Skip to main content

Bacteriocin-Mediated Competitive Interactions of Bacterial Populations and Communities

  • Chapter
  • First Online:
Prokaryotic Antimicrobial Peptides

Abstract

Explaining the coexistence of competing species is a major challenge in community ecology. In bacterial systems, competition is often driven by the production of bacteriocins; narrow spectrum proteinaceous toxins that serve to kill closely related species providing the producer better access to limited resources. Bacteriocin producers have been shown to competitively exclude sensitive, nonproducing strains. However, the interaction dynamics between bacteriocin producers, each lethal to its competitor, are largely unknown. Several recent studies have revealed some of the complexity of these interactions, employing a suite of in vitro, in vivo, and in silico bacterial model systems. This chapter describes the current state of knowledge regarding the population and community ecology of this potent family of toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aroutcheva AA, Simoes JA, Faro S (2001) Antimicrobial protein produced by vaginal Lactobacillus acidophilus that inhibits Gardnerella vaginalis. Infect Dis Obstet Gynecol 9:33–39

    Article  CAS  Google Scholar 

  • Aslim B, Kilic E (2006) Some probiotic properties of vaginal lactobacilli isolated from healthy women. Jpn J Infect Dis 59:249–253

    Google Scholar 

  • Audisio MC, Terzolo HR, and Apella MC (2005) Bacteriocin from honeybee beebread Enterococcus avium, active against Listeria monocytogenes. Appl Environ Microbiol 71, 3373–3375

    Google Scholar 

  • Avonts L, De Vuyst L (2001) Antimicrobial potential of probiotic lactic acid bacteria. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 66:543–550

    CAS  Google Scholar 

  • Barnes B, Sidhu H, Gordon DM (2007) Host gastro-intestinal dynamics and the frequency of colicin production by Escherichia coli. Microbiology 153:2823–2827

    Article  CAS  Google Scholar 

  • Brashears MM, Jaroni D, Trimble J (2003) Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. J Food Prot 66:355–363

    CAS  Google Scholar 

  • Braun V, Pilsl H, and Gross P (1994) Colicins: structures, modes of action, transfer through membranes, and evolution. Arch Microbiol 161, 199–206

    Google Scholar 

  • Breukink E, de Kruijff B (1999) The lantibiotic nisin, a special case or not? Biochim Biophys Acta 1462:223–234

    Article  CAS  Google Scholar 

  • Brown SP, Inglis RF, Taddei F (2009) Evolutionary ecology of microbial wars: within-host competition and (incidental) virulence. Evol Appl 2:32–39

    Article  Google Scholar 

  • Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, Postle K et al (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  Google Scholar 

  • Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 78:6324–6328

    Article  CAS  Google Scholar 

  • Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CGM (2007) Bacteriocin production as a mechanism for the antfinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 104:7617–7621

    Article  CAS  Google Scholar 

  • Czárán TL, Hoekstra RF, and Pagie L (2002) Chemical warfare between microbes promotes biodiversity. PNAS 99, 786–790.

    Google Scholar 

  • De Vuyst LVEJ (1994) Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applicationslactic acid bacteria. (London, Blackie Academic & Professional)

    Article  Google Scholar 

  • Diez-Gonzalez F (2007) Use of bacteriocin in livestock. In: Riley MA, Gillor O (eds) Research and applications in bacteriocins. Horizon Bioscience, Norfolk, pp 117–129

    Google Scholar 

  • Durrett R, Levin S (1997) Allelopathy in spatially distributed populations. J Theor Biol 185:165–171

    Article  Google Scholar 

  • Everett ML, Palestrant D, Miller SE, Bollinger RR, Parker W (2004) Immune exclusion and immune inclusion: a new model of host-bacterial interactions in the gut. Clin Appl Immunol Rev 4:321–332

    Article  CAS  Google Scholar 

  • Falagas ME, Betsi GI, Athanasiou S (2007) Probiotics for the treatment of women with bacterial vaginosis. Clin Microbiol Infect 13:657–664

    Article  CAS  Google Scholar 

  • Feldgarden M, Golden S, Wilson H, and Riley MA (1995) Can phage defence maintain colicin plasmids in Escherichia coli? Microbiology 141 (Pt 11), 2977–2984

    Google Scholar 

  • Frank SA (1994) Spatial polymorphism of bacteriocins and other allelopathic traits. Evol Ecol 8:369–386

    Article  Google Scholar 

  • Fredericq P, and Levine M (1947) Antibiotic Interrelationships among the Enteric Group of Bacteria. J Bacteriol 54:785–792

    Google Scholar 

  • Gardner A, West SA, Buckling A (2004) Bacteriocins, spite and virulence. Proc Biol Sci 271:1529–1535

    Article  CAS  Google Scholar 

  • Gillor O, Giladi I, and Riley MA (2009) Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol 9, 165

    Google Scholar 

  • Gillor O, Kirkup BC, Riley MA (2004) Colicins and microcins: the next generation antimicrobials. Adv Appl Microbiol 54:129–146

    Article  CAS  Google Scholar 

  • Gillor O, Vriezen JAC, Riley MA (2008) The role of SOS boxes in enteric bacteriocin regulation. Microbiology 154:1783–1792

    Article  CAS  Google Scholar 

  • Gordon DM, O’Brien CL (2006) Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 152:3239–3244

    Article  CAS  Google Scholar 

  • Gordon DM, Riley MA (1999) A theoretical and empirical investigation of the invasion dynamics of colicinogeny. Microbiology 145:655–661

    Article  CAS  Google Scholar 

  • Gordon DM, Riley MA, Pinou T (1998) Temporal changes in the frequency of colicinogeny in Escherichia coli from house mice. Microbiology 144:2233–2240

    Article  CAS  Google Scholar 

  • Gordon EA (2006) The diversity of Bacteriocins in Gram-negative bacteria. In Bacteriocins: Ecology and Evolution (Berlin, Springer), pp. 5–18

    Google Scholar 

  • Gratia, A. (1925). C R Soc Biol 93, 1040

    Google Scholar 

  • Heng NC, Burtenshaw GA, Jack RW, and Tagg JR (2007) Ubericin A, a class IIa bacteriocin produced by Streptococcus uberis. Appl Environ Microbiol 73:7763–7766

    Google Scholar 

  • Herschman HR, Helinski DR (1967) Comparative study of the events associated with colicin induction. J Bacteriol 94:691–699

    CAS  Google Scholar 

  • Hillman JD, Brooks TA, Michalek SM, Harmon CC, Snoep JL, van Der Weijden CC (2000) Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect Immun 68:543–549

    Article  CAS  Google Scholar 

  • Ikari NS, Kenton DM, Young VM (1969) Interaction in germfree mouse intestine of colicinogenic and colicin-sensitive microorganisms. Proc Soc Exp Biol Med 130:1280–1284

    CAS  Google Scholar 

  • Inglis RF, Gardner A, Cornelis P, Buckling A (2009) Spite and virulence in the bacterium Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106:5703–5707

    Article  CAS  Google Scholar 

  • Ivanovska I, Hardwick JM (2005) Viruses activate a genetically conserved cell death pathway in a unicellular organism. J Cell Biol 170:391–399

    Article  CAS  Google Scholar 

  • James R, Lazdunski C, and Pattus F (1991) Bacteriocins, Microcins and Lantibiotics. In NATO ASI series (New York, Springer-Verlag), p. 519

    Google Scholar 

  • James R, Penfold CN, Moore GR, Kleanthous C (2002) Killing of E. coli cells by E group nuclease colicins. Biochimie 84:381–389

    Article  CAS  Google Scholar 

  • Joerger RD (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 82:640–647

    CAS  Google Scholar 

  • Karolyi G, Neufeld Z, Scheuring I (2005) Rock-scissors-paper game in a chaotic flow: the effect of dispersion on the cyclic competition of microorganisms. J Theor Biol 236:12–20

    Article  Google Scholar 

  • Kerr B, Riley MA, Feldman MW, Bohannan BJ (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174

    Article  CAS  Google Scholar 

  • Kirkup BC, Riley MA (2004) Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412–414

    Article  CAS  Google Scholar 

  • Laird RA, and Schamp BS (2008) Does local competition increase the coexistence of species in intransitive networks? Ecology 89:237–247

    Google Scholar 

  • Majeed H, Gillor O, Kerr B, and Riley MA (2011) Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J 5:71–81

    Google Scholar 

  • McCormick BA, Franklin DP, Laux DC, and Cohen PS (1989) Type 1 pili are not necessary for colonization of the streptomycin-treated mouse large intestine by type 1-piliated Escherichia coli F-18 and E. coli K-12. Infect Immun 57:3022–3029

    Google Scholar 

  • Michel-Briand Y, and Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510.

    Google Scholar 

  • Miller MB, and Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199.

    Google Scholar 

  • Nakamaru M, Iwasa Y (2000) Competition by allelopathy proceeds in traveling waves: colicin-immune strain aids colicin-sensitive strain. Theor Popul Biol 57:131–144

    Article  CAS  Google Scholar 

  • Neumann G, Schuster S (2007) Continuous model for the rock-scissors-paper game between bacteriocin producing bacteria. J Math Biol 54:815–846

    Article  Google Scholar 

  • Nomura M, and Witten C (1967) Interaction of colicins with bacterial cells. 3. Colicin-tolerant mutations in Escherichia coli. J Bacteriol 94:1093–1111

    Google Scholar 

  • Pugsley AP (1985) Escherichia coli K12 strains for use in the identification and characterization of colicins. J Gen Microbiol 131:369–376

    CAS  Google Scholar 

  • Pugsley AP, and Oudega, B (1987) Methods for studying colicins and their plasmids. In Plasmids, a Practical Approach, K. Hardy, ed. (Oxford, IRL Press), pp. 105–161

    Google Scholar 

  • Riley MA (1998) Molecular mechanisms of bacteriocin evolution. Annu Rev Genet 32:255–278

    Google Scholar 

  • Riley MA, et al (2002). Bacteriocin mediated competitive interactions of bacterial populations and communities. Journal of Evolutionary Biology 16:690-697

    Google Scholar 

  • Riley MA, Goldstone CM, Wertz JE, and Gordon D. (2003). A phylogenetic approach to assessing the targets of microbial warfare. J Evol Biol 16, 690–697

    Google Scholar 

  • Riley MA, Gordon DM (1992) A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. J Gen Microbiol 138:1345–1352

    CAS  Google Scholar 

  • Riley MA, and Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Google Scholar 

  • Smarda J, and Smajs D (1998) Colicins–exocellular lethal proteins of Escherichia coli. Folia Microbiol (Praha) 43:563–582

    Google Scholar 

  • Tagg JR, Dajani AS, and Wannamaker LW (1976) Bacteriocins of gram positive bacteria. Bacteriol Rev 40:722–756

    Google Scholar 

  • Tan Y, and Riley MA (1996) Rapid invasion by colicinogenic Escherichia coli with novel immunity functions. Microbiology 142 ( Pt 8), 2175–2180

    Google Scholar 

  • Vriezen VAR (2009) The Evolution of reduced microbial killing. Genome Biology and Evolution 400–408

    Google Scholar 

  • Walker D, Rolfe M, Thompson A, Moore GR, James R, Hinton JCD, Kleanthous C (2004) Transcriptional profiling of colicin-induced cell death of Escherichia coli MG1655 identifies potential mechanisms by which bacteriocins promote bacterial diversity. J Bacteriol 186: 866–869

    Article  CAS  Google Scholar 

  • Webster RE (1991) The tol gene products and the import of macromolecules into Escherichia coli. Mol Microbiol 5:1005–1011

    Google Scholar 

  • Wertz JE, Goldstone C, Gordon DM, and Riley MA (2003) A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 16:1236–1248

    Google Scholar 

  • Wloch-Salamon DM, Gerla D, Hoekstra RF, de Visser J (2008) Effect of dispersal and nutrient availability on the competitive ability of toxin-producing yeast. Proc R Soc Lond B Biol Sci 275:535–541

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants R01GM068657-01A2 and R01A1064588-01A2 to M.A.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Riley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Riley, M.A. (2011). Bacteriocin-Mediated Competitive Interactions of Bacterial Populations and Communities. In: Drider, D., Rebuffat, S. (eds) Prokaryotic Antimicrobial Peptides. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7692-5_2

Download citation

Publish with us

Policies and ethics