Skip to main content

Class II Microcins

  • Chapter
  • First Online:

Abstract

Class II microcins are 4.9- to 8.9-kDa polypeptides produced by and active against enterobacteria. They are classified into two subfamilies according to their structure and their gene cluster arrangement. While class IIa microcins undergo no posttranslational modification, class IIb microcins show a conserved C-terminal sequence that carries a salmochelin-like siderophore motif as a posttranslational modification. Aside from this C-terminal end, which is the signature of class IIb microcins, some sequence similarities can be observed within and between class II subclasses, suggesting the existence of common ancestors. Their mechanisms of action are still under investigation, but several class II microcins use inner membrane proteins as cellular targets, and some of them are membrane-active. Like group B colicins, many, if not all, class II microcins are TonB- and energy-dependent and use catecholate siderophore receptors for recognition/­translocation across the outer membrane. In that context, class IIb microcins are considered to have developed molecular mimicry to increase their affinity for their outer membrane receptors through their salmochelin-like posttranslational modification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    CAS  Google Scholar 

  • Annamalai R, Jin B, Cao Z et al (2004) Recognition of ferric catecholates by FepA. J Bacteriol 186:3578–3589

    CAS  Google Scholar 

  • Azpiroz MF, Laviña M (2004) Involvement of enterobactin synthesis pathway in production of microcin H47. Antimicrob Agents Chemother 48:1235–1241

    CAS  Google Scholar 

  • Azpiroz MF, Rodríguez E, Laviña M (2001) The structure, function, and origin of the microcin H47 ATP-binding cassette exporter indicate its relatedness to that of colicin V. Antimicrob Agents Chemother 45:969–972

    CAS  Google Scholar 

  • Azpiroz MF, Poey ME, Laviña M (2009) Microcins and urovirulence in Escherichia coli. Microb Pathog 47:274–280

    CAS  Google Scholar 

  • Bäumler AJ, Tsolis RM, van der Velden AW et al (1996) Identification of a new iron regulated locus of Salmonella typhi. Gene 183:207–213

    Google Scholar 

  • Bäumler AJ, Norris TL, Lasco T et al (1998) IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. J Bacteriol 180:1446–1453

    Google Scholar 

  • Benabdelhak H, Kiontke S, Horn C et al (2003) A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin A. J Mol Biol 327:1169–1179

    CAS  Google Scholar 

  • Bieler S, Silva F, Soto C et al (2006) Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. J Bacteriol 188:7049–7061

    CAS  Google Scholar 

  • Bister B, Bischoff D, Nicholson GJ et al (2004) The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17:471–481

    CAS  Google Scholar 

  • Braun V, Patzer SI, Hantke K (2002) Ton-dependent colicins and microcins: modular design and evolution. Biochimie 84:365–380

    CAS  Google Scholar 

  • Brickman TJ, Ozenberger BA, McIntosh MA (1990) Regulation of divergent transcription from the iron-responsive fepB-entC promoter-operator regions in Escherichia coli. J Mol Biol 212:669–682

    CAS  Google Scholar 

  • Buchanan SK, Smith BS, Venkatramani L et al (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol 6:56–63

    CAS  Google Scholar 

  • Caza M, Lepine F, Milot S et al (2008) Specific roles of the iroBCDEN genes in virulence of an avian pathogenic Escherichia coli O78 strain and in production of salmochelins. Infect Immun 76:3539–3549

    CAS  Google Scholar 

  • Chehade H, Braun V (1988) Iron-regulated synthesis and uptake of colicin V. FEMS Microbiol Lett 52:177–182

    CAS  Google Scholar 

  • Cobbett CS, Delbridge ML (1987) Regulatory mutants of the aroF-tyrA operon of Escherichia coli K-12. J Bacteriol 169:2500–2506

    CAS  Google Scholar 

  • Corsini G, Baeza M, Monasterio O et al (2002) The expression of genes involved in microcin maturation regulates the production of active microcin E492. Biochimie 84:539–544

    CAS  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249

    CAS  Google Scholar 

  • Davidson AL, Maloney PC (2007) ABC transporters: how small machines do a big job. Trends Microbiol 15:448–455

    CAS  Google Scholar 

  • de Keyzer J, van der Does C, Driessen AJ (2003) The bacterial translocase: a dynamic protein channel complex. Cell Mol Life Sci 60:2034–2052

    Google Scholar 

  • de Lorenzo V (1984) Isolation and characterization of microcin E492 from Klebsiella pneumoniae. Arch Microbiol 139:72–75

    Google Scholar 

  • de Lorenzo V, Pugsley AP (1985) Microcin E492, a low-molecular-weight peptide antibiotic which causes depolarization of the Escherichia coli cytoplasmic membrane. Antimicrob Agents Chemother 27:666–669

    Google Scholar 

  • Demir M, Kaleli I (2004) Production by Escherichia coli isolates of siderophore and other virulence factors and their pathogenic role in a cutaneous infection model. Clin Microbiol Infect 10:1011–1014

    CAS  Google Scholar 

  • Destoumieux-Garzón D, Thomas X, Santamaria M et al (2003) Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol Microbiol 49:1031–1041

    Google Scholar 

  • Destoumieux-Garzón D, Duquesne S, Peduzzi J et al (2005) The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 beta-hairpin region in the recognition mechanism. Biochem J 389:869–876

    Google Scholar 

  • Destoumieux-Garzón D, Peduzzi J, Thomas X et al (2006) Parasitism of iron-siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. Biometals 19:181–191

    Google Scholar 

  • Dezfulian H, Tremblay D, Harel J (2004) Molecular characterization of extraintestinal pathogenic Escherichia coli (ExPEC) pathogenicity islands in F165-positive E. coli strain from a diseased animal. FEMS Microbiol Lett 238:321–332

    CAS  Google Scholar 

  • Dobrindt U, Blum-Oehler G, Hartsch T et al (2001) S-Fimbria-encoding determinant sfa(I) is located on pathogenicity island III(536) of uropathogenic Escherichia coli strain 536. Infect Immun 69:4248–4256

    CAS  Google Scholar 

  • Duquesne S, Destoumieux-Garzón D, Peduzzi J et al (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24:708–734

    CAS  Google Scholar 

  • Ecker DJ, Matzanke BF, Raymond KN (1986) Recognition and transport of ferric enterobactin in Escherichia coli. J Bacteriol 167:666–673

    CAS  Google Scholar 

  • Erni B, Zanolari B, Kocher HP (1987) The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem 262:5238–5247

    CAS  Google Scholar 

  • Fiedler HP, Krastel P, Müller J et al (2001) Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 196:147–151

    CAS  Google Scholar 

  • Fischbach MA, Lin H, Liu DR et al (2005) In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci USA 102:571–576

    CAS  Google Scholar 

  • Franke CM, Leenhouts KJ, Haandrikman AJ et al (1996) Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis. J Bacteriol 178:1766–1769

    CAS  Google Scholar 

  • Franke CM, Tiemersma J, Venema G et al (1999) Membrane topology of the lactococcal bacteriocin ATP-binding cassette transporter protein LcnC. Involvement of LcnC in lactococcin a maturation. J Biol Chem 274:8484–8490

    CAS  Google Scholar 

  • Fredericq P, Joiris E, Betz-Barreau M et al (1949) Recherche des gènes producteurs de colicines dans les selles de malades atteints de fièvre paratyphoïde B. C R Soc Biol 143:556–559

    Google Scholar 

  • Gaggero C, Moreno F, Laviña M (1993) Genetic analysis of microcin H47 antibiotic system.J Bacteriol 175:5420–5427

    CAS  Google Scholar 

  • Gaillard-Gendron S, Vignon D, Cottenceau G et al (2000) Isolation, purification and partial amino acid sequence of a highly hydrophobic new microcin named microcin L produced by Escherichia coli. FEMS Microbiol Lett 193:95–98

    CAS  Google Scholar 

  • Gehring AM, Bradley KA, Walsh CT (1997) Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2, 3-dihydroxybenzoate. Biochemistry 36:8495–8503

    CAS  Google Scholar 

  • Gehring AM, Mori I, Walsh CT (1998) Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37:2648–2659

    CAS  Google Scholar 

  • Gerard F, Pradel N, Wu LF (2005) Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. J Bacteriol 187:1945–1950

    CAS  Google Scholar 

  • Gillor O, Giladi I, Riley MA (2009) Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol 9:165

    Google Scholar 

  • Gilson L, Mahanty HK, Kolter R (1987) Four plasmid genes are required for colicin V synthesis, export, and immunity. J Bacteriol 169:2466–2470

    CAS  Google Scholar 

  • Gilson L, Mahanty HK, Kolter R (1990) Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J 9:3875–3884

    CAS  Google Scholar 

  • Gratia A (1925) Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. C R Soc Biol 93:1041–1042

    Google Scholar 

  • Grove CL, Gunsalus RP (1987) Regulation of the aroH operon of Escherichia coli by the tryptophan repressor. J Bacteriol 169:2158–2164

    CAS  Google Scholar 

  • Grozdanov L, Raasch C, Schulze J et al (2004) Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol 186:5432–5441

    CAS  Google Scholar 

  • Guo X, Harrison RW, Tai PC (2006) Nucleotide-dependent dimerization of the C-terminal domain of the ABC transporter CvaB in colicin V secretion. J Bacteriol 188:2383–2391

    CAS  Google Scholar 

  • Hantke K, Nicholson G, Rabsch W et al (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci USA 100:3677–3682

    CAS  Google Scholar 

  • Håvarstein LS, Holo H, Nes IF (1994) The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. Microbiology 140:2383–2389

    Google Scholar 

  • Håvarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240

    Google Scholar 

  • Heatwole VM, Somerville RL (1992) Synergism between the Trp repressor and Tyr repressor in repression of the aroL promoter of Escherichia coli K-12. J Bacteriol 174:331–335

    CAS  Google Scholar 

  • Hollenstein K, Dawson RJ, Locher KP (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17:412–418

    CAS  Google Scholar 

  • Kirkup BC, Riley MA (2004) Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412–414

    CAS  Google Scholar 

  • Koronakis V, Sharff A, Koronakis E et al (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919

    CAS  Google Scholar 

  • Koronakis V, Eswaran J, Hughes C (2004) Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467–489

    CAS  Google Scholar 

  • Lagos R, Wilkens M, Vergara C et al (1993) Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Lett 321:145–148

    CAS  Google Scholar 

  • Lagos R, Villanueva JE, Monasterio O (1999) Identification and properties of the genes encoding microcin E492 and its immunity protein. J Bacteriol 181:212–217

    CAS  Google Scholar 

  • Lagos R, Baeza M, Corsini G et al (2001) Structure, organization and characterization of the gene cluster involved in the production of microcin E492, a channel-forming bacteriocin. Mol Microbiol 42:229–243

    CAS  Google Scholar 

  • Lambalot RH, Gehring AM, Flugel RS et al (1996) A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol 3:923–936

    CAS  Google Scholar 

  • Laviña M, Pugsley AP, Moreno F (1986) Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K12. J Gen Microbiol 132:1685–1693

    Google Scholar 

  • Laviña M, Gaggero C, Moreno F (1990) Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli. J Bacteriol 172:6585–6588

    Google Scholar 

  • Lawlor MS, O’Connor C, Miller VL (2007) Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 75:1463–1472

    CAS  Google Scholar 

  • Letellier L, Santamaria M (2002) The biochemical and physiological characteristics of surface receptors of gram negative bacteria. Mini Rev Med Chem 2:343–351

    CAS  Google Scholar 

  • Lin H, Fischbach MA, Liu DR et al (2005) In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 127:11075–11084

    CAS  Google Scholar 

  • Ma L, Kaserer W, Annamalai R et al (2007) Evidence of ball-and-chain transport of ferric enterobactin through FepA. J Biol Chem 282:397–406

    CAS  Google Scholar 

  • Mercado G, Tello M, Marin M et al (2008) The production in vivo of microcin E492 with antibacterial activity depends on salmochelin and EntF. J Bacteriol 190:5464–5471

    CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    CAS  Google Scholar 

  • Moussatova A, Kandt C, O’Mara ML et al (2008) ATP-binding cassette transporters in Escherichia coli. Biochim Biophys Acta 1778:1757–1771

    CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    CAS  Google Scholar 

  • Nissle A (1925) Weiteres über Grundlagen und Praxis der Mutaflorbehandlung. Dtsch Med Wochenschr 44:1809–1813

    Google Scholar 

  • Nolan EM, Walsh CT (2008) Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form “trojan horse” antibiotics. Biochemistry 47:9289–9299

    CAS  Google Scholar 

  • Nolan EM, Fischbach MA, Koglin A et al (2007) Biosynthetic tailoring of microcin E492m: post-translational modification affords an antibacterial siderophore-peptide conjugate. J Am Chem Soc 129:14336–14347

    CAS  Google Scholar 

  • O’Brien GJ, Mahanty HK (1994) Colicin 24, a new plasmid-borne colicin from a uropathogenic strain of Escherichia coli. Plasmid 31:288–296

    Google Scholar 

  • O’Brien IG, Cox GB, Gibson F (1970) Biologically active compounds containing 2, 3-dihydroxybenzoic acid and serine formed by Escherichia coli. Biochim Biophys Acta 201:453–460

    Google Scholar 

  • Ollis AA, Manning M, Held KG et al (2009) Cytoplasmic membrane protonmotive force energizes periplasmic interactions between ExbD and TonB. Mol Microbiol 73:466–481

    CAS  Google Scholar 

  • Patzer SI, Baquero MR, Bravo D et al (2003) The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149:2557–2570

    CAS  Google Scholar 

  • Payne SM, Niesel DW, Peixotto SS et al (1983) Expression of hydroxamate and phenolate siderophores by Shigella flexneri. J Bacteriol 155:949–955

    CAS  Google Scholar 

  • Podschun R, Fischer A, Ullmann U (1992) Siderophore production of Klebsiella species isolated from different sources. Zentralbl Bakteriol 276:481–486

    CAS  Google Scholar 

  • Poey ME, Azpiroz MF, Laviña M (2006) Comparative analysis of chromosome-encoded microcins. Antimicrob Agents Chemother 50:1411–1418

    CAS  Google Scholar 

  • Pollack JR, Neilands JB (1970) Enterobactin, an iron transport compound from Salmonella Thyphimurium. Biochem Biophys Res Commun 38:989–992

    CAS  Google Scholar 

  • Pons AM, Zorn N, Vignon D et al (2002) Microcin E492 is an unmodified peptide related in structure to colicin V. Antimicrob Agents Chemother 46:229–230

    CAS  Google Scholar 

  • Pons AM, Delalande F, Duarte M et al (2004) Genetic analysis and complete primary structure of microcin L. Antimicrob Agents Chemother 48:505–513

    CAS  Google Scholar 

  • Postle K, Kadner RJ (2003) Touch and go: tying TonB to transport. Mol Microbiol 49:869–882

    CAS  Google Scholar 

  • Pugsley AP, Moreno F, de Lorenzo V (1986) Microcin-E492-insensitive mutants of Escherichia coli K12. J Gen Microbiol 132:3253–3259

    CAS  Google Scholar 

  • Rabsch W, Ma L, Wiley G et al (2007) FepA- and TonB-dependent bacteriophage H8: receptor binding and genomic sequence. J Bacteriol 189:5658–5674

    CAS  Google Scholar 

  • Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588

    CAS  Google Scholar 

  • Reichert J, Sakaitani M, Walsh CT (1992) Characterization of EntF as a serine-activating enzyme. Protein Sci 1:549–556

    CAS  Google Scholar 

  • Rodríguez E, Laviña M (1998) Genetic analysis of microcin H47 immunity. Can J Microbiol 44:692–697

    Google Scholar 

  • Rodríguez E, Laviña M (2003) The proton channel is the minimal structure of ATP synthase necessary and sufficient for microcin h47 antibiotic action. Antimicrob Agents Chemother 47:181–187

    Google Scholar 

  • Rodríguez E, Gaggero C, Laviña M (1999) The structural gene for microcin H47 encodes a peptide precursor with antibiotic activity. Antimicrob Agents Chemother 43:2176–2182

    Google Scholar 

  • Sablé S, Duarte M, Bravo D et al (2003) Wild-type Escherichia coli producing microcins B17, D93, J25, and L; cloning of genes for microcin L production and immunity. Can J Microbiol 49:357–361

    Google Scholar 

  • Sakaitani M, Rusnak F, Quinn NR et al (1990) Mechanistic studies on trans-2, 3-dihydro-2, 3-dihydroxybenzoate dehydrogenase (Ent A) in the biosynthesis of the iron chelator enterobactin. Biochemistry 29:6789–6798

    CAS  Google Scholar 

  • Salomón RA, Farias RN (1993) The FhuA protein is involved in microcin 25 uptake. J Bacteriol 175:7741–7742

    Google Scholar 

  • Salomón RA, Farias RN (1995) The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J Bacteriol 177:3323–3325

    Google Scholar 

  • Sauter A, Howard SP, Braun V (2003) In vivo evidence for TonB dimerization. J Bacteriol 185:5747–5754

    CAS  Google Scholar 

  • Shaw-Reid CA, Kelleher NL, Losey HC et al (1999) Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. Chem Biol 6:385–400

    CAS  Google Scholar 

  • Skvirsky RC, Reginald S, Shen X (1995) Topology analysis of the colicin V export protein CvaA in Escherichia coli. J Bacteriol 177:6153–6159

    CAS  Google Scholar 

  • Strahsburger E, Baeza M, Monasterio O et al (2005) Cooperative uptake of microcin E492 by receptors FepA, Fiu, and Cir and inhibition by the siderophore enterochelin and its dimeric and trimeric hydrolysis products. Antimicrob Agents Chemother 49:3083–3086

    CAS  Google Scholar 

  • Thomas X, Destoumieux-Garzón D, Péduzzi J et al (2004) Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem 279:28233–28242

    CAS  Google Scholar 

  • Trujillo M, Rodríguez E, Laviña M (2001) ATP synthase is necessary for microcin H47 antibiotic action. Antimicrob Agents Chemother 45:3128–3131

    CAS  Google Scholar 

  • Vassiliadis G, Peduzzi J, Zirah S et al (2007) Insight into siderophore-carrying peptide biosynthesis: enterobactin is a precursor for microcin E492 posttranslational modification. Antimicrob Agents Chemother 51:3546–3553

    CAS  Google Scholar 

  • Vassiliadis G, Destoumieux-Garzón D, Lombard C et al (2010) Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrob Agents Chemother 54:288–297

    CAS  Google Scholar 

  • Walsh CT, Liu J, Rusnak F et al (1990) Molecular studies on enzymes in chorismate metabolism and the enterobactin biosynthetic pathway. Chem Rev 90:1105–1129

    CAS  Google Scholar 

  • Waters VL, Crosa JH (1991) Colicin V virulence plasmids. Microbiol Rev 55:437–450

    CAS  Google Scholar 

  • Welch RA, Burland V, Plunkett G 3rd et al (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024

    CAS  Google Scholar 

  • Wilkens M, Villanueva JE, Cofre J et al (1997) Cloning and expression in Escherichia coli of genetic determinants for production of and immunity to microcin E492 from Klebsiella pneumoniae. J Bacteriol 179:4789–4794

    CAS  Google Scholar 

  • Williams N, Fox DK, Shea C et al (1986) Pel, the protein that permits lambda DNA penetration of Escherichia coli, is encoded by a gene in ptsM and is required for mannose utilization by the phosphotransferase system. Proc Natl Acad Sci USA 83:8934–8938

    CAS  Google Scholar 

  • Wooley RE, Gibbs PS, Shotts EB Jr (1999) Inhibition of Salmonella typhimurium in the chicken intestinal tract by a transformed avirulent avian Escherichia coli. Avian Dis 43:245–250

    CAS  Google Scholar 

  • Wu TK, Huang CY, Ko CY et al (2004) Purification, tandem mass characterization, and inhibition studies of oxidosqualene-lanosterol cyclase enzyme from bovine liver. Arch Biochem Biophys 421:42–53

    CAS  Google Scholar 

  • Yang CC, Konisky J (1984) Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol 158:757–759

    CAS  Google Scholar 

  • Zhong X, Kolter R, Tai PC (1996) Processing of colicin V-1, a secretable marker protein of a bacterial ATP binding cassette export system, requires membrane integrity, energy, and cytosolic factors. J Biol Chem 271:28057–28063

    CAS  Google Scholar 

  • Zhu M, Valdebenito M, Winkelmann G et al (2005) Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151:2363–2372

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dominique Belin for the generous gifts of the E. coli manXYZ mutants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Peduzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vassiliadis, G., Destoumieux-Garzón, D., Peduzzi, J. (2011). Class II Microcins. In: Drider, D., Rebuffat, S. (eds) Prokaryotic Antimicrobial Peptides. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7692-5_16

Download citation

Publish with us

Policies and ethics