Advertisement

Class IId or Linear and Non-Pediocin-Like Bacteriocins

  • Shun Iwatani
  • Takeshi Zendo
  • Kenji Sonomoto
Chapter

Abstract

Class IId bacteriocins are one of the subclasses of class II bacteriocins produced by lactic acid bacteria. This class of bacteriocins, however, show a great diversity in their primary structures and modes of action. This chapter focuses on two aspects: (1) the description of those heterogeneous bacteriocins with the concept of three potential subgroups and (2) the modes of action of lactococcin A, lactococcin 972, and lacticin Q, each of which belongs to a different subgroup and is well characterized in its unique mode of action.

Keywords

Leader Peptide Mature Peptide Narrow Antimicrobial Spectrum Enterocin EJ97 Lactococcal Bacteriocin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Breukink E, van Kraaij C, Demel RA, Siezen RJ, Kuipers OP, de Kruijff B (1997) The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry 36:6968–6976CrossRefGoogle Scholar
  2. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:777–788CrossRefGoogle Scholar
  3. Brötz H, Josten M, Wiedemann I, Schneider U, Götz F, Bierbaum G, Sahl H-G (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327CrossRefGoogle Scholar
  4. Casaus P, Nilsen T, Cintas LM, Nes IF, Hernández PE, Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143:2287–2294CrossRefGoogle Scholar
  5. Chen Y, Shapira R, Eisenstein M, Montville TJ (1997) Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl Environ Microbiol 63:524–531Google Scholar
  6. Cintas LM, Casaus P, Håvarstein LS, Hernández PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330Google Scholar
  7. Cintas LM, Casaus P, Holo H, Hernández PE, Nes IF, Håvarstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994Google Scholar
  8. Cintas LM, Casaus P, Herranz C, Håvarstein LS, Holo H, Hernández PE, Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-Terminal extension termed enterocin Q. J Bacteriol 182:6806–6814CrossRefGoogle Scholar
  9. Cotter PD, Hill C, Ross P (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788CrossRefGoogle Scholar
  10. Criado R, Diep DB, Aakra Å, Gutiérrez J, Nes IF, Hernández PE, Cintas LM (2006) Complete sequence of the enterocin Q-encoding plasmid pCIZ2 from the multiple bacteriocin producer Enterococcus faecium L50 and genetic characterization of enterocin Q production and immunity. Appl Environ Microbiol 72:6653–6666CrossRefGoogle Scholar
  11. De Kwaadsteniet M, Fraser T, Van Reenen CA, Dicks LMT (2006) Bacteriocin T8, a novel class IIa sec-dependent bacteriocin produced by Enterococcus faecium T8, isolated from vaginal secretions of children infected with human immunodeficiency virus. Appl Environ Microbiol 72:4761–4766CrossRefGoogle Scholar
  12. Diep DB, Nes IF (2002) Ribosomally synthesized antibacterial peptides in gram positive bacteria. Curr Drug Targets 3:107–122CrossRefGoogle Scholar
  13. Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF (2007) Common mechanism of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A 104:2384–2389CrossRefGoogle Scholar
  14. Doi K, Eguchi T, Choi S-H, Iwatake A, Ohmomo S, Ogata S (2002) Isolation of enterocin SE-K4-encoding plasmid and a high enterocin SE-K4 producing strain of Enterococcus faecalis K-4. J Biosci Bioeng 93:434–436Google Scholar
  15. Faye T, Langsrud T, Nes IF, Holo H (2000) Biochemical and genetic characterization of propionicin T1, a new bacteriocin from Propionibacterium thoenii. Appl Environ Microbiol 66:4230–4236CrossRefGoogle Scholar
  16. Fimland G, Eijsink VGH, Nissen-Meyer J (2002) Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry 41:9508–9515CrossRefGoogle Scholar
  17. Floriano B, Ruiz-Barba JL, Jiménez-Díaz R (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl Environ Microbiol 64:4883–4890Google Scholar
  18. Franz CMA, Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310CrossRefGoogle Scholar
  19. Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J, Sonomoto K (2007) Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of gram-positive bacteria. Appl Environ Microbiol 73:2871–2877CrossRefGoogle Scholar
  20. Gajic O, Buist G, Kojic M, Topisirovic L, Kuipers OP, Kok J (2003) Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins. J Biol Chem 278:34291–34298CrossRefGoogle Scholar
  21. Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jänsch L, Héchard Y, Hastings JW, Knøchel S (2002) High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148:2361–2369Google Scholar
  22. Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E (2006) An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313:1636–1637CrossRefGoogle Scholar
  23. Håvarstein LS, Holo H, Nes IF (1994) The leader peptide of colicin V shares consensus sequences with leader peptides that are common amongst peptide bacteriocins produced by gram-positive bacteria. Microbiology 140:2383–2389CrossRefGoogle Scholar
  24. Holck AL, Axelsson L, Schillinger U (1994) Purification and cloning of piscicolin 61, a bacteriocin from Carnobacterium piscicola LV61. Curr Microbiol 29:63–68CrossRefGoogle Scholar
  25. Holck A, Axelsson L, Schillinger U (1996) Divergicin 750, a novel bacteriocin produced by Carnobacterium divergens 750. FEMS Microbiol Lett 136:163–168CrossRefGoogle Scholar
  26. Holo H, Nilssen Ø, Nes IF (1991) Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol 173:3879–3887Google Scholar
  27. Hsu ST, Breukink E, Tischenko E, Lutters MA, de Kruijff B, Kaptein R, Bonvin AM, van Nuland NA (2004) The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 11:963–967CrossRefGoogle Scholar
  28. Hu C-B, Zendo T, Nakayama J, Sonomoto K (2008) Description of durancin TW-49M, a novel enterocin B-homologous bacteriocin in carrot-isolated Enterococcus durans QU 49. J Appl Microbiol 105:681–690CrossRefGoogle Scholar
  29. Hyink O, Balakrishnan M, Tagg JR (2005) Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol Lett 252:235–241CrossRefGoogle Scholar
  30. Iwatani S, Zendo T, Yoneyama F, Nakayama J, Sonomoto K (2007) Characterization and structure analysis of a novel bacteriocin, lacticin Z, produced by Lactococcus lactis QU 14. Biosci Biotechnol Biochem 71:1984–1992CrossRefGoogle Scholar
  31. Izquierdo E, Bednarczyk A, Schaeffer C, Cai Y, Marchioni E, Van Dorsselaer A, Ennahar S (2008) Production of enterocin L50A, L50B, and IT, a new enterocin, by Enterococcus faecium IT62, a strain isolated from italian ryegrass in Japan. Antimicrob Agents Chemother 52:1917–1923CrossRefGoogle Scholar
  32. Kalmokoff ML, Banerjee SK, Cyr T, Hefford MA, Gleeson T (2001) Identification of a new plasmid-encoded sec-dependent bacteriocin produced by Listeria innocua 743. Appl Environ Microbiol 67:4041–4047CrossRefGoogle Scholar
  33. Kang BS, Seo JG, Lee GS, Kim JH, Kim SY, Han YW, Kang H, Kim HO, Rhee JH, Chung MJ, Park YM (2009) Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J Microbiol 47:101–109CrossRefGoogle Scholar
  34. Kawai Y, Kusnadi J, Kemperman R, Kok J, Ito Y, Endo M, Arakawa K, Uchida H, Nishimura J, Kitazawa H, Saito T (2009) DNA sequence and homologous expression of a small peptide conferring immunity to gassericin A, a circular bacteriocin produced by Lactobacillus gasseri LA39. Appl Environ Microbiol 75:1324–1330CrossRefGoogle Scholar
  35. Leer RJ, van der Vossen JMBM, van Giezen M, van Noort JM, Pouwels PH (1995) Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 141:1629–1635CrossRefGoogle Scholar
  36. Madera C, Carcía P, Rodríguez A, Suárez JE, Martínez B (2009) Prophage induction in Lactococcus lactis by the bacteriocin Lactococcin 972. Int J Food Microbiol 129:99–102CrossRefGoogle Scholar
  37. Martínez B, Suárez JE, Rodríguez A (1996) Lactococcin 972: a homodimeric lactococcal bacteriocin whose primary target is not the plasma membrane. Microbiology 142:2393–2398CrossRefGoogle Scholar
  38. Martínez B, Fernández M, Suárez JE, Rodríguez A (1999) Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology 145:3155–3161Google Scholar
  39. Martínez B, Rodríguez A, Suárez JE (2000) Lactococcin 972, a bacteriocin that inhibits septum formation in lactococci. Microbiology 146:949–955Google Scholar
  40. Martínez B, Zomer AL, Rodríguez A, Kok J, Kuipers OP (2007) Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the lactococcal two-component system CesSR. Mol Microbiol 64:473–486CrossRefGoogle Scholar
  41. Martínez B, Böttiger T, Schneider T, Rodríguez A, Sahl H-G, Wiedemann I (2008) Specific interaction of the unmodified bacteriocin lactococcin 972 with the cell wall precursor lipid II. Appl Environ Microbiol 74:4666–4670CrossRefGoogle Scholar
  42. Martín-Platero AM, Valdivia E, Ruíz-Rodríguez M, Soler JJ, Martín-Vivaldi M, Maqueda M, Martínez-Bueno M (2006) Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe (Uupa epop). Appl Environ Microbiol 72:4245–4249CrossRefGoogle Scholar
  43. Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsing V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Leeuwenhoek 70:113–128CrossRefGoogle Scholar
  44. Nes IF, Diep DB, Holo H (2007) Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol 189:1189–1198CrossRefGoogle Scholar
  45. Netz DJA, Sahl H-G, Marcolino R, Nascimento JS, de Oliveira SS, Soares MB, Bastos MCF (2001) Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J Mol Biol 311:939–949CrossRefGoogle Scholar
  46. Netz DJA, Pohl R, Beck-Sickinger AG, Selmer T, Pierik AJ, Bastos MCF, Sahl H-G (2002) Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. J Mol Biol 319:745–756CrossRefGoogle Scholar
  47. Nissen-Meyer J, Håvarstein LS, Holo H, Sletten K, Nes IF (1993) Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J Gen Microbiol 139:1503–1509Google Scholar
  48. Oliveia SS, Nascimento JS, Póvoa DC, de Araújo SA, Gamon MR, Bastos MCF (1998) Genetic analysis of the bacteriocin-encoding plasmids pRJ6 and pRJ9 of Staphylococcus aureus by transposon mutagenesis and cloning of genes involved in bacteriocin production. J Appl Microbiol 85:972–984CrossRefGoogle Scholar
  49. Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051CrossRefGoogle Scholar
  50. Ramnath M, Arous S, Gravesen A, Hastings JW, Héchard Y (2004) Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology 150:2663–2668CrossRefGoogle Scholar
  51. Ruiz-Barba JL, Floriano B, Maldonado-Barragán A, Jiménez-Díaz R (2006) Molecular analysis of the 21-kb bacteriocin-encoding plasmid pEF1 from Enterococcus faecium 6T1a. Plasmid 57:175–181CrossRefGoogle Scholar
  52. Sánchez J, Borrero J, Gómez-Sala B, Basanta A, Herranz C, Cintas LM, Hernández PE (2008) Cloning and heterologous production of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, in lactic acid bacteria and Pichia pastoris. Appl Environ Microbiol 74:2471–2479CrossRefGoogle Scholar
  53. Sánchez-Hidalgo M, Maqueda M, Gálvez A, Abriouel H, Valdivia E, Martínez-Bueno M (2003) The genes coding for enterocin EJ97 production by Enterococcus faecalis EJ97 are located on a conjugative plasmid. Appl Environ Microbiol 69:1633–1641CrossRefGoogle Scholar
  54. Tomita H, Fujimoto S, Tanimoto K, Ike Y (1996) Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J Bacteriol 178:3585–3593Google Scholar
  55. van Belkum MJ, Hayema BJ, Jeeninga RE, Kok J, Venema G (1991a) Organization and nucleotide sequences of two lactococcal bacteriocin operons. Appl Environ Microbiol 57:492–498Google Scholar
  56. van Belkum MJ, Kok J, Venema G, Holo H, Nes IF, Konings WN, Abee T (1991b) The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol 173:7934–7941Google Scholar
  57. van Belkum MJ, Kok J, Venema G (1992) Cloning, sequencing, and expression in Escherichia coli of lcnB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4-6. Appl Environ Microbiol 58:572–577Google Scholar
  58. Venema K, Haverkort RE, Abee T, Haandrikman AJ, Leenhouts KJ, de Leij L, Venema G, Kok J (1994) Mode of action of LciA, the lactococcin A immunity protein. Mol Microbiol 14:521–532CrossRefGoogle Scholar
  59. Ward DJ, Somkuti GA (1995) Characterization of a bacteriocin produced by Streptococcus thermophilus ST134. Appl Microbiol Biotechnol 43:330–335CrossRefGoogle Scholar
  60. Whitford MF, Mcpherson MA, Forster RJ, Teather RM (2001) Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. Appl Environ Microbiol 67:569–574CrossRefGoogle Scholar
  61. Worobo RW, Henkel T, Sailer M, Roy KL, Vederas JC, Stiles ME (1994) Characteristics and genetic determinant of a hydrophobic peptide bacteriocin, carnobacteriocin A, produced by Carnobacterium piscicola LV17A. Microbiology 140:517–526CrossRefGoogle Scholar
  62. Worobo RW, van Belkum MJ, Sailer M, Roy KL, Vederas JC, Stiles ME (1995) A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J Bacteriol 177:3143–3149Google Scholar
  63. Yamamoto Y, Togawa Y, Shimosaka M, Okazaki M (2003) Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis strain RJ-11. Appl Environ Microbiol 69:5746–5753CrossRefGoogle Scholar
  64. Yang L, Harroun TA, Heller WT, Weiss TM, Huang HW (1998) Neutron off-plane scattering of aligned membranes. I. Method of measurement. Biophys J 75:641–645CrossRefGoogle Scholar
  65. Yoneyama F, Imura Y, Ichimasa S, Fujita K, Zendo T, Nakayama J, Matsuzaki K, Sonomoto K (2009a) Lacticin Q, a lactococcal bacteriocin, causes high-level membrane permeability in the absence of specific receptors. Appl Environ Microbiol 75:538–541CrossRefGoogle Scholar
  66. Yoneyama F, Imura Y, Ohono K, Zendo T, Nakayama J, Matsuzaki K, Sonomoto K (2009b) Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 53:3211–3217CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture Graduate SchoolKyushu UniversityFukuokaJapan

Personalised recommendations