Genome Exploitation and Bioinformatics Tools

  • Anne de Jong
  • Auke J. van Heel
  • Oscar P. Kuipers


Bioinformatic tools can greatly improve the efficiency of bacteriocin screening efforts by limiting the amount of strains. Different classes of bacteriocins can be detected in genomes by looking at different features. Finding small bacteriocins can be especially challenging due to low homology and because small open reading frames (ORFs) are often omitted from annotations. In this chapter, several bioinformatic tools/strategies to identify bacteriocins in genomes are discussed.


  1. Begley M, Cotter PD, Hill C, Ross RP (2009) Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol 75:5451–5460CrossRefGoogle Scholar
  2. Blom EJ, Bosman DWJ, Van Hijum SAFT, Breitling R, Tijsma L, Silvis R, Roerdink JBTM, Kuipers OP (2007) FIVA: Functional Information Viewer and Analyzer extracting biological knowledge from transcriptome data of prokaryotes. Bioinformatics 23:1161–1163CrossRefGoogle Scholar
  3. Blom EJ, van Hijum SA, Hofstede KJ, Silvis R, Roerdink JB, Kuipers OP (2008) DISCLOSE: DISsection of CLusters Obtained by SEries of transcriptome data using functional annotations and putative transcription factor binding sites. BMC Bioinform 9:535CrossRefGoogle Scholar
  4. Blom EJ, Roerdink JBTM, Kuipers OP, Van Hijum SAFT (2009) MOTIFATOR: detection and characterization of regulatory motifs using prokaryote transcriptome data. Bioinformatics 25:550–551CrossRefGoogle Scholar
  5. de Jong A, van Hijum SAFT, Bijlsma JJE, Kok J, Kuipers OP (2006) BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res 34:W273–W279CrossRefGoogle Scholar
  6. de Jong A, van Heel AJ, Kok J, Kuipers OP (2010) BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res 38:W647–W651CrossRefGoogle Scholar
  7. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679CrossRefGoogle Scholar
  8. Hammami R, Zouhir A, Hamida B, Fliss I (2007) BACTIBASE: a new web-accessible database for bacteriocin characterization. BMC Microbiol 7:89CrossRefGoogle Scholar
  9. Holtsmark I, Eijsink VH, Brurberg M (2008) Bacteriocins from plant pathogenic bacteria. FEMS Microbiol Lett 280:1–7CrossRefGoogle Scholar
  10. Knoll C, Divol B, du Toit M (2008) Genetic screening of lactic acid bacteria of oenological origin for bacteriocin-encoding genes. Food Microbiol 25:983–991CrossRefGoogle Scholar
  11. McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci U S A 103:17423–17428CrossRefGoogle Scholar
  12. Navarro L, Rojo-Bezares B, Sáenz Y, Díez L, Zarazaga M, Ruiz-Larrea F, Torres C (2008) Comparative study of the pln locus of the quorum-sensing regulated bacteriocin-producing L. plantarum J51 strain. Int J Food Microbiol 128:390–394CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anne de Jong
  • Auke J. van Heel
  • Oscar P. Kuipers
    • 1
  1. 1.Department of Molecular GeneticsUniversity of Groningen, Groningen Biomolecular Sciences and Biotechnology InstituteGroningenThe Netherlands

Personalised recommendations