Skip to main content

Earthquake Occurrence and Mechanisms, Stochastic Models for

  • Reference work entry
Extreme Environmental Events

Article Outline

Glossary

Definition of the Subject

Introduction

Historical Overview

Stochastic Models for Earthquake Mechanisms

Models for Paleoseismological and Historical Earthquakes

Point Process Models for Regional Catalogues

Stochastic Models with Precursors

Further Topics

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Stochastic:

occurring by chance;

Stochastic process:

physical or other process evolving in time governed in part by chance.

Earthquake mechanism:

physical processes causing the occurrence of an earthquake.

Independent events:

events not affecting each other's probability of occurrence.

Branching process:

process of ancestors and offspring, as in the model of nuclear fission.

Point process:

stochastic process of point‐events in time or space.

Probability forecast:

prediction of the probability distribution of the time and other features of some future event, as distinct from a forecast for the time (etc.) of the event itself.

Model test:

a statistical test for the extent to which a stochastic model is supported by the relevant data.

Precursory signal:

observed quantity which affects the occurrence probability of a future event (earthquake).

Bibliography

  1. Ambraseys NN, Melville CP (1982) A History of Persian Earthquakes. Cambridge University Press, Cambridge

    Google Scholar 

  2. Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical Models Based on Counting Processes. Springer, New York

    Google Scholar 

  3. Bak P, Tang C (1989) Earthquakes as a self‐organized critical phenomenon. J Geophys Res 94:15635–15637

    Google Scholar 

  4. Bebbington M, Harte DS (2003) The linked stress release model for spatio‐temporal seismicity: formulations, procedures and applications. Geophys J Int 154:925–946

    Google Scholar 

  5. Bebbington M, Vere-Jones D, Zheng X (1990) Percolation theory: a model for earthquake faulting? Geophys J Int 100:215–220

    Google Scholar 

  6. Ben-Zion Y (1996) Stress, Slip and earthquakes in models of complex single‐fault systems incorporating brittle and creep deformations. J Geophys Res 101:5677–5706

    Google Scholar 

  7. Ben-Zion Y, Dahmen K, Lyakhowsky V, Ertas D, Agnon A (1999) Self‐driven mode‐switching of earthquake activity on a fault system. Earth Planet. Sci Lett 172:11–21

    CAS  Google Scholar 

  8. Ben-Zion Y, Eneva M, Liu Y (2003) Large earthquake cycles and intermittent criticality on heterogeneous faults due to evolving stress and seismicity. J Geophys Res 108:2307V. doi:10.1029/2002JB002121

  9. Ben-Zion Y, Lyakhovsky V (2002) Accelerated seismic release and related aspects of seismicity patterns on earthquake faults. Pure Appl Geophys 159:2385–2412

    Google Scholar 

  10. Ben-Zion Y, Rice J (1995) Slip patterns and earthquake populations along different classes of faults on elastic solids. J Geophys Res 100:12959–12983

    Google Scholar 

  11. Borovkov K, Vere-Jones D (2000) Explicit formulae for stationary distributions of stress release processes. J Appl Prob 37:315–321

    Google Scholar 

  12. Brémaud P, Massoulié L (2001) Hawkes branching processes without ancestors. J App Prob 38:122–135

    Google Scholar 

  13. Brillinger DR (1981) Time Series: Data Analysis and Theory, 2nd edn. Holden Day, San Francisco

    Google Scholar 

  14. Burridge R, Knopoff L (1967) Model and theoretical seismicity. Bull Seismol Soc Am 57:341–371

    Google Scholar 

  15. Chelidze TL, Kolesnikov YM (1983) Modelling and forecasting the failure process in the framework of percolation theory. Izvestiya Earth Phys 19:347–354

    Google Scholar 

  16. Chong FS (1983) Time-space‐magnitude interdependence of upper crustal earthquakes in the main seismic region of New Zealand. J Geol Geophys 26:7–24, New Zealand

    Google Scholar 

  17. Console R, Lombardi AM, Murru M, Rhoades DA (2003) Båth's Law and the self‐similarity of earthquakes. J Geophys Res 108(B2):2128V. doi:10.1029/2001JB001651

  18. Cox DR (1972) Regression models and life tables (with discussion). Roy J Stat Soc Ser B 34:187–220

    Google Scholar 

  19. Dahmen K, Ertas D, Ben-Zion Y (1998) Gutenberg‐Richter and characteristic earthquake behavior in simple mean-field models of heterogeneous faults. Phys Rev E 58:1494–1501

    CAS  Google Scholar 

  20. Daley DJ, Vere-Jones D (2003) An Introduction to the Theory of Point Processes, 2nd edn, vol I. Springer, New York

    Google Scholar 

  21. Davison C (1938) Studies on the Periodicity of Earthquakes. Murthy, London

    Google Scholar 

  22. Diggle PJ (2003) Statistical Analysis of Spatial Point Patterns. 2nd edn. University Press, Oxford

    Google Scholar 

  23. Ebel JB, Chambers DW, Kafka AL, Baglivo JA (2007) Non‐Poissonian earthquake clustering and the hidden Markov model as bases for earthquake forecasting in California. Seismol Res Lett 78:57–65

    Google Scholar 

  24. Evison F, Rhoades D (2001) Model of long-term seismogenesis. Annali Geofisica 44:81–93

    Google Scholar 

  25. Felzer KR, Abercrombie RE, Ekström G (2004) A common origin for aftershocks, foreshocks and multiplets. Bull Amer Seismol Soc 94:88–98

    Google Scholar 

  26. Fisher RL, Dahmen K, Ramanathan S, Ben-Zion Y (1997) Statistics of earthquakes in simple models of heterogeneous faults. Phys Rev Lett 97:4885–4888

    Google Scholar 

  27. Griffiths AA (1924) Theory of rupture. In: Proceedings 1st Int Congress in Applied Mech, Delft, pp 55–63

    Google Scholar 

  28. Gutenberg B, Richter C (1949) Seismicity of the Earth and Associated Phenomena, 2nd edn. University Press, Princeton

    Google Scholar 

  29. Habermann RE (1987) Man-made changes of seismicity rates. Bull Seismol Soc Am 77(1):141–159

    Google Scholar 

  30. Hainzl S, Ogata Y (2005) Detecting fluid signals in seismicity data through statistical earthquake modelling. J Geophys Res 110. doi:10.1029/2004JB003247

  31. Harte D (2001) Multifractals: Theory and Applications. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  32. Harte D, Li DF, Vreede M, Vere-Jones D (2003) Quantifying the M8 prediction algorithm: reduction to a single critical variable and stability results. NZ J Geol Geophys 46:141–152

    Google Scholar 

  33. Harte D, Li D-F, Vere-Jones D, Vreede M, Wang Q (2007) Quantifying the M8 prediction algorithm II: model, forecast and evaluation. NZ J Geol Geophys 50:117–130

    Google Scholar 

  34. Harte D, Vere-Jones D (2005) The entropy score and its uses in earthquake forecasting. Pure Appl Geophys 162:1229–1253

    Google Scholar 

  35. Hawkes AG (1971) Spectra of some self‐exciting and mutually exciting point processes. Biometrika 58:83–90

    Google Scholar 

  36. Hawkes AG, Oakes D (1974) A cluster representation of a self‐exciting process. J Appl Prob 11:493–503

    Google Scholar 

  37. Helmstetter A, Sornette D (2002) Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. J Geophys Res 107:2237. doi:10.1029/2001JB001580

    Google Scholar 

  38. Helmstetter A, Sornette D (2003) Båth's law derived from the Gutenberg‐Richter law and from aftershock properties. Geophys Res Lett 103(20):2069. doi:10.1029/2003GL018186

    Google Scholar 

  39. Ishimoto M, Iida K (1939) Bull Earthq Res Inst Univ Tokyo 17:443–478

    Google Scholar 

  40. Iwata T, Young RP (2005) Tidal stress/strain and the b‑values of acoustic emissions at the Underground Research Laboratory. Canada. Pure Appl Geophys 162:(6–7):1291–1308. doi:10.1007/s00024-005-2670-2 (P*1357)

    Google Scholar 

  41. Jackson DD, Kagan YY (1999) Testable earthquake forecasts for 1999. Seismol Res Lett 70:393–403

    Google Scholar 

  42. Jaeger JC, Cook NGW (1969) Fundamentals of Rock Mechanics. Methuen, London

    Google Scholar 

  43. Jaume SC, Bebbington MS (2004) Accelerating seismic moment release from a self‐correcting stochastic model. J Geophys Res 109:B12301. doi:10.1029/2003JB002867

    Google Scholar 

  44. Jeffreys H (1938) Aftershocks and periodicity in earthquakes. Beitr Geophys 53:111–139

    Google Scholar 

  45. Jeffreys H (1939) Theory of Probability, 1st edn (1939), 3rd edn (1961). University Press, Cambridge

    Google Scholar 

  46. Jones LM, Molnar P (1979) Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on a fault. J Geophys Res 84:3596–3608

    Google Scholar 

  47. Kagan Y (1973) Statistical methods in the study of the seismic process. Bull Int Stat Inst 45(3):437–453

    Google Scholar 

  48. Kagan Y (1991) Seismic moment distribution. Geophys J Int 106:121–134

    Google Scholar 

  49. Kagan Y (1991) Fractal dimension of brittle fracture. J Non‐linear Sci 1:1–16

    Google Scholar 

  50. Kagan Y (1994) Statistics of characteristic earthquakes. Bull Seismol Soc Am 83:7–24

    Google Scholar 

  51. Kagan Y, Jackson DD (1994) Probabilistic forecasting of earthquakes. Geophys J Int 143:438–453

    Google Scholar 

  52. Kagan Y, Knopoff L (1977) Earthquake risk prediction as a stochastic process. Phys Earth Planet Inter 14:97–108

    Google Scholar 

  53. Kagan Y, Knopoff L (1980) Spatial distribution of earthquakes: the two-point correlation function. Geophys J Roy Astronom Soc 62:303–320

    Google Scholar 

  54. Kagan Y, Knopoff L (1981) Stochastic synthesis of earthquake catalogues. J Geophys Res 86:2853–2862

    Google Scholar 

  55. Kagan Y, Knopoff L (1987) Statistical short-term earthquake prediction. Sci 236:1563–1567

    CAS  Google Scholar 

  56. Keilis-Borok VI, Kossobokov VG (1990) Premonitory activation of the earthquake flow: algorithm M8. Phys Earth Planet Inter 61:73–83

    Google Scholar 

  57. Kiremidjian AS, Anagnos T (1984) Stochastic slip predictable models for earthquake occurrences. Bull Seismol Soc Am 74:739–755

    Google Scholar 

  58. Knopoff L (1971) A stochastic model for the occurrence of main sequence earthquakes. Rev Geophys Space Phys 9:175–188

    Google Scholar 

  59. Kossobokov VG (1997) User manual for M8. In: Algorithms for Earthquake Statistics and Prediction. IASPEI Softw Ser 6:167–221

    Google Scholar 

  60. Kossobokov VG (2005) Earthquake prediction: principles, implementation, perspectives. Part I of Computational Seismology 36, “Earthquake Prediction and Geodynamic Processes.” (In Russian)

    Google Scholar 

  61. Kossobokov VG (2006) Testing earthquake prediction methods: The West Pacific short-term forecast of earthquakes with magnitude MwHRV ≥ 5.8. Tectonophysics 413:25–31

    Google Scholar 

  62. Libicki E, Ben-Zion Y (2005) Stochastic branching models of fault surfaces and estimated fractal dimensions. Pure Appl Geophys 162:1077–1111

    Google Scholar 

  63. Lombardi A (2002) Probabilistic interpretation of Båth's law. Ann Geophys 45:455–472

    Google Scholar 

  64. Lomnitz CA (1974) Plate Tectonics and Earthquake Risk. Elsevier, Amsterdam

    Google Scholar 

  65. Lomnitz‐Adler J (1985) Asperity models and characteristic earthquakes Geophys. J Roy Astron Soc 83:435–450

    Google Scholar 

  66. Lomnitz‐Adler J (1985) Automaton models of seismic fracture: constraints imposed by the frequency‐magnitude relation. J Geophys Res 95:491–501

    Google Scholar 

  67. Lomnitz‐Adler J (1988) The theoretical seismicity of asperity models; an application to the coast of Oaxaca. Geophys J 95:491–501

    Google Scholar 

  68. Liu J, Chen Y, Shi Y, Vere-Jones D (1999) Coupled stress release model for time dependent earthquakes. Pure Appl Geophys 155:649–667

    Google Scholar 

  69. Loève M (1977) Probability Theory I, 4th edn. Springer, New York

    Google Scholar 

  70. Lu C, Vere-Jones D (2001) Statistical analysis of synthetic earthquake catalogs generated by models with various levels of fault zone disorder. J Geophys Res 106:11115–11125

    Google Scholar 

  71. Lu C, Harte D, Bebbington M (1999) A linked stress release model for Japanese historical earthquakes: coupling among major seismic regions. Earth Planet. Science 51:907–916

    Google Scholar 

  72. Macdonald II, Zucchini W (1997) Hidden Markov and Other Models for Discrete‐Valued Time Series. Chapman and Hall, London

    Google Scholar 

  73. Main IG, Burton PW (1984) Information theory and the earthquake frequency‐magnitude distribution. Bull Seismol Soc Am 74:1409–1426

    Google Scholar 

  74. Mandelbrot BB (1977) Fractals: Form, Chance and Dimension. Freeman, San Francisco

    Google Scholar 

  75. Mandelbrot BB (1989) Multifractal measures, especially for the geophysicist. Pure Appl Geophys 131:5–42

    Google Scholar 

  76. Martínez VJ, Saar E (2002) Statistics of the Galaxy Distribution. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  77. Matsu'ura RS (1986) Precursory quiescence and recovery of aftershock activities before some large aftershocks. Bull Earthq Res Inst Tokyo 61:1–65

    Google Scholar 

  78. Matsu'ura RS, Karakama I (2005) A point process analysis of the Matsushiro earthquake swarm sequence: the effect of water on earthquake occurrence. Pure Appl Geophys 162 1319–1345. doi:10.1007/s00024-005-2762-0

    Google Scholar 

  79. Matthews MV, Ellsworth WL, Reasenberg PA (2002) A Brownian model for recurrent earthquakes. Bull Seism Soc Amer 92:2232–2250

    Google Scholar 

  80. Merrifield A, Savage MK, Vere-Jones D (2004) Geographical distributions of prospective foreshock probabilities in New Zealand. J Geol Geophys 47:327–339, New Zealand

    Google Scholar 

  81. Michael A (1997) Test prediction methods: earthquake clustering versus the Poisson model. Geophys Res Lett 24:1891–1894

    Google Scholar 

  82. Mogi K (1962) Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull Earthq Res Inst Tokyo Univ 40:125–173

    Google Scholar 

  83. Mogi K (1985) Earthquake Prediction. Academic Press, Tokyo

    Google Scholar 

  84. Molchan GM (1990) Strategies in strong earthquake prediction. Phys Earth Plan Int 61:84–98

    Google Scholar 

  85. Molchan GM, Kagan YY (1992) Earthquake prediction and its optimization. J Geophys Res 106:4823–4838

    Google Scholar 

  86. Ogata Y (1988) Statistical models for earthquake occurrence and residual analysis for point processes. J Amer Stat Soc 83:9–27

    Google Scholar 

  87. Ogata Y (1998) Space-time point process models for earthquake occurrences. Annals Inst Stat Math 50:379–402

    Google Scholar 

  88. Ogata Y (1999) Estimating the hazard of rupture using uncertain occurrence times of paleoearthquakes. J Geophys Res 104:17995–18014

    Google Scholar 

  89. Ogata Y (2005) Detection of anomalous seismicity as a stress change sensor. J Geophys Res 110(B5):B05S06. doi:10.1029/2004JB003245

    Google Scholar 

  90. Ogata Y, Utsu T, Katsura K (1996) Statistical discrimination of foreshocks from other earthquake clusters. Geophys J Int 127:17–30

    Google Scholar 

  91. Ogata Y, Jones L, Toda S (2003) When and where the aftershock activity was depressed: Contrasting decay patterns of the proximate large earthquakes in southern California. J Geophys Res 108(B6):2318. doi:10.1029/2002JB002009

    Google Scholar 

  92. Omori F (1894) On aftershocks of earthquakes. J Coll Sci Imp Acad Tokyo 7:111–200

    Google Scholar 

  93. Otsuka M (1972) A chain reaction type source model as a tool to interpret the magnitude‐frequency relation of earthquakes. J Phys Earth 20:35–45

    Google Scholar 

  94. Pietavolo A, Rotondi R (2000) Analyzing the interevent time distribution to identify seismicity patterns: a Bayesian non‐parametric approach to the multiple change‐point problem. Appl Stat 49:543–562

    Google Scholar 

  95. Pisarenko DV, Pisarenko VF (1995) Statistical estimation of the correlation dimension. Phys Lett A 197:31–39

    Google Scholar 

  96. Reasenberg PA (1999) Foreshock occurrence before large earthquakes. J Geophys Res 104:4755–4768

    Google Scholar 

  97. Reasenberg PA, Jones LM (1989) Earthquake hazard after a mainshock in California. Sci 243:1173–1176

    CAS  Google Scholar 

  98. Reid HF (1911) The elastic‐rebound theory of earthquakes. Bull Dept Geol Univ Calif 6:413–444

    Google Scholar 

  99. Renyi A (1959) On the dimension and entropy of probability distributions. Acta Math 10:193–215

    Google Scholar 

  100. Rhoades DA (2007) Application of the EEPAS model to forecasting earthquakes of moderate magnitude in Southern California. Seismol Res Lett 78:110–115

    Google Scholar 

  101. Rhoades DA, Evison FF (2004) Long-range earthquake forecasting with every event a precursor according to scale. Pure Appl Geophys 161:147–171

    Google Scholar 

  102. Rhoades DA, Evison FF (2005) Test of the EEPAS forecasting model on the Japan earthquake catalogue. Pure Appl Geophys 162:1271–1290

    Google Scholar 

  103. Rhoades DA, Van Dissen RJ (2003) Estimation of the time‐varying hazard of rupture of the Alpine Fault of New Zealand, allowing for uncertainties. NZ J Geol Geophys 40:479–488

    Google Scholar 

  104. Ripley BD (1988) Statistical Inference for Spatial Processes. University Press, Cambridge

    Google Scholar 

  105. Robinson R (2000) A test of the precursory accelerating moment release model on some recent New Zealand earthquakes. Geophys J Int 140:568–576. doi:10.1046/j.1365-246X2000.00054.x

    Google Scholar 

  106. Robinson R, Benites R (1995) Synthetic seismicity models for the Wellington region of New Zealand: implications for the temporal distribution of large events. J Geophys Res 100:18229–18238. doi:10.1029/95JB01569

    Google Scholar 

  107. Rundle JB, Klein W, Tiampo K, Gross S (2000) Dynamics of seismicity patterns in systems of earthquake faults. In: Geocomplexity and the Physics of Earthquakes. Geophysical Monograph 120, American Geophysical Union

    Google Scholar 

  108. Saito M, Kikuchi M, Kudo M (1973) An analytical solution of: Go-game model of earthquakes. Zishin 26:19–25

    Google Scholar 

  109. Scholz CH (1968) The frequency‐magnitude relation of microfaulting in rock and its relation to earthquakes. Bull Seism Soc Am 58:399–415

    Google Scholar 

  110. Scholz CH (1990) The Mechanics of Earthquakes and Faulting. Cambridge University Press, New York

    Google Scholar 

  111. Schorlemmer D, Gerstenberger MC, Wiemer S, Jackson DD, Rhoades DA (2007) Earthquake likelihood model testing. Seismol Res Lett 78:17–29

    Google Scholar 

  112. Schuster A (1897) On lunar and solar periodicities of earthquakes. Proc Roy Soc London 61:455–465

    Google Scholar 

  113. Schwartz DP, Coppersmith K (1984) Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas Faults. J Geophys Res 89:5681–5698

    Google Scholar 

  114. Shi YL, Liu J, Chen Y, Vere-Jones D (1999) Coupled stress release models for time‐dependent seismicity. J Pure Appl Geophys 155:649–667

    Google Scholar 

  115. Shi Y, Liu J, Zhang G (2001) An evaluation of Chinese annual earthquake predictions, 1990–1998. J Appl Prob 38A:222–231

    Google Scholar 

  116. Shimazaki K, Nakata T (1980) Time‐predictable recurrence model for large earthquakes. Geophys Res Lett 7:179–282

    Google Scholar 

  117. Smith WD (1986) Evidence for precursory changes in the frequency‐magnitude b‑value. Geophys J Roy Astron Soc 86:815–838

    Google Scholar 

  118. Smith WD (1998) Resolution and significance assessment of precursory changes in mean earthquake magnitude. Geophys J Int 135:515–522

    Google Scholar 

  119. Stoyan D, Stoyan H (1994) Fractals, Random Shapes and Point Fields. Wiley, Chichester

    Google Scholar 

  120. Tiampo KF, Rundle JB, Klein W, Ben-Zion Y, McGinnis SA (2004) Using eigenpattern analysis to constrain seasonal signals in Southern California. Pure Appl Geophys 16:19–10, 1991 V2003. doi:10.1007/s00024-004-2545-y

    Google Scholar 

  121. Turcotte DL (1992) Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  122. Utsu T (1961) A statistical study on the properties of aftershocks. Geophys Mag 30:521–605

    Google Scholar 

  123. Utsu T, Ogata Y (1997) IASPEI Softw Libr 6:13–94

    Google Scholar 

  124. Utsu T, Ogata Y, Matu'ura RS (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43:1–33

    Google Scholar 

  125. Vere-Jones D (1969) A note on the statistical interpretation of Båth's law. Bull Seismol Soc Amer 59:1535–1541

    Google Scholar 

  126. Vere-Jones D (1970) Stochastic models for earthquake occurrence. J Roy Stat Soc B 32:1–62

    Google Scholar 

  127. Vere-Jones D (1977) Statistical theories for crack propagation. Pure Appl Geophys 114:711–726

    Google Scholar 

  128. Vere-Jones D (1978) Space‐time correlations of microearthquakes – a pilot study. Adv App Prob 10:73–87, supplement

    Google Scholar 

  129. Vere-Jones D (1978) Earthquake prediction: a statistician's view. J Phys Earth 26:129–146

    Google Scholar 

  130. Vere-Jones D (1995) Forecasting earthquakes and earthquake risk. Int J Forecast 11:503–538

    Google Scholar 

  131. Vere-Jones D (1999) On the fractal dimension of point patterns. Adv Appl Prob 31:643–663

    Google Scholar 

  132. Vere-Jones D (2003) A class of self‐similar random measures. Adv Appl Prob 37:908–914

    Google Scholar 

  133. Vere-Jones D, Davies RB (1966) A statistical analysis of earthquakes in the main seismic region of New Zealand. J Geol Geophys 9:251–284

    Google Scholar 

  134. Vere-Jones D, Ozaki T (1982) Some examples of statistical inference applied to earthquake data. Ann Inst Stat Math 34:189–207

    Google Scholar 

  135. Vere-Jones D, Robinson R, Yang W (2001) Remarks on the accelerated moment release model for earthquake forecasting: problems of simulation and estimation. Geophys J Int 144:515–531

    Google Scholar 

  136. von Bortkiewicz L (1898) Das Gesetz der kleinen Zahlen. Teubner, Leipzig

    Google Scholar 

  137. Weibull W (1939) A statistical theory of the strength of materials. Ingvetensk Akad Handl no 151

    Google Scholar 

  138. Working Group on Californian Earthquake Probabilities (1990) Probabilities of earthquakes in the San Francisco Bay region of California. US Geological Survey Circular 153

    Google Scholar 

  139. Yin X, Yin C (1994) The precursor of instability for non‐linear systems and its application to the case of earthquake prediction – the load‐unload response ratio theory. In: Newman WI, Gabrielov AM (eds) Nonlinear dynamics and Predictability of Natural Phenomena. AGU Geophysical Monograph 85:55–66

    Google Scholar 

  140. Zheng X, Vere-Jones D (1994) Further applications of the stress release model to historical earthquake data. Tectonophysics 229:101–121

    Google Scholar 

  141. Zhuang J (2000) Statistical modelling of seismicity patterns before and after the 1990 Oct 5 Cape Palliser earthquake, New Zealand. NZ J Geol Geophys 43:447–460

    Google Scholar 

  142. Zhuang J, Yin X (2000) The random distribution of the loading and unloading response ratio under the assumptions of the Poisson model. Earthq Res China 14:38–48

    Google Scholar 

  143. Zhuang J, Ogata Y, Vere-Jones D (2004) Analyzing earthquake clustering features by using stochastic reconstruction. J Geophys Res 109(B5):B05301. doi:10.1029/2003JB002879

    Google Scholar 

  144. Zhuang J, Vere-Jones D, Guan H, Ogata Y, Ma L (2005) Preliminary analysis of precursory information in the observations on the ultra low frequency electric field in the Beijing region. Pure Appl Geophys 162:1367–1396. doi:10.10007/s00024-004-2674-3

    Google Scholar 

Download references

Acknowledgments

I am very grateful to friends and colleagues, especially David Harte, Mark Bebbington, David Rhoades and Yehuda Ben-Zion, for helpful discussions, correcting errors and plugging gaps.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Vere-Jones, D. (2011). Earthquake Occurrence and Mechanisms, Stochastic Models for. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_21

Download citation

Publish with us

Policies and ethics