Skip to main content

Volcano Seismic Signals, Source Quantification of

  • Reference work entry
Extreme Environmental Events
  • 1403 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Phenomenological Representation of Seismic Sources

Waveform Inversion

Spectral Analysis

Fluid-Solid Interactions

Future Directions

Acknowledgment

Appendix A: Green's Functions

Appendix B: Moment Tensor for a Spherical Source

Appendix C: Moment Tensor for a Cylindrical Source

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Moment tensor:

A point seismic source representation defined by the first-order moment of the equivalent body force or the stress glut. Slip on a fault as well as volumetric changes such as an isotropic expansion and tensile crack can be represented by the moment tensor.

Waveform inversion:

An approach to estimate source mechanisms and locations of seismic events by finding the best fits between observed and synthesized seismograms.

Autoregressive equation:

A difference form of the equation of motion of a linear dynamic system, which is a basic equation to determine the complex frequencies (frequencies and Q factors) of decaying harmonic oscillations in observed signals.

Crack wave:

A dispersive wave generated by fluid-solid interactions in a crack. The phase velocity of the crack wave is smaller than the acoustic velocity of the fluid in the crack.

Bibliography

Primary Literature

  1. Aki K, Richards PG (2002) Quantitative seismology, 2nd ed. University Science Books, Sausalito

    Google Scholar 

  2. Aki K, Fehler M, Das S (1977) Source mechanism of volcanic tremor: Fluid‐driven crack models and their application to the 1963 Kilauea eruption. J Volcanol Geotherm Res 2:259–287

    Google Scholar 

  3. Almendros J, Chouet BA, Dawson PB (2001) Spatial extent of a hydrothermal system at Kilauea Volcano, Hawaii, determined from array analyses of shallow long‐period seismicity 1. Method. J Geophys Res 106:13565–13580

    Google Scholar 

  4. Almendros J, Chouet BA, Dawson PB (2001) Spatial extent of a hydrothermal system at Kilauea Volcano, Hawaii, determined from array analyses of shallow long‐period seismicity 2. Results. J Geophys Res 106:13581–13597

    Google Scholar 

  5. Almendros J, Chouet BA, Dawson PB, Huber C (2002) Mapping the sources of the seismic wave field at Kilauea Volcano, Hawaii, using data recorded on multiple seismic antennas. Bull Seism Soc Am 92:2333–2351

    Google Scholar 

  6. Almendros J, Chouet BA, Dawson PB, Bond T (2002) Identifying elements of the plumbing system beneath Kilauea Volcano, Hawaii, from the source locations of very-long‐period signals Geophys J Int 148:303–312

    Google Scholar 

  7. Aoyama H, Takeo M (2001) Wave properties and focal mechanisms of N-type earthquakes at Asama volcano. J Volcanol Geotherm Res 105:163–182

    CAS  Google Scholar 

  8. Arciniega‐Ceballos A, Chouet BA, Dawson PB (1999) Very long‐period signals associated with vulcanian explosions at Popocatepetl Volcano, Mexico. Geophys Res Lett 26:3013–3016

    Google Scholar 

  9. Arciniega‐Ceballos A, Chouet BA, Dawson PB (2003) Long‐period events and tremor at Popocatepetl volcano (1994–2000) and their broadband characteristics. Bull Volcanol 65:124–135

    Google Scholar 

  10. Aster R, Mah S, Kyle P, McIntosh W, Dunbar N, Johnson J, Ruiz M, McNamara S (2003) Very long period oscillations of Mount Erebus Volcano. J Geophys Res 108:2522. doi:10.129/2002JB002101

    Google Scholar 

  11. Auger E, D'Auria L, Martini M, Chouet BA, Dawson PB (2006) Real-time monitoring and massive inversion of source parameters of Very-Long‐Period (VLP) seismic signals: An application to Stromboli Volcano, Italy. Geophys Res Lett 33:L04301. doi:10.1029/2005GL024703

    Google Scholar 

  12. Backus G, Mulcahy M (1976) Moment tensors and other phenomenological descriptions of seismic sources–I. Continuous displacements. Geophys J R Astr Soc 46:341–361

    Google Scholar 

  13. Battaglia J, Aki K (2003) Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes. J Geophys Res 108:2364. doi:10.1029/2002JB002193

    Google Scholar 

  14. Biot MA (1952) Propagation of elastic waves in a cylindrical bore containing a fluid. J Appl Phys 23:997–1005

    Google Scholar 

  15. Biot MA (1952) The interaction of Rayleigh and Stoneley waves in the ocean bottom. Bull Seism Soc Am 42:82–92

    Google Scholar 

  16. Bouchon M (1979) Discrete wave number representation of elastic wave fields in three-space dimensions. J Geophys Res 84:3609–3614

    Google Scholar 

  17. Bouchon M (1981) A simple method to calculate Green's functions for elastic layered media. Bull Seism Soc Am 71:959–971

    Google Scholar 

  18. Bouchon M, Schultz CA, Toksöz MN (1996) Effect of 3D topography on seismic motion. J Geophys Res 101:5835–5846

    Google Scholar 

  19. Brandsdottir B, Einarsson P (1979) Seismic activity associated with the September 1977 deflation of the Krafla central volcano in northeastern Iceland. J Volcanol Geotherm Res 6:197–212

    Google Scholar 

  20. Chouet BA (1982) Free surface displacements in the near field of a tensile crack expanding in three dimensions. J Geophys Res 87:3868–3872

    Google Scholar 

  21. Chouet BA (1985) Excitation of a buried magmatic pipe: A seismic source model for volcanic tremor. J Geophys Res 90:1881–1893

    Google Scholar 

  22. Chouet BA (1986) Dynamics of a fluid‐driven crack in three dimensions by the finite difference method. J Geophys Res 91:13967–13992

    Google Scholar 

  23. Chouet BA (1988) Resonance of a fluid‐driven crack: Radiation properties and implications for the source of long‐period events and harmonic tremor. J Geophys Res 93:4375–4400

    Google Scholar 

  24. Chouet BA (1992) A seismic model for the source of long‐period events and harmonic tremor. In: Gasparini P, Scarpa R, Aki K (eds) Volcanic Seismology. Springer, Berlin, pp 133–156

    Google Scholar 

  25. Chouet BA (1996) New methods and future trends in seismological volcano monitoring. In: Scarpa R, Tilling RI (eds) Monitoring and Mitigation of Volcano Hazards. Springer, New York, pp 23–97

    Google Scholar 

  26. Chouet BA (1996) Long‐period volcano seismicity: its source and use in eruption forecasting. Nature 380:309–316

    CAS  Google Scholar 

  27. Chouet BA (2003) Volcano Seismology. Pure Appl Geophys 160:739–788

    Google Scholar 

  28. Chouet BA, Julian B (1985) Dynamics of an expanding fluid‐filled crack. J Geophys Res 90:11187–11198

    Google Scholar 

  29. Chouet BA, Page RA, Stephens CD, Lahr JC, Power JA (1994) Precursory swarms of long‐period events at Redoubt Volcano (1989–1990), Alaska: Their origin and use as a forecasting tool. J Volcanol Geotherm Res 62:95–135

    Google Scholar 

  30. Chouet BA, Saccorotti G, Martini M, Dawson PB, De Luca G, Milana G, Scarpa R (1997) Source and path effects in the wavefields of tremor and explosions at Stromboli volcano, Italy. J Geophys Res 102:15129–15150

    Google Scholar 

  31. Chouet BA, Saccorotti G, Dawson PB, Martini M, Scarpa R, De Luca G, Milana G, Cattaneo M (1999) Broadband measurements of the sources of explosions at Stromboli Volcano, Italy. Geophys Res Lett 26:1937–1940

    Google Scholar 

  32. Chouet BA, Dawson PB, Ohminato T, Martini M, Saccorotti G, Guidicepierto F, De Luca G, Milana G, Scarpa R (2003) Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment‐tensor inversions of very-long‐period data. J Geophys Res 108:2331. doi:10.1029/2003JB002535

    Google Scholar 

  33. Chouet BA, Dawson PB, Arciniega‐Ceballos A (2005) Source mechanism of Vulcanian degassing at Popocatepetl Volcano, Mexico, determined from waveform inversions of very long period signals. J Geophys Res 110:B07301. doi:10.1029/2004JB003524

  34. Chouet BA, Dawson PB, Nakano M (2006) Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid. J Geophys Res 111:B07310. doi:10.1029/2005JB004174

    Google Scholar 

  35. Crosson RS, Bame DA (1985) A spherical source model for low frequency volcanic earthquakes. J Geophys Res 90:10237–10247

    Google Scholar 

  36. Dawson PB, Dietel C, Chouet BA, Honma K, Ohminato T, Okubo P (1998) A digitally telemetered broadband seismic network at Kilauea Volcano, Hawaii. US Geol Surv Open File Report 98–108:1–121

    Google Scholar 

  37. Dawson PB, Whilldin D, Chouet BA (2004) Application of near real-time semblance to locate the shallow magmatic conduit at Kilauea Volcano, Hawaii. Geophys Res Lett 31:L21606. doi:10.1029/2004GL021163

    Google Scholar 

  38. De Angelis S, McNutt SR (2005) Degassing and hydrothermal activity at Mt. Spurr, Alaska during the summer of 2004 inferred from the complex frequencies of long‐period events. Geophys Res Lett 32:L12312. doi:10.1029/2005GL022618

    Google Scholar 

  39. Ferrazzini V, Aki K (1987) Slow waves trapped in a fluid‐filled infinite crack: Implication for volcanic tremor. J Geophys Res 92:9215–9223

    Google Scholar 

  40. Fujita E, Ida Y (2003) Geometrical effects and low‐attenuation resonance of volcanic fluid inclusions for the source mechanism of long‐period earthquakes. J Geophys Res 108:2118. doi:10.1029/2002JB001806

    Google Scholar 

  41. Fujita E, Ida Y, Oikawa J (1995) Eigen oscillation of a fluid sphere and source mechanism of harmonic volcanic tremor. J Volcanol Geotherm Res 69:365–378

    CAS  Google Scholar 

  42. Fujita E, Ukawa M, Yamamoto E (2004) Subsurface cyclic magma sill expansions in the 2000 Miyakejima volcano eruption: Possibility of two-phase flow oscillation. J Geophys Res 109:B04205. doi:10.1029/2003JB002556

    Google Scholar 

  43. Fukuyama E, Kubo A, Kawai H, Nonomura K (2001) Seismic remote monitoring of stress field. Earth Planets Space 53:1021–1026

    Google Scholar 

  44. Gil Cruz F, Chouet BA (1997) Long‐period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991. J Volcanol Geotherm Res 77:121–158

    CAS  Google Scholar 

  45. Goldstein P, Chouet BA Array measurements and modeling of sources of shallow volcanic tremor at Kilauea volcano, Hawaii. J Geophys Res 99:2637–2652

    Google Scholar 

  46. Hayashi Y, Morita Y (2003) An image of a magma intrusion process inferred from precise hypocenter migrations of the earthquake swarm eat of the Izu Peninsula. Geophys J Int 153:159–174

    Google Scholar 

  47. Hidayat D, Voight B, Langston C, Ratdomopurbo A, Ebeling C (2000) Broadband seismic experiment at Merapi volcano, Java, Indonesia: very-long‐period pulses embedded in multiphase earthquakes. J Volcanol Geotherm Res 100:215–231

    CAS  Google Scholar 

  48. Hidayat D, Chouet BA, Voght B, Dawson P, Ratdomopurbo A (2002) Source mechanism of very-long‐period signals accompanying dome growth activity at Merapi volcano, Indonesia. Geophys Res Lett 23:2118. doi:10.1029/2002GL015013

    Google Scholar 

  49. Hill DP, Dawson PB, Johnston MJS, Pitt AM (2002) Very-long‐period volcanic earthquakes beneath Mammoth Mountain, California. Geophys Res Lett 29:1370 doi:10.1029/2002GL014833

    Google Scholar 

  50. Hori S, Fukao Y, Kumazawa M, Furumoto M, Yamamoto A (1989) A new method of spectral analysis and its application to the earth's free oscillations: the “Sompi” method. J Geophys Res 94:7535–7553

    Google Scholar 

  51. Iguchi M (1994) A vertical expansion source model for the mechanisms of earthquakes originated in the magma conduit of an andesitic volcano: Sakurajima, Japan. Bull Volcanol Soc Jpn 39:49–67

    Google Scholar 

  52. Jousset P, Neuberg JW, Sturton S (2003) Modelling the time‐dependent frequency content of low‐frequency volcanic earthquakes. J Volcanol Geotherm Res 128:201–223

    CAS  Google Scholar 

  53. Julian BR (1994) Volcanic tremor: Nonlinear excitation by fluid flow. J Geophys Res 99:11859–11877

    Google Scholar 

  54. Julian BR, Miller AD, Foulger GR (1998) Non‐double‐couple earthquakes 1. Theory. Rev Geophys 36:525–549

    Google Scholar 

  55. Kanamori H, Given J (1982) Analysis of long‐period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens – A terrestrial monopole. J Geophys Res 87:5422–5432

    Google Scholar 

  56. Kanamori H, Given J, Lay T (1984) Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980. J Geophys Res 89:1856–1866

    Google Scholar 

  57. Kaneshima S et al (1996) Mechanism of phreatic eruptions at Aso volcano inferred from near-field broadband observations. Science 273:642–645

    CAS  Google Scholar 

  58. Kawakatsu H, Ohminato T, Ito H, Kuwahara Y, Kato T, Tsuruga K, Honda S, Yomogida K (1992) Broadband seismic observation at Sakurajima Volcano, Japan. Geophys Res Lett 19:1959–1962

    Google Scholar 

  59. Kawakatsu H, Ohminato T, Ito H (1994) 10s‐period volcanic tremors observed over a wide area in southwestern Japan. Geophys Res Lett 21:1963–1966

    Google Scholar 

  60. Kawakatsu H et al (2000) Aso-94: Aso seismic observation with broadband instruments. J Volcanol Geotherm Res 101:129–154

    CAS  Google Scholar 

  61. Kawakatsu H, Yamamoto M (2007) Volcano Seismology. In: Kamanori H (ed) Treatise on Geophysics. Earthquake Seismology, vol 4. Elsevier, Amsterdam, pp 389–420

    Google Scholar 

  62. Kawase H (1988) Time domain response of a semi‐circular canyon for incident SV, P and Rayleigh waves calculated by the discrete wavenumber boundary element method. Bull Seism Soc Am 78:1415–1437

    Google Scholar 

  63. Kennet LN, Kerry NJ (1979) Seismic waves in a stratified half-space. Geophys J R Astr Soc 57:557–583

    Google Scholar 

  64. Kobayashi T, Ohminato T, Ida Y (2003) Earthquakes series preceding very long period seismic signals observed during the 2000 Miyakejima volcanic activity. Geophys Res Lett 30:1423. doi:10.1029/2002GL016631

    Google Scholar 

  65. Kumagai H (2006) Temporal evolution of a magmatic dike system inferred from the complex frequencies of very long period seismic events. J Geophys Res 111:B06201. doi:10.1029/2005JB003881

    Google Scholar 

  66. Kumagai H, Chouet BA (1999) The complex frequencies of long‐period seismic events as probes of fluid composition beneath volcanoes. Geophys J Int 138:F7–F12

    Google Scholar 

  67. Kumagai H, Chouet BA (2000) Acoustic properties of a crack containing magmatic or hydrothermal fluids. J Geophys Res 105:25493–25512

    CAS  Google Scholar 

  68. Kumagai H, Chouet BA (2001) The dependence of acoustic properties of a crack on the mode and geometry. Geophys Res Lett 28:3325–3328

    Google Scholar 

  69. Kumagai H, Ohminato T, Nakano M, Ooi M, Kubo A, Inoue H, Oikawa J (2001) Very-long‐period seismic signals and caldera formation at Miyake Island, Japan. Science 293:687–690

    CAS  Google Scholar 

  70. Kumagai H, Chouet BA, Nakano M (2002) Temporal evolution of a hydrothermal system in Kusatsu‐Shirane Volcano, Japan, inferred from the complex frequencies of long‐period events. J Geophys Res 107:2236. doi:10.1029/2001JB000653

    Google Scholar 

  71. Kumagai H, Chouet BA, Nakano M (2002) Waveform inversion of oscillatory signatures in long‐period events beneath volcanoes. J Geophys Res 107:2301. doi:10.1029/2001JB001704

    Google Scholar 

  72. Kumagai H, Miyakawa K, Negishi H, Inoue H, Obara K, Suetsugu D (2003) Magmatic dike resonances inferred from very-long‐period seismic signals. Science 299:2058–2061 (10.1126/science.1081195)

    CAS  Google Scholar 

  73. Kumagai H, Chouet BA, Dawson PB (2005) Source process of a long‐period event at Kilauea Volcano, Hawaii. Geophys J Int 161:243–254

    Google Scholar 

  74. Kumagai H et al (2007) Enhancing volcano‐monitoring capablities in Ecuador. Eos trans AGU 88:245–246

    Google Scholar 

  75. Kumazawa M, Imanishi Y, Fukao Y, Furumoto M, Yamamoto A (1990) A theory of spectral analysis based on the characteristic property of a linear dynamic system. Geophys J Int 101:613–630

    Google Scholar 

  76. Legrand D, Kaneshima S, Kawakatsu H (2000) Moment tensor analysis of near field broadband waveforms observed at Aso volcano, Japan. J Volcanol Geotherm Res 101:155–169

    CAS  Google Scholar 

  77. Lesage P, Glangeaud F, Mars J (2002) Applications of autoregressive models and time‐frequency analysis to the study of volcanic tremor and long‐period events. J Volcanol Geotherm Res 114:391–417

    CAS  Google Scholar 

  78. Lin CH, Konstantinou KI, Liang WT, Pu HC, Lin YM, You SH, Huang YP (2005) Preliminary analysis of volcanoseismic signals recorded at the Tatun Volcano Group, northern Taiwan. Geophys Res Lett 32:L10313. doi:10.1029/2005GL022861

    Google Scholar 

  79. Matsuura T, Imanishi Y, Imanari M, Kumazawa M (1990) Application of a new method of high‐resolution spectral analysis, “Sompi”, for free induction decay of nuclear magnetic resonance. Appl Spectrosc 44:618–626

    CAS  Google Scholar 

  80. McNutt SR (1996) Seismic monitoring and eruption forecasting of volcanoes: A review of the state-of-the art and cased histories. In: Scarpa R, Tilling RI (eds) Monitoring and Mitigation of Volcano Hazards. Springer, New York, pp 99–146

    Google Scholar 

  81. McNutt SR (2005) Volcanic Seismology. Annu Rev Earth Planet Sci 33:461–491

    CAS  Google Scholar 

  82. Métaxian JP, Lesage P, Dorel J (1997) Permanent tremor of Masaya volcano, Nicaragua: wavefield analysis and source location. J Geophys Res 102:22529–22545

    Google Scholar 

  83. Menke W (1989) Geophysical data analysis: Discrete inverse theory, Revised edition. Academic Press, San Diego

    Google Scholar 

  84. Minakami T (1974) Seismology of volcanoes in Japan. In: Civetta L, Gasparini P, Luongo G, Rapolla A (eds) Physical Volcanology. Elsevier, Amsterdam, pp 1–27

    Google Scholar 

  85. Molina I, Kumagai H, Yepes H (2004) Resonances of a volcanic conduit triggered by repetitive injections of an ash-laden gas. Geophys Res Lett 31:L03603. doi:10.1029/2003GL018934

    Google Scholar 

  86. Morita Y, Nakao S, Hayashi Y (2006) A quantitative approach to the dike intrusion process inferred from a joint analysis of geodetic and seismological data for the 1998 earthquake swarm off the east coast of Izu Peninsula, central Japan. J Geophys Res 111:B06208. doi:10.1029/2005JB003860

    Google Scholar 

  87. Morrissey M, Chouet BA (1997) A numerical investigation of choked flow dynamics and its application to the triggering mechanism of long‐period events at Redoubt Volcano, Alaska. J Geophys Res 102:7965–7983

    Google Scholar 

  88. Morrissey M, Chouet BA (2001) Trends in long‐period seismicity related to magmatic fluid compositions. J Volcanol Geotherm Res 108:265–281

    CAS  Google Scholar 

  89. Müller G (2001) Volume change of seismic sources from moment tensors. Bull Seism Soc Am 91:880–884

    Google Scholar 

  90. Nakamichi H, Hamaguchi H, Tanaka S, Ueki S, Nishimura T, Hasegawa A (2003) Source mechanisms of deep and intermediate‐depth low‐frequency earthquakes beneath Iwate volcano, northeastern Japan. Geophys J Int 154:811–828

    Google Scholar 

  91. Nakano M, Kumagai H (2005) Response of a hydrothermal system to magmatic heat inferred from temporal variations in the complex frequencies of long‐period events at Kusatsu‐Shirane Volcano, Japan. J Volcanol Geotherm Res 147:233–244

    CAS  Google Scholar 

  92. Nakano M, Kumagai H (2005) Waveform inversion of volcano‐seismic signals assuming possible source geometries. Geophys Res Lett 32:L12302. doi:10.1029/2005GL022666

    Google Scholar 

  93. Nakano M, Kumagai H, Kumazawa M, Yamaoka K, Chouet BA (1998) The excitation and characteristic frequency of the long‐period volcanic event: An approach based on an inhomogeneous autoregressive model of a linear dynamic system. J Geophys Res 103:10031–10046

    Google Scholar 

  94. Nakano M, Kumagai H, Chouet BA (2003) Source mechanism of long‐period events at Kusatsu‐Shirane Volcano, Japan, inferred from waveform inversion of the effective excitation functions. J Volcanol Geotherm Res 122:149–164

    CAS  Google Scholar 

  95. Nakano M, Kumagai H, Chouet BA, Dawson PB (2007) Waveform inversion of volcano‐seismic signals for an extended source. J Geophys Res 112:B02306. doi:10.1029/2006JB004490

    Google Scholar 

  96. Neuberg JW (2000) Characteristics and causes of shallow seismicity in andesite volcanoes. Phils Trans R Soc Lond A 358:1533–1546

    Google Scholar 

  97. Neuberg JW, Luckett R, Ripepe M, Braun T (1994) Highlights from a seismic broadband array on Stromboli Volcano. Geophys Res Lett 21:749–752

    Google Scholar 

  98. Neuberg JW, Luckett R, Baptie B, Olsen K (2000) Models of tremor and low‐frequency earthquake swarms on Montserrat. J Volcanol Geotherm Res 101:83–104

    CAS  Google Scholar 

  99. Neuberg JW, Tuffen H, Collier L, Green D, Powell T, Dingwell D (2006) The trigger mechanism of low frequency earthquakes on Montserrat. J Volcanol Geotherm Res 153:37–50

    CAS  Google Scholar 

  100. Nishimura T (2004) Pressure recovery in magma due to bubble growth. Geophys Res Lett 31:L12613. doi:10.1029/2004GL019810

    Google Scholar 

  101. Nishimura T, Chouet BA (2003) A numerical simulation of magma motion, crustal deformation, and seismic radiation asscoiated with volcanic eruptions. Geophys J Int 153:699–718

    Google Scholar 

  102. Nishimura T, Nakamichi H, Tanaka S, Sato M, Kobayashi T, Ueki S, Hamaguchi H, Ohtake M, Sato H (2000) Source process of very long period seismic events associated with the 1998 activity of Iwate Volcano, northeastern Japan. J Geophys Res 105:19135–19417

    Google Scholar 

  103. Nishimura T, Ueki S, Yamawaki T, Tanaka S, Hashino H, Sato M, Nakamichi H, Hamaguchi H (2002) Broadband seismic signals associated with the 2000 volcanic unrest of Mount Bandai, northeastern Japan. J Volcanol Geotherm Res 119:51–59

    Google Scholar 

  104. O'Brien GS, Bean CJ (2004) A 3D discrete numerical elastic lattice method for seismic wave propagation in heterogeneous media with topography. Geophys Res Lett 31:L14608. doi:10.1029/2004GL020069

    Google Scholar 

  105. Ohminato T (2006) Characteristics and source modeling of broadband seismic signals associated with the hydrothermal system at Satsuma‐Iwojima volcano, Japan. J Volcanol Geotherm Res 158:467–490

    CAS  Google Scholar 

  106. Ohminato T, Chouet BA (1997) A free‐surface boundary condition for including 3D topography in the finite difference method. Bull Seism Soc Am 87:494–515

    Google Scholar 

  107. Ohminato T, Chouet BA, Dawson PB, Kedar S (1998) Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea Volcano, Hawaii. J Geophys Res 103:23839–23862

    Google Scholar 

  108. Ohminato T, Takeo M, Kumagai H, Yamashina T, Oikawa J, Koyama E, Tsuji H, Urabe T (2006) Vulcanian eruptions with dominant single force components observed during the Asama 2004 volcanic activity in Japan. Earth Planets Space 58:583–593

    Google Scholar 

  109. Ripperger J, Igel H, Wasserman J (2003) Seismic wave simulation in the presence of real volcano topography. J Volcanol Geotherm Res 128:31–44

    CAS  Google Scholar 

  110. Rowe CA, Aster RC, Kyle PR, Schlue JW, Dibble RR (1998) Broadband recording of Strombolian explosions and associated very-long‐period seismic signals on Mount Erebus volcano, Ross Island, Antarctica. Geophys Res Lett 25:2297–2300

    Google Scholar 

  111. Rubin AM, Gillard D (1998) Dike‐induced seismicity: theoretical considerations. J Geophys Res 103:10017–10030

    Google Scholar 

  112. Rubin AM, Gillard D, Got JL (1998) A reinterpretation of seismicity associated with the January 1983 dike intrusion at Kilauea Volcano, Hawaii. J Geophys Res 103:10003–10015

    Google Scholar 

  113. Saccorotti G, Del Pezzo E (2000) A probabilistic approach to the inversion of data from a seismic array and its application to volcanic signals. Geophys J Int 143:249–261

    Google Scholar 

  114. Saccorotti G, Chouet BA, Dawson PB (2001) Wavefield properties of a shallow long‐period event and tremor at Kilauea Volcano, Hawaii. J Volcanol Geotherm Res 109:163–189

    CAS  Google Scholar 

  115. Sakuraba A, Oikawa J, Imanishi Y (2002) Free oscillations of a fluid sphere in an infinite elastic medium and long‐period volcanic earthquakes. Earth Planets Space 54:91–106

    Google Scholar 

  116. Stump BW, Johnson LR (1977) The determination of source properties by the linear inversion of seismograms. Bull Seism Soc Am 67:1489–1502

    Google Scholar 

  117. Sturton S, Neuberg JW (2006) The effects of conduit length and acoustic velocity on conduit resonance: Implications for low‐frequency events. J Volcanol Geotherm Res 151:319–339

    CAS  Google Scholar 

  118. Takei Y, Kumazawa M (1994) Why have the single force and torque been excluded from seismic source models? Geophys J Int 118:20–30

    Google Scholar 

  119. Takei Y, Kumazawa M (1995) Phenomenological representation and kinematics of general seismic sources including the seismic vector modes. Geophys J Int 121:641–662

    Google Scholar 

  120. Takeo M, Yamasato H, Furuya I, Seino M (1990) Analysis of long‐period seismic waves excited by the November 1987 eruption of Izu‐Oshima Volcano. J Geophys Res 95:19377–19393

    Google Scholar 

  121. Takeuchi H, Saito M (1972) Seismic surface waves. In: Bolt BA (ed) Methods in Computational Physics, vol 11. Academic Press, New York, pp 217–295

    Google Scholar 

  122. Tameguri T, Iguchi M, Ishihara K (2002) Mechanism of explosive eruptions from moment tensor analyses of explosion earthquakes at Sakurajima volcano, Japan. Bull Volcanol Soc Jpn 47:197–216

    Google Scholar 

  123. Toda S, Stein R, Sagiya T (2002) Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature 419:58–61

    CAS  Google Scholar 

  124. Tolstoy I (1954) Dispersive properties of a fluid layer overlying a semi‐infinite elastic solid. Bull Seism Soc Am 44:493–512

    Google Scholar 

  125. Tuffen H, Dingwell D (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387

    Google Scholar 

  126. Uhira K, Takeo M (1994) The source of explosive eruptions of Sakurajima volcano, Japan. J Geophys Res 99:17775–17789

    Google Scholar 

  127. Ulrych TJ, Clayton RW (1976) Time series modeling and maximum entropy. Phys Earth Planet Inter 12:188–200

    Google Scholar 

  128. Ulrych TJ, Sacchi MD (1995) Sompi, Pisarenko and the extended information criterion. Geophys J Int 122:719–724

    Google Scholar 

  129. Virieux J (1986) P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method. Geophysics 51:889–901

    Google Scholar 

  130. Wessel P, Smith WHF (1998) New improved version of Generic Mapping Tools released. Eos trans AGU 122:149–164

    Google Scholar 

  131. Yamamoto M (2005) Volcanic fluid system inferred from broadband seismic signals. Ph D Thesis, University of Tokyo

    Google Scholar 

  132. Yamamoto M, Kawakatsu H, Kaneshima S, Mori T, Tsutsui T, Sudo Y, Morita Y (1999) Detection of a crack-like conduit beneath active crater at Aso volcano, Japan. Geophys Res Lett 26:3677–3680

    Google Scholar 

  133. Yamamoto M, Kawakatsu H, Yomogida K, Koyama J (2002) Long‐period (12 sec) volcanic tremor observed at Usu 2000 eruption: Seismological detection of a deep magma plumbing system. Geophys Res Lett 29:1329. doi:10.1029/2001GL013996

    Google Scholar 

  134. Yamamura K, Kawakatsu H (1998) Normal‐mode solutions for radiation boundary conditions with an impedance contrast. Geophys J Int 134:849–855

    Google Scholar 

Books and Reviews

  1. Dahlen FA, Tromp J (1998) Theoretical Global Seismology. Princeton University Press, Princeton

    Google Scholar 

  2. Kay SM, Marple SL (1981) Spectrum analysis – A modern perspective. Proc IEEE 69:1380–1419

    Google Scholar 

Download references

Acknowledgment

I am deeply grateful to Masaru Nakano for numerous discussions on all the subjects presented in this manuscript. I thank Yasuko Takei for constructive comments on the phenomenological source representation. Comments from Pablo Palacios, Luca D'Auria, Takeshi Nishimura, and an anonymous reviewer helped improve the manuscript. I used the Generic Mapping Tools (GMT) [130] in the preparation of figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix A: Green's Functions

Here, I briefly explain the relationship between the displacement and Green's functions. To simplify the explanation, I use two‐dimensional equations in an infinite medium. The extension of the equations into three‐dimension is straightforward. Green's functions defined by Eq. (5) are explicitly written as

$$ \rho\frac{\partial^2 G_{11}}{\partial t^2} = (\lambda + 2\mu)\frac{\partial^2 G_{11}}{\partial x_1^2} + (\lambda + \mu)\frac{\partial^2 G_{21}}{\partial x_2 \partial x_1}\\ + \mu\frac{\partial^2 G_{11}}{\partial x_2^2} + \delta(\boldsymbol{x}-\boldsymbol{\eta})\delta(t-\tau)\:, $$
(A1)
$$ \rho\frac{\partial^2 G_{21}}{\partial t^2} = (\lambda + 2\mu)\frac{\partial^2 G_{21}}{\partial x_2^2} + (\lambda + \mu)\frac{\partial^2 G_{11}}{\partial x_2 \partial x_1} + \mu\frac{\partial^2 G_{21}}{\partial x_1^2}\:, $$
(A2)
$$ \rho\frac{\partial^2 G_{12}}{\partial t^2} = (\lambda + 2\mu)\frac{\partial^2 G_{12}}{\partial x_1^2} + (\lambda + \mu)\frac{\partial^2 G_{22}}{\partial x_2 \partial x_1} + \mu\frac{\partial^2 G_{12}}{\partial x_2^2}\:, $$
(A3)
$$ \rho\frac{\partial^2 G_{22}}{\partial t^2} = (\lambda + 2\mu)\frac{\partial^2 G_{22}}{\partial x_2^2} + (\lambda + \mu)\frac{\partial^2 G_{12}}{\partial x_2 \partial x_1}\\ + \mu\frac{\partial^2 G_{22}}{\partial x_1^2} + \delta(\boldsymbol{x}-\boldsymbol{\eta})\delta(t-\tau)\:. $$
(A4)

Note that \({(G_{11},G_{21})}\) represents the x 1 and x 2 components of the wavefield at \({(\boldsymbol{x},t)}\), which is excited by the impulse in the x 1 direction applied at \({\boldsymbol{x}=\boldsymbol{\eta}}\) and \({t=\tau}\). Similarly, \({(G_{12},G_{22})}\) represents the x 1 and x 2 components of the wavefield excited by the impulse in the x 2 direction at \({\boldsymbol{x}=\boldsymbol{\eta}}\) and at \({t=\tau}\). Therefore, i and j in \({G_{ij}}\) represent the component and direction of the impulse, respectively. To specify the relationship between the receiver and source, we use the notation \({G_{ij}(\boldsymbol{x},t;\boldsymbol{\eta},\tau)}\). We obtain \({G_{ij}(\boldsymbol{x},t;\boldsymbol{\eta},\tau) = G_{ij}(\boldsymbol{x},t-\tau;\boldsymbol{\eta},0)}\), since Green's functions are independent of the time of origin.

The displacement \({u_i(\boldsymbol{x},t)}\) satisfies Eq. (3), which is explicitly written as

$$ \rho\frac{\partial^2 u_1}{\partial t^2} = (\lambda+2\mu)\frac{\partial^2 u_1}{\partial x_1^2} + (\lambda +\mu)\frac{\partial^2 u_2}{\partial x_1 \partial x_2}\\ + \mu\frac{\partial^2 u_1}{\partial x_2^2} + f_1^S(\boldsymbol{x},t)\:, $$
(A5)
$$ \rho\frac{\partial^2 u_2}{\partial t^2} = (\lambda+2\mu)\frac{\partial^2 u_2}{\partial x_2^2} + (\lambda +\mu)\frac{\partial^2 u_1}{\partial x_1 \partial x_2}\\ + \mu\frac{\partial^2 u_2}{\partial x_1^2} + f_2^S(\boldsymbol{x},t)\:. $$
(A6)

Equation (6) indicates that \({u_i}\) is described by the following relationships:

$$ u_1(\boldsymbol{x},t) = \int_{-\infty}^{\infty} \iint_{-\infty}^{\infty} \big[f_1^S(\boldsymbol{\eta},\tau) G_{11}(\boldsymbol{x},t-\tau;\boldsymbol{\eta},0)\\ + f_2^S(\boldsymbol{\eta},\tau) G_{12}(\boldsymbol{x},t-\tau;\boldsymbol{\eta},0)\big] \mskip2mu\mathrm{d}\eta_1 \mskip2mu\mathrm{d}\eta_2 \mskip2mu\mathrm{d}\tau\:, $$
(A7)
$$ u_2(\boldsymbol{x},t) = \int_{-\infty}^{\infty} \iint_{-\infty}^{\infty} \big[f_1^S(\boldsymbol{\eta},\tau) G_{21}(\boldsymbol{x},t-\tau;\boldsymbol{\eta},0)\\ + f_2^S(\boldsymbol{\eta},\tau) G_{22}(\boldsymbol{x},t-\tau;\boldsymbol{\eta},0)\big] \mskip2mu\mathrm{d}\eta_1 \mskip2mu\mathrm{d}\eta_2 \mskip2mu\mathrm{d}\tau\:. $$
(A8)

We can verify that the displacement given by Eqs. (A7) and (A8) satisfies Eqs. (A5) and (A6) in the following way. We can rewrite Eqs. (A5) and (A6) as

$$ f_1^S(\boldsymbol{x},t) = \rho\frac{\partial^2 u_1}{\partial t^2} - (\lambda+2\mu)\frac{\partial^2 u_1}{\partial x_1^2}\\ - (\lambda +\mu)\frac{\partial^2 u_2}{\partial x_1 \partial x_2} - \mu\frac{\partial^2 u_1}{\partial x_2^2}\:, $$
(A9)
$$ f_2^S(\boldsymbol{x},t) = \rho\frac{\partial^2 u_2}{\partial t^2} - (\lambda+2\mu)\frac{\partial^2 u_2}{\partial x_2^2}\\ - (\lambda +\mu)\frac{\partial^2 u_1}{\partial x_1 \partial x_2} - \mu\frac{\partial^2 u_2}{\partial x_1^2}\:. $$
(A10)

We denote the right-hand side of Eq. (A9) as L 1, which is derived from Eqs. (A7) and (A8) as

$$ \begin{aligned} L_1 &= \int_{-\infty}^{\infty} \iint_{-\infty}^{\infty}\bigg[\rho\left(f_1^S\frac{\partial^2 G_{11}}{\partial t^2} + f_2^S\frac{\partial^2 G_{12}}{\partial t^2}\right)\\ &\quad-(\lambda + 2\mu)\left(f_1^S\frac{\partial^2 G_{11}}{\partial x_1^2} + f_2^S\frac{\partial^2 G_{12}}{\partial x_1^2}\right)\\ &\quad-(\lambda + \mu)\left(f_1^S\frac{\partial^2 G_{21}}{\partial x_1 \partial x_2} + f_2^S\frac{\partial^2 G_{22}}{\partial x_1 \partial x_2}\right)\\ &\quad-\mu\left(f_1^S\frac{\partial^2 G_{11}}{\partial x_2^2} + f_2^S\frac{\partial^2 G_{12}}{\partial x_2^2}\right)\bigg]\mskip2mu\mathrm{d}\eta_1 \mskip2mu\mathrm{d}\eta_2 \mskip2mu\mathrm{d}\tau\:. \end{aligned}$$
(A11)

This equation can be modified as follows:

$$ \begin{aligned} L_1 &= \int_{-\infty}^{\infty} \iint_{-\infty}^{\infty}\bigg[f_1^S\bigg\{\rho\frac{\partial^2 G_{11}}{\partial t^2} -(\lambda + 2\mu)\frac{\partial^2 G_{11}}{\partial x_1^2}\\ &\quad-(\lambda + \mu)\frac{\partial^2 G_{21}}{\partial x_1 \partial x_2}-\mu\frac{\partial^2 G_{11}}{\partial x_2^2}\bigg\}\\ &\quad + f_2^S\bigg\{\rho\frac{\partial^2 G_{12}}{\partial t^2} -(\lambda + 2\mu)\frac{\partial^2 G_{12}}{\partial x_1^2}\\ &\quad-(\lambda + \mu)\frac{\partial^2 G_{22}}{\partial x_1 \partial x_2}-\mu\frac{\partial^2 G_{12}}{\partial x_2^2}\bigg\}\bigg]\mskip2mu\mathrm{d}\eta_1 \mskip2mu\mathrm{d}\eta_2 \mskip2mu\mathrm{d}\tau\:. \end{aligned}$$
(A12)

From Eq. (A3), we find that the second integral of Eq. (A12) is zero. Therefore, Eq. (A12) from Eq. (A1) becomes

$$ \begin{aligned} L_1 &= \int_{-\infty}^{\infty} \iint_{-\infty}^{\infty}f_1^S(\boldsymbol{\eta},\tau)\delta(\boldsymbol{x}-\boldsymbol{\eta})\delta(t-\tau) \mskip2mu\mathrm{d}\eta_1 \mskip2mu\mathrm{d}\eta_2 \mskip2mu\mathrm{d}\tau\\ &= f_1^S(\boldsymbol{x},t)\:. \end{aligned}$$
(A13)

Similarly, we can show that the right-hand side of Eq. (A10) is equivalent to \({f_2^S(\boldsymbol{x},t)}\), and thus the displacement in the forms of Eqs. (A7) and (A8) satisfies the equation of motion (A5) and (A6).

Appendix B: Moment Tensor for a Spherical Source

Let us consider the moment density tensors for three tensile cracks in the planes \({\xi_1=0, \xi_2=0}\), and \({\xi_3=0}\). If we sum and average these three tensors and assume that \({[u_1]=[u_2]=[u_3]=D_s}\), we obtain the following moment density tensor:

$$ \boldsymbol{m}=D_s\left(\begin{array}{ccc} \lambda + 2\mu/3 & 0 & 0 \\ 0 & \lambda + 2\mu/3 & 0 \\ 0& 0 & \lambda + 2\mu/3 \end{array} \right)\:. $$
(B1)

This represents the moment density tensor for the isotropic expansion of a cubic element. Following Müller [89], we consider a spherical crack surface of radius R where a constant radial expansion \({D_s = (d_s + \Delta_s)}\) occurs (Fig. A1). Here, the inner wall of the crack moves inward by \({d_s}\) and the outer wall moves outward by \({\Delta_s}\). The moment tensor of the spherical expansion may be obtained by integration of the moment density tensor (B1) over the surface R:

Figure A1
figure 20_59

A spherical crack surface of radius R where a constant radial expansion \({D_{\text{s}} = (d_{\text{s}} + \Delta_{\text{s}})}\) occurs. Here, the inner wall of the crack moves inward by d s and the outer wall moves outward by \({\Delta_{\text{s}}}\) [89]

$$ \boldsymbol{M} = \Delta V \left(\begin{array}{ccc} \lambda + 2\mu/3 & 0 & 0 \\ 0 & \lambda + 2\mu/3 & 0 \\ 0& 0 & \lambda + 2\mu/3 \end{array} \right)\:, $$
(B2)

where \({\Delta V}\) is the volume given as

$$ \Delta V = 4\pi R^2 D_s=4\pi R^2 (d_s + \Delta_s)\:. $$
(B3)

The volume \({4\pi R^2 d_s}\) is caused by the inward motion, which compresses the sphere. The volume \( \Delta V_s = 4\pi R^2 \Delta_s \), on the other hand, is caused by the outward motion, which excites seismic waves in the region outside the sphere. \({\Delta V_s}\) can be determined by solving an elastostatic boundary‐value problem in the following way. We assume an isotropic medium, and denote the regions inside and outside the sphere as regions 1 and 2, respectively. Since the motion is radial only, the equation of motion is given as e. g., [121]

$$ \rho \frac{\partial^2 u}{\partial t^2} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2\sigma_{rr}) -\frac{1}{r}(\sigma_{\theta\theta} + \sigma_{\phi\phi}) $$
(B4)

and

$$ \sigma_{rr} = (\lambda+2\mu) \frac{\partial u}{\partial r} + \lambda\frac{2}{r}u\:, $$
(B5)
$$ \sigma_{\theta\theta} = \sigma_{\phi\phi} = \lambda \frac{\partial u}{\partial r} + (\lambda + \mu)\frac{2}{r}u\:, $$
(B6)

where u is the radial displacement and \({\sigma_{rr}}\), \({\sigma_{\theta\theta}}\), and \({\sigma_{\phi\phi}}\) are the stress components in the spherical coordinate. Equations (B4) and (B5) apply to both regions 1 and 2. Substituting Eq. (B5) into Eq. (B4) and setting \({\rho (\partial^2 u_r/\partial t^2)=0}\), we obtain the following static equilibrium equation:

$$ \frac{\partial^2 u}{\partial r^2} + \frac{2}{r}\frac{\partial u}{\partial r} - \frac{2}{r^2}u = 0\:. $$
(B7)

This equation has two solutions: \({u=ar}\) and \({u=b/r^2}\), where a and b are constants. The former is the interior solution for region 1 (\({r \leq R}\)), and the latter is the exterior solution for region 2 (\({r \geq R}\)). I denote the interior and exterior solutions as \({u_i}\) and \({u_e}\), respectively. The constants a and b are determined by the boundary conditions for the radial displacement and the continuity of the radial stress at \({r = R}\):

$$ u_e(R) - u_i(R) = \frac{b}{R^2} - aR = D_s\:, $$
(B8)
$$ \sigma_{rr}^i (R) - \sigma_{rr}^e(R) = -\frac{4\mu}{R^3} b - (3\lambda + 2\mu) a = 0\:, $$
(B9)

where \({\sigma_{rr}^i}\) and \({\sigma_{rr}^e}\) are the radial stresses in regions 1 and 2, respectively. Accordingly, we obtain

$$ u_i(r) = - \frac{4\mu D_s}{3(\lambda+2\mu)}\frac{r}{R} \quad (r \leq R)\:, $$
(B10)
$$ u_e(r) = \frac{(\lambda+2\mu/3) D_s}{\lambda + 2\mu}\frac{R^2}{r^2} \quad (r \geq R)\:. $$
(B11)

Then, we obtain

$$ d_s = -u_i(R)=\frac{4\mu D_s}{3(\lambda+2\mu)}\:, $$
(B12)
$$ \Delta_s = u_e(R) = \frac{(\lambda+2\mu/3) D_s}{\lambda + 2\mu}\:. $$
(B13)

Equation (B3) can be modified as

$$ \Delta V = 4\pi R^2 \Delta_s (D_s/\Delta_s) = \frac{\lambda + 2\mu}{\lambda + 2\mu/3}\Delta V_s\:. $$
(B14)

Finally, we obtain the moment tensor for the spherical expansion as

$$ \boldsymbol{M} = (\lambda + 2\mu)\Delta V_s\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)\:. $$
(B15)

Appendix C: Moment Tensor for a Cylindrical Source

We consider the moment density tensors for two tensile cracks in the planes \({\xi_1=0}\) and \({\xi_2=0}\), where ξ1 and ξ2 are two horizontal axes. If we sum and average these two tensors and assume that \({[u_1]=[u_2]=D_c}\), we obtain

$$ \boldsymbol{m}=D_c\left(\begin{array}{ccc} \lambda + \mu & 0 & 0 \\ 0 & \lambda + \mu & 0 \\ 0& 0 & \lambda \end{array} \right)\:. $$
(C1)

This represents the moment density tensor for the expansion of a cubic element in the two horizontal directions. Let us consider a vertical cylinder of length L and radius R. The cylinder surface at radius R can be regarded as a cylindrical crack, where the radial expansion \({D_c=(d_c+\Delta_c)}\) occurs (Fig. A2). The moment tensor for the radial expansion of the cylinder may be obtained by integration of the moment density tensor (C1) over the surface R:

$$ \boldsymbol{M} = \Delta V \left(\begin{array}{ccc} \lambda + \mu & 0 & 0 \\ 0 & \lambda + \mu & 0 \\ 0& 0 & \lambda \end{array} \right)\:, $$
(C2)

where \({\Delta V}\) is the volume given as

$$ \Delta V = 2\pi R L D_c=2\pi R L (d_c + \Delta_c)\:. $$
(C3)

We obtain the static equilibrium equation for the radial expansion of the cylinder u as

$$ \frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} - \frac{1}{r^2}u = 0\:. $$
(C4)

This equation has internal and external solutions, which are given as \({u=ar}\) and \({u=b/r}\), respectively. The constants a and b are determined by the boundary conditions

Figure A2
figure 21_59

A vertical cylinder of length L and radius R. The cylinder surface can be regarded as a cylindrical crack, where the radial expansion \({D_c = (d_c + \Delta_c)}\) occurs. Here, the inner wall of the crack moves inward by \({d_c}\) and the outer wall moves outward by \({\Delta_c}\) [89]

$$ u_e(R) - u_i(R) = \frac{b}{R} - aR = D_c\:, $$
(C5)
$$ \sigma_{rr}^i (R) - \sigma_{rr}^e(R) = -\frac{2\mu}{R^2} b - 2(\lambda + \mu) a = 0\:, $$
(C6)

where superscripts i and e denote the interior and exterior solutions. We then obtain

$$ d_c = -u_i(R)=\frac{\mu D_s}{(\lambda+2\mu)}\:, $$
(C7)
$$ \Delta_c = u_e(R) = \frac{(\lambda+\mu) D_c}{\lambda + 2\mu}\:, $$
(C8)

and

$$ \Delta V = \frac{\lambda + 2\mu}{\lambda + \mu}\Delta V_c\:. $$
(C9)

The moment tensor for the vertical cylinder is therefore given as

$$ \boldsymbol{M} = \frac{\lambda + 2\mu}{\lambda+\mu}\Delta V_c\left(\begin{array}{ccc} \lambda + \mu & 0 & 0 \\ 0 & \lambda + \mu & 0 \\ 0 & 0 & \lambda \end{array} \right)\:. $$
(C10)

Let us rotate the vertical cylinder with axis orientation angles ϕ and θ (Fig. 8b). This can be done in the following steps: (1) fix the cylinder and (2) rotate the ξ1 and ξ2 axes around the ξ3 axis through an angle \({-\phi}\), and (3) further rotate the ξ1 and ξ3 axes around the ξ2 axis through an angle \({-\theta}\). The rotation matrix \({\boldsymbol{R}}\) is given as

$$ \boldsymbol{R} = \left(\begin{array}{ccc} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{array} \right)\left(\begin{array}{ccc} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{array} \right) $$
(C11)
$$ \hphantom{\boldsymbol{R}} = \left(\begin{array}{ccc} \cos\theta\cos\phi & -\cos\theta\sin\phi & -\sin\theta \\ \sin\phi & \cos\phi & 0 \\ \sin\theta & -\sin\theta\sin\phi & \cos\theta \end{array} \right)\:. $$
(C12)

Using the matrix \({\boldsymbol{R}}\), we obtain the moment tensor for a cylinder with the axis orientation angles \({(\phi,\theta)}\) as

$$ \boldsymbol{M}^\prime = \boldsymbol{R}^{\text{T}} \boldsymbol{MR}\:, $$
(C13)

which leads to Eq. (34).

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Kumagai, H. (2011). Volcano Seismic Signals, Source Quantification of. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_59

Download citation

Publish with us

Policies and ethics