Advertisement

Classification of Bacteriocins from Gram-Positive Bacteria

  • Mary C. Rea
  • R. Paul Ross
  • Paul D. Cotter
  • Colin Hill
Chapter

Abstract

Bacteriocins are ribosomally synthesised antimicrobial peptides produced by bacteria, including many Gram-positive species. The classification of bacteriocins from Gram-positive bacteria is complicated by their heterogeneity and thus, as the number of Gram-positive bacteriocins identified has continued to increase, classification schemes have had to continuously evolve. Here, we review the various classification approaches, both historical and current, their underlying scientific basis and their relative merit, and suggest a rational scheme given the state of the art.

Keywords

Lactic Acid Bacterium Lactic Acid Bacterium Bacteriocin Circular Bacteriocin Bacteriocin Gene Cluster Enterococcal Bacteriocin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Begley M, Cotter PD, Hill C, Ross RP (2009) Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol 75:5451–5460CrossRefGoogle Scholar
  2. Beukes M, Bierbaum G, Sahl HG, Hastings JW (2000) Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Appl Environ Microbiol 66:23–28CrossRefGoogle Scholar
  3. Bonelli RR, Schneider T, Sahl HG, Wiedemann I (2006) Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob Agents Chemother 50:1449–1457CrossRefGoogle Scholar
  4. Brede DA, Faye T, Johnsborg O, Odegard I, Nes IF, Holo H (2004) Molecular and genetic characterization of propionicin F, a bacteriocin from Propionibacterium freudenreichii. Appl Environ Microbiol 70:7303–7310CrossRefGoogle Scholar
  5. Bressolier P, Brugo MA, Robineau P, Schmitter M, Sofeir M, et al. 2007. Peptide compound with biological activity, its preparation and application. WIPO PCT/IB2007/0022003. FranceGoogle Scholar
  6. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl H, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364CrossRefGoogle Scholar
  7. Browder HP, Zygmunt WA, Young JR, Tavormina PA (1965) Lysostaphin: enzymatic mode of action. Biochem Biophys Res Commun 19:383–389CrossRefGoogle Scholar
  8. Castiglione F, Lazzarini A, Carrano L, Corti E, Ciciliato I, Gastaldo L, Candiani P, Losi D, Marinelli F, Selva E, Parenti F (2008) Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 15:22–31CrossRefGoogle Scholar
  9. Chikindas ML, Garcia-Garcera MJ, Driessen AJ, Ledeboer AM, Nissen-Meyer J, Nes IF, Abee T, Konings WN, Venema G (1993) Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol 59:3577–3584Google Scholar
  10. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788CrossRefGoogle Scholar
  11. Criado R, Diep DB, Aakra A, Gutierrez J, Nes IF, Hernandez PE, Cintas LM (2006) Complete sequence of the enterocin Q-encoding plasmid pCIZ2 from the multiple bacteriocin producer Enterococcus faecium L50 and genetic characterization of enterocin Q production and immunity. Appl Environ Microbiol 72:6653–6666CrossRefGoogle Scholar
  12. Delves-Broughton J (2005) Nisin as a food preservative. Food Australia 57:525–527Google Scholar
  13. Diep DB, Nes IF (2002) Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets 3:107–122CrossRefGoogle Scholar
  14. Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582CrossRefGoogle Scholar
  15. Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A 96:13294–13299CrossRefGoogle Scholar
  16. Eijsink VG, Skeie M, Middelhoven PH, Brurberg MB, Nes IF (1998) Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281Google Scholar
  17. Eijsink VG, Axelsson L, Diep DB, Havarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81:639–654CrossRefGoogle Scholar
  18. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106CrossRefGoogle Scholar
  19. Fimland G, Johnsen L, Axelsson L, Brurberg MB, Nes IF, Eijsink VG, Nissen-Meyer J (2000) A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J Bacteriol 182:2643–2648CrossRefGoogle Scholar
  20. Fimland N, Rogne P, Fimland G, Nissen-Meyer J, Kristiansen PE (2008) Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF. Biochim Biophys Acta 1784:1711–1719Google Scholar
  21. Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF, Collins JK (2002) Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 148:973–984Google Scholar
  22. Fontecave M, Atta M, Mulliez E (2004) S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29:243–249CrossRefGoogle Scholar
  23. Franz CM, Belkum MJ, Holzapfel WH, Abriouel H, Galvez A (2007) Diversity of enterococcal bacteriocins and their groupings in a new classification scheme. FEMS Microbiol Rev 31:293–310CrossRefGoogle Scholar
  24. Fregeau Gallagher NL, Sailer M, Niemczura WP, Nakashima TT, Stiles ME, Vederas JC (1997) Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36:15062–15072CrossRefGoogle Scholar
  25. Ganzle MG, Weber S, Hammes WP (1999) Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int J Food Microbiol 46:207–217CrossRefGoogle Scholar
  26. Garneau S, Martin NI, Vederas JC (2002) Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84:577–592CrossRefGoogle Scholar
  27. Garneau S, Ference CA, van Belkum MJ, Stiles ME, Vederas JC (2003) Purification and characterization of brochocin A and brochocin B(10-43), a functional fragment generated by heterologous expression in Carnobacterium piscicola. Appl Environ Microbiol 69:1352–1358CrossRefGoogle Scholar
  28. Geis A, Singh J, Teuber M (1983) Potential of lactic streptococci to produce bacteriocin. Appl Environ Microbiol 45:205–211Google Scholar
  29. Gong X, Martin-Visscher LA, Nahirney D, Vederas JC, Duszyk M (2009) The circular bacteriocin, carnocyclin A, forms anion-selective channels in lipid bilayers. Biochim Biophys Acta 1788:1797–1803CrossRefGoogle Scholar
  30. Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA (2010) Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol 8:e1000339CrossRefGoogle Scholar
  31. Haugen HS, Fimland G, Nissen-Meyer J, Kristiansen PE (2005) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A. Biochemistry 44:16149–16157CrossRefGoogle Scholar
  32. Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Riley MA, Chavan MA (eds) Bacteriocins: ecology and evolution. Springer, BerlinGoogle Scholar
  33. Herranz C, Chen Y, Chung HJ, Cintas LM, Hernandez PE, Montville TJ, Chikindas ML (2001a) Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. Appl Environ Microbiol 67:1689–1692CrossRefGoogle Scholar
  34. Herranz C, Cintas LM, Hernandez PE, Moll GN, Driessen AJ (2001b) Enterocin P causes potassium ion efflux from Enterococcus faecium T136 cells. Antimicrob Agents Chemother 45:901–904CrossRefGoogle Scholar
  35. Hickey RM, Twomey DP, Ross RP, Hill C (2003) Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology 149:655–664CrossRefGoogle Scholar
  36. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171–200Google Scholar
  37. Jacob F, Lwoff A, Siminovitch A, Wollman E (1953) Definition de quelque termes relatifs a la lysogenie. Ann Inst Pasteur (Paris) 84:222–224Google Scholar
  38. Jimenez MA, Barrachi-Saccilotto AC, Valdivia E, Maqueda M, Rico M (2005) Design, NMR characterization and activity of a 21-residue peptide fragment of bacteriocin AS-48 containing its putative membrane interacting region. J Pept Sci 11:29–36CrossRefGoogle Scholar
  39. Jimenez-Diaz R, Ruiz-Barba JL, Cathcart DP, Holo H, Nes IF, Sletten KH, Warner PJ (1995) Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl Environ Microbiol 61:4459–4463Google Scholar
  40. Joerger MC, Klaenhammer TR (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167:439–446Google Scholar
  41. Johnsen L, Fimland G, Nissen-Meyer J (2005) The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem 280:9243–9250CrossRefGoogle Scholar
  42. Jung G (1991) Lantibiotics: a survey. In Nisin and novel lantibiotics G Jung and HG Sahl Editors ESCOM Science Publishers, BV LeidenGoogle Scholar
  43. Kalmokoff ML, Cyr TD, Hefford MA, Whitford MF, Teather RM (2003) Butyrivibriocin AR10, a new cyclic bacteriocin produced by the ruminal anaerobe Butyrivibrio fibrisolvens AR10: characterization of the gene and peptide. Can J Microbiol 49:763–773CrossRefGoogle Scholar
  44. Kaur K, Andrew LC, Wishart DS, Vederas JC (2004) Dynamic relationships among type IIa bacteriocins: temperature effects on antimicrobial activity and on structure of the C-terminal amphipathic alpha helix as a receptor-binding region. Biochemistry 43:9009–9020CrossRefGoogle Scholar
  45. Kawai Y, Saitoh B, Takahashi O, Kitazawa H, Saito T, Nakajima H, Itoh T (2000) Primary amino acid and DNA sequences of gassericin T, a lactacin F-family bacteriocin produced by Lactobacillus gasseri SBT2055. Biosci Biotechnol Biochem 64:2201–2208CrossRefGoogle Scholar
  46. Kawai Y, Kemperman R, Kok J, Saito T (2004) The circular bacteriocins gassericin A and circularin A. Curr Protein Pept Sci 5:393–398CrossRefGoogle Scholar
  47. Kawulka K, Sprules T, McKay RT, Mercier P, Diaper CM, Zuber P, Vederas JC (2003) Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to alpha-carbons of phenylalanine and threonine. J Am Chem Soc 125:4726–4727CrossRefGoogle Scholar
  48. Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers O, Kok J (2003) Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl Environ Microbiol 69:1589–1597CrossRefGoogle Scholar
  49. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85Google Scholar
  50. Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR, Willey JM (2004) The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A 101:11448–11453CrossRefGoogle Scholar
  51. Kodani S, Lodato MA, Durrant MC, Picart F, Willey JM (2005) SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes. Mol Microbiol 58:1368–1380CrossRefGoogle Scholar
  52. Kozak W, Bardowski J, Dobrzanski WT (1978) Lactostrepcins – acid bacteriocins produced by lactic streptococci. J Dairy Res 45:247–257CrossRefGoogle Scholar
  53. Lawton EM, Cotter PD, Hill C, Ross RP (2007) Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267:64–71CrossRefGoogle Scholar
  54. Leer RJ, van der Vossen JM, van Giezen M, van Noort JM, Pouwels PH (1995) Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 141(Pt 7):1629–1635CrossRefGoogle Scholar
  55. Maqueda M, Sanchez-Hidalgo M, Fernandez M, Montalban-Lopez M, Valdivia E, Martinez-Bueno M (2008) Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev 32:2–22CrossRefGoogle Scholar
  56. Martin-Visscher LA, van Belkum MJ, Garneau-Tsodikova S, Whittal RM, Zheng J, McMullen LM, Vederas JC (2008) Isolation and characterization of carnocyclin A, a novel circular bacteriocin produced by Carnobacterium maltaaromaticum UAL 307. Appl Environ Microbiol 74:4756–4763Google Scholar
  57. Martin-Visscher LA, Gong X, Duszyk M, Vederas JC (2009) The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif. J Biol Chem 284:28674–28681CrossRefGoogle Scholar
  58. Marx R, Stein T, Entian KD, Glaser SJ (2001) Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. J Protein Chem 20:501–506CrossRefGoogle Scholar
  59. McCormick JK, Poon A, Sailer M, Gao Y, Roy KL, McMullen LM, Vederas JC, Stiles ME, Van Belkum MJ (1998) Genetic characterization and heterologous expression of brochocin-C, an antibotulinal, two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754. Appl Environ Microbiol 64:4757–4766Google Scholar
  60. Meindl K, Schmiederer T, Schneider K, Reicke A, Butz D, Keller S, Guhring H, Vertesy L, Wink J, Hoffmann H, Bronstrup M, Sheldrick GM, Sussmuth RD (2010) Labyrinthopeptins: a new class of carbacyclic lantibiotics. Angew Chem Int Ed Engl 49:1151–1154CrossRefGoogle Scholar
  61. Mogi T, Kita K (2009) Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 66:3821–3826CrossRefGoogle Scholar
  62. Morgan SM, O’Connor PM, Cotter PD, Ross RP, Hill C (2005) Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob Agents Chemother 49:2606–2611CrossRefGoogle Scholar
  63. Muriana PM, Klaenhammer TR (1991) Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl Environ Microbiol 57:114–121Google Scholar
  64. Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128CrossRefGoogle Scholar
  65. Nes IF, Holo H, Fimland G, Hauge HH, Nissen-Meyer J (2002) Unmodified peptide-bacteriocins (Class II) produced by lactic acid bacteria. In: Dutton CJ, Haxell MA, McArthur HAI, Wax RG (eds) Peptide antibiotics: discovery, modes of action and applications. Marcel Dekker, New York, pp 81–115Google Scholar
  66. Nissen-Meyer J, Holo H, Havarstein LS, Sletten K, Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692Google Scholar
  67. Nissen-Meyer J, Rogne P, Oppegard C, Haugen HS, Kristiansen PE (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10:19–37CrossRefGoogle Scholar
  68. Oman TJ, van der Donk WA (2009) Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem Biol 4:865–874CrossRefGoogle Scholar
  69. Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J (2007) The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol 13:210–219CrossRefGoogle Scholar
  70. O’Shea EF, Gardiner GE, O’Connor PM, Mills S, Ross RP, Hill C (2009) Characterization of enterocin- and salivaricin-producing lactic acid bacteria from the mammalian gastrointestinal tract. FEMS Microbiol Lett 291:24–34CrossRefGoogle Scholar
  71. Pag U, Sahl HG (2002) Multiple activities in lantibiotics–models for the design of novel antibiotics? Curr Pharm Des 8:815–833CrossRefGoogle Scholar
  72. Papagianni M, Anastasiadou S (2009) Pediocins: the bacteriocins of Pediococci. Sources, production, properties and applications. Microb Cell Fact 8:3Google Scholar
  73. Pasteur L, Joubert JF (1877) Charbon et septicemie. C R Soc Biol Paris 85:101–115Google Scholar
  74. Piper C, Cotter PD, Ross RP, Hill C (2009) Discovery of medically significant lantibiotics. Curr Drug Discov Technol 6:1–18CrossRefGoogle Scholar
  75. Rea MC, Sit CS, Clayton E, O’Connor PM, Whittal RM, Zheng J, Vederas JC, Ross RP, Hill C (2010) Thuricin CD, a postranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci U S A 107:9352–9357CrossRefGoogle Scholar
  76. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137CrossRefGoogle Scholar
  77. Rogers LA, Whittier EO (1928) Limiting factors in lactic fermentation. J Bacteriol 16:211–214Google Scholar
  78. Rogne P, Fimland G, Nissen-Meyer J, Kristiansen PE (2008) Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin lactococcin G. Biochim Biophys Acta 1784:543–554Google Scholar
  79. Rogne P, Haugen C, Fimland G, Nissen-Meyer J, Kristiansen PE (2009) Three-dimensional structure of the two-peptide bacteriocin plantaricin JK. Peptides 30:1613–1621CrossRefGoogle Scholar
  80. Rojo-Bezares B, Saenz Y, Navarro L, Zarazaga M, Ruiz-Larrea F, Torres C (2007) Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must. Food Microbiol 24:482–491CrossRefGoogle Scholar
  81. Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K, Nakayama J, Sonomoto K (2009) Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl Environ Microbiol 75:1552–1558CrossRefGoogle Scholar
  82. Schindler CA, Schuhardt VT (1964) Lysostaphin: A New Bacteriolytic Agent for the Staphylococcus. Proc Natl Acad Sci U S A 51:414–421CrossRefGoogle Scholar
  83. Senes A, Engel DE, DeGrado WF (2004) Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 14:465–479CrossRefGoogle Scholar
  84. Simmonds RS, Simpson WJ, Tagg JR (1997) Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189:255–261CrossRefGoogle Scholar
  85. Simon L, Fremaux C, Cenatiempo Y, Berjeaud JM (2002) Sakacin g, a new type of antilisterial bacteriocin. Appl Environ Microbiol 68:6416–6420CrossRefGoogle Scholar
  86. Sprules T, Kawulka KE, Gibbs AC, Wishart DS, Vederas JC (2004) NMR solution structure of the precursor for carnobacteriocin B2, an antimicrobial peptide from Carnobacterium piscicola. Eur J Biochem 271:1748–1756CrossRefGoogle Scholar
  87. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of Gram-positive bacteria. Bacteriol Rev 40:722–756Google Scholar
  88. Tahara T, Oshimura M, Umezawa C, Kanatani K (1996) Isolation, partial characterization, and mode of action of Acidocin J1132, a two-component bacteriocin produced by Lactobacillus acidophilus JCM 1132. Appl Environ Microbiol 62:892–897Google Scholar
  89. Twomey D, Ross RP, Ryan M, Meaney B, Hill C (2002) Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 82:165–185CrossRefGoogle Scholar
  90. Ueda K, Oinuma K, Ikeda G, Hosono K, Ohnishi Y, Horinouchi S, Beppu T (2002) AmfS, an extracellular peptidic morphogen in Streptomyces griseus. J Bacteriol 184:1488–1492CrossRefGoogle Scholar
  91. Uteng M, Hauge HH, Markwick PR, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C (2003) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42:11417–11426CrossRefGoogle Scholar
  92. Valdes-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814Google Scholar
  93. Vaughan A, Eijsink VG, O’Sullivan TF, O’Hanlon K, van Sinderen D (2001) An analysis of bacteriocins produced by lactic acid bacteria isolated from malted barley. J Appl Microbiol 91:131–138CrossRefGoogle Scholar
  94. Wiedemann I, Bottiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, Sahl HG (2006) The mode of action of the lantibiotic lacticin 3147 – a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol 61:285–296CrossRefGoogle Scholar
  95. Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501CrossRefGoogle Scholar
  96. Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR (2007) Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology 153:1619–1630CrossRefGoogle Scholar
  97. Zendo T, Koga S, Shigeri Y, Nakayama J, Sonomoto K (2006) Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Appl Environ Microbiol 72:3383–3389CrossRefGoogle Scholar
  98. Zheng G, Hehn R, Zuber P (2000) Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 182:3266–3273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mary C. Rea
  • R. Paul Ross
  • Paul D. Cotter
    • 1
    • 2
  • Colin Hill
  1. 1.Teagasc, Moorepark Food Research CentreCorkIreland
  2. 2.Alimentary Pharmabiotic CentreUniversity College CorkCorkIreland

Personalised recommendations