A. and J. Eisner. 2004. Annealing Techniques for Unsupervised Statistical Language Learning. Proceedings of ACL. Google Scholar
  295. Snover, M., N. Madnani, B. Dorr and R. Schwartz. 2009. Fluency, Adequacy, or HTER? Exploring Different Human Judgments with a Tunable MT Metric. Proceedings of the Fourth Workshop on Statistical Machine Translation, pp.259-268.Google Scholar
  296. Snover, M., B. Dorr, R. Schwartz, L. Micciula and J. Makhoul. 2006. A Study of Translation Edit Rate with Targeted Human Annotation. Proceedings of AMTA, pp. 223—231.Google Scholar
  297. Snover, M., B. Dorr, R. Schwartz, J. Makhoul, L. Micciula and R. Weischedel. 2005. A Study of Translation Error Rate with Targeted Human Annotation. Technical Report LAMPTR- 126, CS-TR-4755,UMIACS-TR-2005-58, University of Maryland, College Park and BBN Technologies.Google Scholar
  298. Steinbiss, V., B.H. Tran and H. Ney. 1994. Improvements in Beam Search. Proceedings of ICSLP, pp. 2143-2146.Google Scholar
  299. Stolcke, A. 2002. SRILM - an Extensible Language Modeling Toolkit. Proceedings of ICSLP, pp. 901–904. Denver, CO.Google Scholar
  300. Stolcke, A. 1998. Entropy-based Pruning of Backoff Language Models. Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop. Google Scholar
  301. Sun, H. and D. Jurafsky. Shallow Semantic Parsing of Chinese. Proceedings of HLT/NAACL, pp. 249-256, Boston, MA.Google Scholar
  302. Sutton, C., M. Sindelar and A. McCallum. 2006. Reducing Weight Undertraining in Structured Discriminative Learning. Proceedings of HLT/NAACL.Google Scholar
  303. Suzuki, H. and K. Toutanova. 2006. Learning to Predict Case Markers In Japanese. Proceedings of Coling/ACL. Sydney, Australia.Google Scholar
  304. Talbot, D. and M. Osborne. 2006. Modeling Lexical Redundancy For Machine Translation. Proceedings of Coling/ACL, pp. 969–976, Sydney, Australia.Google Scholar
  305. Tam, Y.C., I. Lane and T. Schultz. 2007. Bilingual-LSA Based LM adaptation for Spoken Language Translation. Proceedings of ACL. Prague, Czech Republic.Google Scholar
  306. Tanaka, T. and T. Baldwin. 2003. Translation Selection for Japanese-English Noun-noun Compounds. Proceedings of the MT Summit IX. Google Scholar
  307. Tantug, A. C., E. Adali and K. Oflazer. 2007a. Machine Translation between Turkic Languages. Proceedings of ACL companion volume: pp. 189–192. Prague, Czech Republic.Google Scholar
  308. Tantug, A. C., E. Adali and K. Oflazer. 2007b. A MT System from Turkmen to Turkish Employing Finite State and Statistical Methods. Proceedings of the MT Summit XI.Google Scholar
  309. Taskar, B., S. Lacoste-Julien and D. Klein. 2005. A Discriminative Matching Approach to Word Alignment. Proceedings of HLT/EMNLP, pp. 73–80. Morristown, NJ, USA.Google Scholar
  310. Tillmann, C. 2008. A Rule-driven Dynamic Programming Decoder for Statistical MT. Proceedings of Second Workshop on Syntax and Structure in Statistical Translation, at ACL/HLT, pp. 37–45. Columbus, OH.Google Scholar
  311. Tillmann, C. 2006. Efficient Dynamic Programming Search Algorithms for Phrase-based SMT. Proceedings of the Workshop on Computationally Hard Problems and Joint Inference in Speech and Language Processing, pp. 9-16, New York, NY.Google Scholar
  312. Tillmann, C. 2004. A Unigram Orientation Model for Statistical Machine Translation. Proceedings of HLT/NAACL. Google Scholar
  313. Tillmann, C. and H. Ney. 2003. Word Reordering and a DP Beam Search Algorithm for Statistical Machine Translation. Computational Linguistics 29(1):97–133.CrossRefGoogle Scholar
  314. Tillmann, C. 2003. A Projection Extension Algorithm for Statistical Machine Translation. Proceedings of EMNLP, pp. 1–8. Sapporo, Japan.Google Scholar
  315. Tillmann, C. 2001. Word Re-Ordering and Dynamic Programming based Search Algorithm for Statistical Machine Translation. Ph.D. thesis. University of Technology, Aachen, Germany.Google Scholar
  316. Toutanova, K., H. Suzuki and A. Ruopp. 2008. Applying Morphology Generation Models to Machine Translation. Proceedings of ACL/HLT, pp. 514–522. Columbus, OH.Google Scholar
  317. Toutanova, K. and H. Suzuki. 2007. Generating Case Markers in Machine Translation. Proceedings of HLT/NAACL, pp. 49–56, Rochester, NY.Google Scholar
  318. Tromble, R.W. and S. Kumar and F.J. Och and W. Macherey. 2008. Lattice Minimum Bayes-Risk Decoding for Statistical Machine Translation. Proceedings of EMNLP.Google Scholar
  319. Tseng, H., P. Chang, G. Andrew, D. Jurafsky and C. Manning. 2005. A Conditional Random Field Word Segmenter. Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing.Google Scholar
  320. Tur, G., D. Hakkani-Tur and R.E. Schapire. 2005. Combining Active and Semi-supervised Learning for Spoken Language Understanding. Journal of Speech Communication 45(2): pp. 171.186.CrossRefGoogle Scholar
  321. Ueffing, N., J.Stephan, E. Matusov, L. Dugast, G. Foster, R. Kuhn, J. Senellart and J. Yang. 2008. Tighter Integration of Rule-based and Statistical MT in Serial System Combination. Proceedings of Coling. Manchester, U.K.Google Scholar
  322. Ueffing, N. and H. Ney. 2007. Word-level Confidence Estimation for Machine Translation. Computational Linguistics 33(1): pp. 9–40.CrossRefGoogle Scholar
  323. Ueffing, N., M. Simard, S. Larkin and J. H. Johnson. 2007. NRC’s PORTAGE System for WMT 2007. Proceedings of 2 nd ACL Workshop on Statistical Machine Translation, pp. 185-188.Google Scholar
  324. Ueffing, N. and H. Ney. 2003. Using POS Information for SMT into Morphologically Rich Languages. Proceedings of EACL. Google Scholar
  325. Vanden Berghen, F. and H. Bersini. 2005. CONDOR, A New Parallel, Constrained Extension of Powell's UOBYQA Algorithm: Experimental Results and Comparison with the DFO Algorithm. Journal of Computational and Applied Mathematics 181: pp. 157-175.MathSciNetMATHCrossRefGoogle Scholar
  326. Vapnik, V. 2006. Estimation of Dependencies Based on Empirical Data (Second Edition). Springer, 2006.Google Scholar
  327. Vilar, D., D. Stein and H. Ney. 2008. Analysing Soft Syntax Features and Heuristics for Hierarchical Phrase Based Machine Translation. Proceedings of IWSLT, pp. 190–197. Waikiki, HI.Google Scholar
  328. Vilar, D., J.T. Peter and H. Ney. 2007. Can We Translate Letters? Proceedings of the Second Workshop on Statistical Machine Translation, pp. 33–39. Prague, Czech Republic.Google Scholar
  329. Vilar, D., M. Popovic and H. Ney. 2006. AER: Do We Need to “Improve” Our Alignments? Proceedings of IWSLT, pp. 205–212. Kyoto, Japan.Google Scholar
  330. Virpioja, S., J.J. Vyrynen, M. Creutz and M. Sadeniemi. 2007. Morphology-aware Statistical Machine Translation Based on Morphs Induced in an Unsupervised Manner. Proceedings of the MT Summit XI.Google Scholar
  331. Vogel, S., H. Ney and C. Tillmann. 1996. HMM-based Word Alignment in Statistical Machine Translation. Proceedings of Coling, pp. 836–841. Copenhagen, Denmark.Google Scholar
  332. Wang, C., M. Collins and P. Koehn. 2007. Chinese Syntactic Reordering for Statistical Machine Translation. Proceedings of EMNLP-CoNLL, pp. 737–745.Google Scholar
  333. Wang, W., K. Knight and D. Marcu. 2007. Binarizing Syntax Trees to Improve Syntax-based Machine Translation Accuracy. Proceedings of EMNLP-CoNLL. Google Scholar
  334. Watanabe, T., J. Suzuki, H. Tsukada and H. Isozaki. 2007. Online Large-margin Training for Statistical Machine Translation. Proceedings of EMNLP-CoNLL .Google Scholar
  335. Woodland, P.C. and D. Povey. 2002. Large Scale Discriminative Training of Hidden Markov Models for Speech Recognition. Computer Speech and Language 16(1): pp. 25-47.CrossRefGoogle Scholar
  336. Wu, D. and D. Chiang, editors. 2009. Proceedingsof SSST-3, Third Workshop on Syntax and Structure in Statistical Translation, at NAACL-HLT2009.Google Scholar
  337. Wu, D. and D. Chiang, editors. 2007. Proceedingsof SSST, NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation.Google Scholar
  338. Wu, D. and H. Wong. 1998. Machine Translation with a Stochastic Grammatical Channel. Proceedings of ACL/Coling, pp. 1408–1415. Montreal, Canada.Google Scholar
  339. Wu, D. 1997. Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora. Computational Linguistics 23(3): pp. 377-403.Google Scholar
  340. Xia, F. and M. McCord. 2004. Improving a Statistical MT System with Automatically Learned Rewrite Patterns. Proceedings of Coling, pp. 508–514. Geneva, Switzerland.Google Scholar
  341. Xing, E.P., M.I. Jordan and S. Russell. 2003. A Generalized Mean Field Algorithm for Variational Inference in Exponential Families. Meek and Kjaelff, editors, Uncertainty in Artificial Intelligence (UAI2003), pp. 583–591. Morgan Kaufmann Publishers.Google Scholar
  342. Xu, J., J. Gao, K. Toutanova and H. Ney. 2008. Bayesian Semi-supervised Chinese Word Segmentation for Statistical Machine Translation. Proceedings of Coling. Manchester, UK.Google Scholar
  343. Xu, J., E. Matusov, R. Zens and H. Ney. 2005a. Integrated Chinese Word Segmentation in Statistical Machine translation. Proceedings of IWSLT.Google Scholar
  344. Xu, J., R. Zens and H. Ney. 2005b. Sentence Segmentation using IBM Word Alignment Model 1. Proceedings of EAMT, pp. 280–287. Budapest, Hungary.Google Scholar
  345. Xu, J., R. Zens and H. Ney. 2004. Do We Need Chinese Word Segmentation for Statistical Machine Translation? Proceedings of the SIGHAN Workshop on Chinese Language Learning, pp. 122–128. Barcelona, Spain.Google Scholar
  346. Xue, N. and M. Palmer. 2005. Automatic Semantic Role Labeling for Chinese Verbs. Proceedings of International Joint Conference on Artificial Intelligence, Edinburgh, 2005.Google Scholar
  347. Xue, N. Semantic Role Labeling of Nominalized Predicates in Chinese. 2006. Proceedings of HLT-NAACL, pp.431-438. New York, NY.Google Scholar
  348. Yamada, K. and K. Knight. 2002. A Decoder for Syntax-based Statistical MT. Proceedings of ACL, pp. 303–310. Philadelphia, PA.Google Scholar
  349. Yamada, K. and K. Knight. 2001. A Syntax-based Statistical Translation Model. Proceedings of ACL.Google Scholar
  350. Yamamoto, M. and K.W. Church. 2001. Using Suffix Arrays to Compute Term Frequency and Document Frequency for All Substrings in a Corpus. Computational Linguistics 27(1): pp. 1–30.CrossRefGoogle Scholar
  351. Yang, J., J. Senellart and R. Zajac. 2003. SYSTRAN’s Chinese Word Segmentation. Proceedings of Second SIGHAN Workshop on Chinese Language Processing.Google Scholar
  352. Yang, M. and K. Kirchhoff. 2006. Phrase-based Backoff Models for Machine Translation of Highly Inflected Languages. Proceedings of ACL. Trento, Italy.Google Scholar
  353. Ye, Y., K.M. Schneider and S. Abney. 2007. Aspect Marker Generation in English-to-Chinese Machine Translation. Proceedings of the MT Summit XI. Google Scholar
  354. Ye, Y., V.L. Fossum and S. Abney. 2006. Latent Features in Automatic Tense Translation Between Chinese and English. Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, pp. 48–55, Sydney, Australia.Google Scholar
  355. Yedidia, J.S., W.T. Freeman and Y. Weiss. 2003. Understanding Belief Propagation and its Generalizations. Exploring Artificial Intelligence in the New Millennium, Chap. 8, pp. 239-236, 239–269.Google Scholar
  356. Zens, R. 2008. Phrase-based Statistical Machine Translation: Models, Search, Training. Ph.D. thesis, RWTH Aachen University: Aachen, Germany.Google Scholar
  357. Zens, R. and H. Ney. 2008. Improvements in Dynamic Programming Beam Search for Phrase-based Statistical Machine Translation. Proceedings of IWSLT pp. 198-205. Honolulu, HI.Google Scholar
  358. Zens, R., S. Hasan and H. Ney. 2007. A Systematic Comparison of Training Criteria for Statistical Machine Translation. Proceedings of EMNLP/CoNLL. Google Scholar
  359. Zens, R. and H. Ney. 2006. N-gram Posterior Probabilities for Statistical Machine Translation. Proceedings on the Workshop on Statistical Machine Translation, pp. 72–77. New York, NY.Google Scholar
  360. Zens, R. and H. Ney. 2004. Improvements in Phrase-based Statistical Machine Translation. Proceedings of HLT-NAACL, pp. 257-264. Boston, MA.Google Scholar
  361. Zens, R., F.J. Och and H. Ney. 2002. Phrase-based Statistical Machine Translation. M. Jarke, J. Koehler and G. Lakemeyer, eds., Proceedings of the 25 th German Conf. on Artificial Intelligence (KI2002), volume 2479 of Lecture Notes in Artificial Intelligence (LNAI), pp. 18–32. Springer Verlag: Aachen, Germany.Google Scholar
  362. Zhang, D., M. Li, N. Duan, C.H. Li and M. Zhou. 2008a. Measure Word Generation for English-Chinese SMT Systems. Proceedings of HLT/ACL, pp. 89–96. Columbus, OH..Google Scholar
  363. Zhang, H., H. Yu, D. Xiong and Q. Liu. 2003. HHMM-based Chinese Lexical Analyzer ICTCLAS. Proceedings of the Second SIGHAN Workshop on Chinese Language Learning, pp. 184–187.Google Scholar
  364. Zhang, H., L. Huang, D. Gildea and K. Knight. 2006. Synchronous Binarization for Machine Translation. Proceedings of HLT/NAACL, pp. 256–263. New York, NY.Google Scholar
  365. Zhang, J., C. Zong and S. Li. 2008b. Sentence Type Based Reordering Model for Statistical Machine Translation. Proceedings of Coling, pp. 1089–1096. Manchester, UK.Google Scholar
  366. Zhang, R., K. Yasuda and E. Sumita. 2008. Chinese Word Segmentation and Statistical Machine Translation. ACM Transactions on Speech and Language Processing.Google Scholar
  367. Zhang, Y., R. Zens and H. Ney. 2007a. Chunk-level Reordering of Source Language Sentences with Automatically Learned Rules for Statistical Machine Translation. Proceedings of NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation, pp. 1–8, Rochester, NY.Google Scholar
  368. Zhang, Y., R. Zens and H. Ney. 2007b. Improved Chunk-level Reordering for Statistical Machine Translation. Proceedings of IWSLT.Google Scholar
  369. Zhang, Y., A.S. Hildebrand and S. Vogel. 2006. Distributed Language Modeling for N-best List Re-ranking. Proceedings of EMNLP, pp. 216–223. Sydney, Australia.Google Scholar
  370. Zhang, Y. 2006. Suffix Array and Its Applications in Empirical Natural Language Processing. Technical Report CMU-LTI-06-010, Language Technologies Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
  371. Zhang, Y. and S. Vogel. 2005. An Efficient Phrase-to-phrase Alignment Model for Arbitrarily Long Phrase and Large Corpora. Proceedings of EAMT. Budapest, Hungary.Google Scholar
  372. Zhao, B. 2007. Statistical Alignment Models for Translational Equivalences. Ph.D. thesis, Language Technologies Institute, School of Computer Science, Carnegie Mellon University.Google Scholar
  373. Zhao, B. and E.P. Xing. 2007. HM-BiTAM: Bilingual Topic Exploration, Word Alignment and Translation. Proceedings of the Neural Information Processing Systems Conference. Vancouver, Canada.Google Scholar
  374. Zhao, B. and E.P. Xing. 2006. BiTAM: Bilingual Topic Admixture Models for Word Alignment. Proceedings of ACL.Google Scholar
  375. Zhao, B., N. Ge and K. Papineni. 2005. Innerouter bracket models for word alignment using hidden blocks. Proceedings of HLT and EMNLP, pp 177–184.Google Scholar
  376. Zhao, B., M. Eck and S.Vogel. 2004. Language Model Adaptation for Statistical Machine Translation with Structured Query Models. Proceedings of Coling.Google Scholar
  377. Zhao, T., L. Yajuan, Y. Muyun and Y. Hao. 2001. Increasing Accuracy of Chinese Segmentation with Strategy of Multi-step Processing. Journal of Chinese Information Processing (Chinese Version), 1: pp. 13-18.Google Scholar
  378. Zheng, J., W. Wang and N.F. Ayan. 2008. Development of SRI's Translation Systems for Broadcast News and Broadcast Conversations. Proceedings of Interspeech.Google Scholar
  379. Zollmann, A. and A. Venugopal. 2006. Syntax Augmented Machine Translation via Chart Parsing. Proceedings of HLT-NAACL. New York, NY.Google Scholar
  380. Zwarts, S. and M. Dras. 2007. Syntax-based Word Reordering in Phrase Based Statistical Machine Translation: Why Does it Work? Proceedings of the MT Summit XI. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nizar Habash
    • 1
  • Joseph Olive
    • 2
  • Caitlin Christianson
    • 2
  • John McCary
    • 2
  1. 1.Columbia UniversityNew YorkUSA
  2. 2.Defense Advanced Research Projects AgencyArlingtonUSA

Personalised recommendations