Advertisement

The Two-Peptide (Class-IIb) Bacteriocins: Genetics, Biosynthesis, Structure, and Mode of Action

  • Jon Nissen-Meyer
  • Camilla Oppegård
  • Per Rogne
  • Helen Sophie Haugen
  • Per Eugen Kristiansen
Chapter

Abstract

The two-peptide (class-IIb) bacteriocins consist of two different peptides, both of which are required to obtain high antimicrobial activity. These bacteriocins kill target-cells by inducing membrane-leakage and they seem to display some specificity with respect to the molecules they transfer across membranes. The genes encoding the two peptides of two-peptide bacteriocins are next to each other on the same operon. In the same or a nearby operon are genes encoding (i) the immunity protein that protects the bacteriocin-producer from its own bacteriocin, (ii) a dedicated ABC-transporter that exports the bacteriocin from cells and cleaves off the N-terminal bacteriocin leader sequence, and (iii) an accessory protein whose exact function has not been fully clarified. Some two-peptide bacteriocins appear to be produced constitutively, whereas the production of other two-peptide bacteriocins is regulated through a three-component regulatory system that consists of a peptide pheromone, a membrane-associated histidine protein kinase, and response regulators. It has recently been proposed that the two peptides of (some) two-peptide bacteriocins may form a membrane-penetrating helix-helix structure involving helix-helix interacting GxxxG-motifs present in all currently characterized two-peptide bacteriocins. It has also been suggested that the helix-helix structure interacts with an integrated membrane (transport) protein, thus inducing a conformational change in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to that of the pediocin-like (class-IIa) bacteriocins and lactococcin A, which bind to a part of the mannose phosphotransferase permease that is embedded in the cell membrane, thereby altering the conformation of the ­permease in a manner that causes membrane-leakage and cell death.

Keywords

Circular Dichroism Transmembrane Helix Bacteriocin Production Helix Structure Immunity Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abee T, Klaenhammer TR, Letellier L (1994) Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol 60:1006–1013Google Scholar
  2. Allison GE, Fremaux C, Klaenhammer TR (1994) Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol 176:2235–2241Google Scholar
  3. Anderssen EL, Diep DB, Nes IF, Eijsink VGH, Nissen-Meyer J (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricin EF and JK, and the induction factor, plantaricin A. Appl Environ Microbiol 64:2269–2272Google Scholar
  4. Balla E, Dicks LMT (2005) Molecular analysis of the gene cluster involved in the production and secretion of enterocins 1071A and 1071B and of the genes responsible for the replication and transfer of plasmid pEF1071. Int J Food Microbiol 99:33–45CrossRefGoogle Scholar
  5. Balla E, Dicks LMT, Du Toit M, van der Merwe MJ, Holzapfel WH (2000) Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl Environ Microbiol 66:1298–1304CrossRefGoogle Scholar
  6. Barrett E, Hayes M, O’Connor P, Gardiner G, Fitzgerald GF, Stanton C, Ross RP, Hill C (2007) Salivaricin P, one of a family of two-component antilisterial bacteriocins produced by intestinal isolates of Lactobacillus salivarius. Appl Environ Microbiol 73:3719–3723CrossRefGoogle Scholar
  7. Blom H, Katla T, Holck A, Sletten K, Axelsson L, Holo H (1999) Characterization, production, and purification of leucocin H, a two-peptide bacteriocin from Leuconostoc MF215B. Curr Microbiol 39:43–48CrossRefGoogle Scholar
  8. Castellano P, Raya R, Vignolo G (2003) Mode of action of lactocin 705, a two-component bacteriocin from Lactobacillus casei CRL705. Int J Food Microbiol 85:35–43CrossRefGoogle Scholar
  9. Cotter PD, Hill C, Ross RP (2005a) Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Pept Sci 6:61–75CrossRefGoogle Scholar
  10. Cotter PD, Hill C, Ross RP (2005b) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788CrossRefGoogle Scholar
  11. Cuozzo SA, Castellano P, Sesma FJM, Vignolo GM, Raya RR (2003) Differential roles of the two-component peptides of lactocin 705 in antimicrobial activity. Curr Microbiol 46:180–183CrossRefGoogle Scholar
  12. Cuozzo SA, Sesma F, Palacios JM, de Ruiz Holgado AP, Raya RR (2000) Identification and nucleotide sequence of genes involved in the synthesis of lactocin 705, a two-peptide bacteriocin from Lactobacillus casei CRL 705. FEMS Microbiol Lett 185:157–161CrossRefGoogle Scholar
  13. Dalet K, Cenatiempo Y, Cossart P, Héchard Y, The European Listeria Genome Consortium (2001) A σ54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269Google Scholar
  14. Diep DB, Håvarstein LS, Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18:631–639CrossRefGoogle Scholar
  15. Diep DB, Håvarstein LS, Nes IF (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178:4472–4483Google Scholar
  16. Diep DB, Myhre R, Johnsborg O, Aakra Å, Nes IF (2003) Inducible bacteriocin production in Lactobacillus is regulated by differential expression of pln operons and by two antagonizing response regulators, the activity of which is enhanced upon phosphorylation. Mol Microbiol 47:483–494CrossRefGoogle Scholar
  17. Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF (2007) Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A 104:2384–2389CrossRefGoogle Scholar
  18. Diep DP, Straume D, Kjos M, Torres C, Nes IF (2009) An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 30:1562–1574CrossRefGoogle Scholar
  19. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582CrossRefGoogle Scholar
  20. Fimland G, Blingsmo OR, Sletten K, Jung G, Nes IF, Nissen-Meyer J (1996) New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl Environ Microbiol 62:3313–3318Google Scholar
  21. Fimland G, Eijsink VGH, Nissen-Meyer J (2002a) Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology 148:3661–3670Google Scholar
  22. Fimland G, Eijsink VGH, Nissen-Meyer J (2002b) Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry 41:9508–9515CrossRefGoogle Scholar
  23. Fimland G, Johnsen L, Dalhus B, Nissen-Meyer J (2005) Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 11:688–696CrossRefGoogle Scholar
  24. Fimland N, Rogne P, Fimland G, Nissen-Meyer J, Kristiansen PE (2008) Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF. Biochim Biophys Acta 1784:1711–1719Google Scholar
  25. Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF, Collins JK (2002) Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 148:973–984Google Scholar
  26. Franz CMAP, Grube A, Herrmann A, Abriouel H, Stärke J, Lombardi A, Tauscher B, Holzapfel WH (2002) Biochemical and genetic characterization of the two-peptide bacteriocin enterocin 1071 produced by Enterococcus faecalis FAIR-E 309. Appl Environ Microbiol 68:2550–2554CrossRefGoogle Scholar
  27. Fregeau Gallagher NL, Sailer M, Niemczura WP, Nakashima TT, Stiles ME, Vederas JC (1997) Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36:15062–15072CrossRefGoogle Scholar
  28. Fremaux C, Ahn C, Klaenhammer TR (1993) Molecular analysis of the lactacin F operon. Appl Environ Microbiol 59:3906–3915Google Scholar
  29. Gao Y, van Belkum MJ, Stiles ME (1999) The outer membrane of gram-negative bacteria inhibits antibacterial activity of brochocin-C. Appl Environ Microbiol 65:4329–4333Google Scholar
  30. Garneau S, Ference CA, van Belkum MJ, Stiles ME, Vederas JC (2003) Purification and characterization of brochocin A and brochocin B(10-43), a functional fragment generated by heterologous expression in Carnobacterium piscicola. Appl Environ Microbiol 69:1352–1358CrossRefGoogle Scholar
  31. Garneau S, Martin NI, Vederas JC (2002) Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84:577–592CrossRefGoogle Scholar
  32. Ghrairi T, Frére J, Berjeaud JM, Manai M (2005) Lactococcin MMT24, a novel two-peptide bacteriocin produced by Lactococcus lactis isolated from rigouta cheese. Int J Food Microbiol 105:389–398CrossRefGoogle Scholar
  33. Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jänsch L, Héchard Y, Hastings JW, Knøchel S (2002) High-level resistance to classIIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148:2361–2369Google Scholar
  34. Hauge HH, Mantzilas D, Eijsink VGH, Nissen-Meyer J (1999) Membrane-mimicking entities induce structuring of the two-peptide bacteriocins plantaricin E/F and plantaricin J/K. J Bacteriol 181:740–747Google Scholar
  35. Hauge HH, Mantzilas D, Moll GN, Konings WN, Driessen AJ, Eijsink VGH, Nissen-Meyer J (1998a) Plantaricin A is an amphiphilic α-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry 37:16026–16032CrossRefGoogle Scholar
  36. Hauge HH, Nissen-Meyer J, Nes IF, Eijsink VGH (1998b) Amphiphilic α-helices are important structural motifs in the α and β peptides that constitute the bacteriocin lactococcin G: enhancement of helix formation upon α-β interaction. Eur J Biochem 251:565–572CrossRefGoogle Scholar
  37. Haugen HS, Fimland G, Nissen-Meyer J, Kristiansen PE (2005) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A. Biochemistry 44:16149–16157CrossRefGoogle Scholar
  38. Horn N, Martínez M, Martinez JM, Hernández PE, Gasson MJ, Rodríguez JM, Dodd H (1998) Production of pediocin PA-1 by Lactococcus lactis using the lactococcin A secretory apparatus. Appl Environ Microbiol 64:818–823Google Scholar
  39. Håvarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240CrossRefGoogle Scholar
  40. Jiménez-Diaz R, Ruiz-Barba JL, Cathcart DP, Holo H, Nes IF, Sletten KH, Warner PJ (1995) Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl Environ Microbiol 61:4459–4463Google Scholar
  41. Johnsen L, Fimland G, Mantzilas D, Nissen-Meyer J (2004) Structure-function analysis of immunity proteins of pediocin-like bacteriocins: C-terminal parts of immunity proteins are involved in specific recognition of cognate bacteriocins. Appl Environ Microbiol 70:2647–2652CrossRefGoogle Scholar
  42. Johnsen L, Fimland G, Nissen-Meyer J (2005) The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem 280:9243–9250CrossRefGoogle Scholar
  43. Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596CrossRefGoogle Scholar
  44. Kristiansen PE, Fimland G, Mantzilas D, Nissen-Meyer J (2005) Structure and mode of action of the membrane-permeabilizing antimicrobial peptide pheromone plantaricin A. J Biol Chem 280:22945–22950CrossRefGoogle Scholar
  45. Maldonado-Barragan A, Caballero-Guerrero B, Jiménez E, Jimenez-Diaz R, Ruiz-Barba JL, Rodriguez JM (2009) Enterocin C, a class IIb bacteriocin produced by E. faecalis C901, a strain isolated from human colostrum. Int J Food Microbiol 133:105–112CrossRefGoogle Scholar
  46. Maldonado A, Jiménez-Diaz R, Ruiz-Barba JL (2004) Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific gram-positive bacteria is mediated by an autoinduction mechanism. J Bacteriol 186:1556–1564CrossRefGoogle Scholar
  47. Maldonado A, Ruiz-Barba JL, Jiménez-Diaz R (2003) Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl Environ Microbiol 69:383–389CrossRefGoogle Scholar
  48. Marciset O, Jewronimus-Stratingh MC, Mollet B, Poolman B (1997) Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J Biol Chem 272:14277–14284CrossRefGoogle Scholar
  49. McCormick JK, Poon A, Sailer M, Gao Y, Roy KL, McMullen LM, Vederas JC, Stiles ME, van Belkum MJ (1998) Genetic characterization and heterologous expression of brochocin-C, an antibotulinal, two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754. Appl Environ Microbiol 64:4757–4766Google Scholar
  50. Moll G, Hauge HH, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJM (1998) Mechanistic properties of the two-component bacteriocin lactococcin G. J Bacteriol 180:96–99Google Scholar
  51. Moll G, Ubbink-Kok T, Hauge HH, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJM (1996) Lactococcin G is a potassium ion-conducting, two component bacteriocin. J Bacteriol 178:600–605Google Scholar
  52. Moll G, van der Akker HE, Hauge HH, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJM (1999) Complementary and overlapping selectivity of the two-peptide bacteriocins EF and JK. J Bacteriol 181:4848–4852Google Scholar
  53. Nes IF, Holo H, Fimland G, Hauge HH, Nissen-Meyer J (2002) Unmodified peptide-bacteriocins (class II) produced by lactic acid bacteria. In: Dutton CJ, Haxell MA, McArthur HAI, Wax RG (eds) Peptide antibiotics, discovery, modes of action, and application. Dekker, New YorkGoogle Scholar
  54. Nes IF, Håvarstein LS, Holo H (1995) Genetics of non-lantibiotic bacteriocins. In: Ferretti JJ, Gilmore MS, Klaenhammer TR, Brown F (eds) Genetics of Streptococci, Enterococci, and Lactococci. Developments in biological standards, vol 85. Karger, Basel, pp 645–651Google Scholar
  55. Nissen-Meyer J, Holo H, Håvarstein LS, Sletten K, Nes IF (1992) A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692Google Scholar
  56. Nissen-Meyer J, Oppegård C, Rogne P, Haugen HS, Kristiansen PE (2010) Structure and mode-of-action of two-peptide (class IIb) bacteriocins. Probiotics Antimicrob Proteins 2:52–60CrossRefGoogle Scholar
  57. Nissen-Meyer J, Rogne P, Oppegård C, Haugen HS, Kristiansen PE (2009) Structure-function relationships of non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10:19–37CrossRefGoogle Scholar
  58. Oppegård C, Emanuelsen L, Thorbek L, Fimland G, Nissen-Meyer J (2010) The lactococcin G immunity protein recognizes specific regions in both peptides constituting the two-peptide bacteriocin lactococcin G. Appl Environ Microbiol 76:1267–1273CrossRefGoogle Scholar
  59. Oppegård C, Fimland G, Thorbæk L, Nissen-Meyer J (2007a) Analysis of the two-peptide bacteriocins lactococcin G and enterocin 1071 by site-directed mutagenesis. Appl Environ Microbiol 73:2931–2938CrossRefGoogle Scholar
  60. Oppegård C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J (2007b) The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol 13:210–219CrossRefGoogle Scholar
  61. Oppegård C, Schmidt J, Kristiansen PE, Nissen-Meyer J (2008) Mutational analysis of putative helix-helix interacting GxxxG-motifs and tryptophan residues in the two-peptide bacteriocin lactococcin G. Biochemistry 47:5242–5249CrossRefGoogle Scholar
  62. Qi F, Chen P, Caufield PW (2001) The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21CrossRefGoogle Scholar
  63. Ramnath M, Arous S, Gravesen A, Hastings JW, Héchard Y (2004) Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology 150:2663–2668CrossRefGoogle Scholar
  64. Rogne P, Fimland G, Nissen-Meyer J, Kristiansen PE (2008) Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin lactococcin G. Biochim Biophys Acta 1784:543–554Google Scholar
  65. Rogne P, Haugen C, Fimland G, Nissen-Meyer J, Kristiansen PE (2009) Three-dimensional structure of the two-peptide bacteriocin plantaricin JK. Peptides 30:1613–1621CrossRefGoogle Scholar
  66. Senes A, Engel DE, DeGrado WF (2004) Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 14:465–479CrossRefGoogle Scholar
  67. Senes A, Gerstein M, Engelman DM (2000) Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 296:921–936CrossRefGoogle Scholar
  68. Senes A, Ubarretxena-Belandia I, Engelman DM (2001) The Cα–H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci U S A 98:9056–9061CrossRefGoogle Scholar
  69. Stephens SK, Floriano B, Cathcart DP, Bayley SA, Witt VF, Jiménez-Díaz R, Warner PJ, Ruiz-Barba JL (1998) Molecular analysis of the locus responsible for production of plantaricin S, a two-peptide bacteriocin produced by Lactobacillus plantarum LPCO10. Appl Environ Microbiol 64:1871–1877Google Scholar
  70. Uteng M, Hauge HH, Markwick PRL, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C (2003) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42:11417–11426CrossRefGoogle Scholar
  71. van Belkum MJ, Hayema BJ, Jeeninga RE, Kok J, Venema G (1991) Organization and nucleotide sequence of two lactococcal bacteriocin operons. Appl Environ Microbiol 57:492–498Google Scholar
  72. van Belkum MJ, Worobo RW, Stiles ME (1997) Doble-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol Microbiol 23:1293–1301CrossRefGoogle Scholar
  73. Wang Y, Henz ME, Fregeau Gallagher NL, Chai S, Gibbs AC, Yan LZY, Stiles ME, Wishart DS, Vederas JC (1999) Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry 38:15438–15447CrossRefGoogle Scholar
  74. Zendo T, Koga S, Shigeri Y, Nakayama J, Sonomoto K (2006) Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Appl Environ Microbiol 72:3383–3389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jon Nissen-Meyer
    • 1
  • Camilla Oppegård
  • Per Rogne
  • Helen Sophie Haugen
  • Per Eugen Kristiansen
  1. 1.Department of Molecular BiosciencesUniversity of OsloOsloNorway

Personalised recommendations