Skip to main content

Genomics of Bacillus Species

  • Chapter
  • First Online:
Genomics of Foodborne Bacterial Pathogens

Part of the book series: Food Microbiology and Food Safety ((FMFS))

Abstract

Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agaisse H, Gominet M, Økstad OA, Kolstø AB, Lereclus D (1999) PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053

    CAS  Google Scholar 

  • Apetroaie-Constantin C, Mikkola R, Andersson MA, Teplova V, Suominen I, Johansson T, Salkinoja-Salonen M (2009) Bacillus subtilis and B. mojavensis strains connected to food poisoning produce the heat stable toxin amylosin. J Appl Microbiol 106:1976–1985

    CAS  Google Scholar 

  • Aronson A (2002) Sporulation and delta-endotoxin synthesis by Bacillus thuringiensis. Cell Mol Life Sci 59:417–425

    CAS  Google Scholar 

  • Asano SI, Nukumizu Y, Bando H, Iizuka T, Yamamoto T (1997) Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 63:1054–1057

    CAS  Google Scholar 

  • Auger S, Galleron N, Bidnenko E, Ehrlich SD, Lapidus A, Sorokin A (2008) The genetically remote pathogenic strain NVH391-98 of the Bacillus cereus group is representative of a cluster of thermophilic strains. Appl Environ Microbiol 74:1276–1280

    CAS  Google Scholar 

  • Baida G, Budarina ZI, Kuzmin NP, Solonin AS (1999) Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol Lett 180:7–14

    CAS  Google Scholar 

  • Baida GE, Kuzmin NP (1995) Cloning and primary structure of a new hemolysin gene from Bacillus cereus. Biochim Biophys Acta 1264:151–154

    Google Scholar 

  • Barker M, Thakker B, Priest FG (2005) Multilocus sequence typing reveals that Bacillus cereus strains isolated from clinical infections have distinct phylogenetic origins. FEMS Microbiol Lett 245:179–184

    CAS  Google Scholar 

  • Baron F, Cochet MF, Grosset N, Madec MN, Briandet R, Dessaigne S et al (2007) Isolation and characterization of a psychrotolerant toxin producer, Bacillus weihenstephanensis, in liquid egg products. J Food Prot 70:2782–2791

    CAS  Google Scholar 

  • Beatty ME, Ashford DA, Griffin PM, Tauxe RV, Sobel J (2003) Gastrointestinal anthrax: review of the literature. Arch Intern Med 163:2527–2531

    Google Scholar 

  • Beecher DJ, Macmillan JD (1991) Characterization of the components of hemolysin BL from Bacillus cereus. Infect Immun 59:1778–1784

    CAS  Google Scholar 

  • Beecher DJ, Wong AC (1997) Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. J Biol Chem 272:233–239

    CAS  Google Scholar 

  • Beecher DJ, Wong AC (2000) Tripartite haemolysin BL: isolation and characterization of two distinct homologous sets of components from a single Bacillus cereus isolate. Microbiology 146(Pt 6):1371–1380

    CAS  Google Scholar 

  • Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23:382–398

    Google Scholar 

  • Bouillaut L, Perchat S, Arold S, Zorrilla S, Slamti L, Henry C et al (2008) Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res 36:3791–3801

    CAS  Google Scholar 

  • Brillard J, Lereclus D (2004) Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain. Microbiology 150:2699–2705

    CAS  Google Scholar 

  • Candela T, Fouet A (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol 60:1091–1098

    CAS  Google Scholar 

  • Carlson CR, Caugant DA, Kolstø AB (1994a) Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725

    CAS  Google Scholar 

  • Carlson CR, Caugant DA, Kolstø AB (1994b) Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725

    CAS  Google Scholar 

  • Carlson CR, Gronstad A, Kolstø AB (1992) Physical maps of the genomes of three Bacillus cereus strains. J Bacteriol 174:3750–3756

    CAS  Google Scholar 

  • Carlson CR, Johansen T, Kolstø AB (1996) The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol Lett 141:163–167

    CAS  Google Scholar 

  • Carlson CR, Kolstø AB (1993) A complete physical map of a Bacillus thuringiensis chromosome. J Bacteriol 175:1053–1060

    CAS  Google Scholar 

  • Chitlaru T, Gat O, Gozlan Y, Ariel N, Shafferman A (2006) Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J Bacteriol 188:3551–3571

    CAS  Google Scholar 

  • Cohn F (1872) Untersuchungen über Bacterien. Beitrage zur Biologie der Pflanzen 1:127–244

    Google Scholar 

  • Dai Z, Sirard JC, Mock M, Koehler TM (1995) The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol Microbiol 16:1171–1181

    CAS  Google Scholar 

  • Delihas N (2008) Small mobile sequences in bacteria display diverse structure/function motifs. Mol Microbiol 67:475–481

    CAS  Google Scholar 

  • Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A et al (2005) Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microbiol 43:4277–4279

    Google Scholar 

  • Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6:324–338

    CAS  Google Scholar 

  • Drysdale M, Heninger S, Hutt J, Chen Y, Lyons CR, Koehler TM (2005) Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J 24:221–227

    CAS  Google Scholar 

  • Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S (2006) Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol 6:20

    Google Scholar 

  • Ehling-Schulz M, Vukov N, Schulz A, Shaheen R, Andersson M, Martlbauer E, Scherer S (2005a) Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl Environ Microbiol 71:105–113

    CAS  Google Scholar 

  • Ehling-Schulz M, Svensson B, Guinebretiere MH, Lindback T, Andersson M, Schulz A et al (2005b) Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151:183–197

    CAS  Google Scholar 

  • Fagerlund A, Brillard J, Furst R, Guinebretiere MH, Granum PE (2007) Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. BMC Microbiol 7:43

    Google Scholar 

  • Fagerlund A, Lindback T, Storset AK, Granum PE, Hardy SP (2008) Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology 154:693–704

    CAS  Google Scholar 

  • Fedhila S, Daou N, Lereclus D, Nielsen-LeRoux C (2006) Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects. Mol Microbiol 62:339–355

    CAS  Google Scholar 

  • Fedhila S, Gohar M, Slamti L, Nel P, Lereclus D (2003) The Bacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient, for virulence. J Bacteriol 185:2820–2825

    CAS  Google Scholar 

  • Fedhila S, Guillemet E, Nel P, Lereclus D (2004) Characterization of two Bacillus thuringiensis genes identified by in vivo screening of virulence factors. Appl Environ Microbiol 70:4784–4791

    CAS  Google Scholar 

  • Fedhila S, Nel P, Lereclus D (2002) The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. J Bacteriol 184:3296–3304

    CAS  Google Scholar 

  • Fouet A, Mock M (2006) Regulatory networks for virulence and persistence of Bacillus anthracis. Curr Opin Microbiol 9:160–166

    CAS  Google Scholar 

  • Ghelardi E, Celandroni F, Salvetti S, Fiscarelli E, Senesi S (2007) Bacillus thuringiensis pulmonary infection: critical role for bacterial membrane-damaging toxins and host neutrophils. Microbes Infect 9:591–598

    CAS  Google Scholar 

  • Gohar M, Faegri K, Perchat S, Ravnum S, Økstad OA, Gominet M et al (2008) The PlcR virulence regulon of Bacillus cereus. PLoS One 3:e2793

    Google Scholar 

  • Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D (2005) A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5:3696–3711

    CAS  Google Scholar 

  • Granum PE, O’Sullivan K, Lund T (1999) The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol Lett 177:225–229

    CAS  Google Scholar 

  • Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Brown N et al (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol 188:3382–3390

    Google Scholar 

  • Helgason E, Caugant DA, Lecadet MM, Chen Y, Mahillon J, Lovgren A et al (1998) Genetic diversity of Bacillus cereus/B. thuringiensis isolates from natural sources. Curr Microbiol 37:80–87

    CAS  Google Scholar 

  • Helgason E, Caugant DA, Olsen I, Kolstø AB (2000a) Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 38:1615–1622

    CAS  Google Scholar 

  • Helgason E, Tourasse NJ, Meisal R, Caugant DA, Kolstø AB (2004) Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201

    CAS  Google Scholar 

  • Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M et al (2000b) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    CAS  Google Scholar 

  • Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M et al (2000c) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    CAS  Google Scholar 

  • Hendriksen NB, Hansen BM, Johansen JE (2006) Occurrence and pathogenic potential of Bacillus cereus group bacteria in a sandy loam. Antonie Van Leeuwenhoek 89:239–249

    CAS  Google Scholar 

  • Hernandez E, Ramisse F, Cruel T, le Vagueresse R, Cavallo JD (1999) Bacillus thuringiensis serotype H34 isolated from human and insecticidal strains serotypes 3a3b and H14 can lead to death of immunocompetent mice after pulmonary infection. FEMS Immunol Med Microbiol 24:43–47

    CAS  Google Scholar 

  • Herron WM (1930) Rancidity in cheddar cheese. Queen’s University, Kingston, ON, Canada

    Google Scholar 

  • Hill KK, Ticknor LO, Okinaka RT, Asay M, Blair H, Bliss KA et al (2004) Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol 70:1068–1080

    CAS  Google Scholar 

  • Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK et al (2004) Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101:8449–8454

    CAS  Google Scholar 

  • Hoton FM, Andrup L, Swiecicka I, Mahillon J (2005) The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology 151:2121–2124

    CAS  Google Scholar 

  • Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V et al (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91

    CAS  Google Scholar 

  • Jackson PJ, Hill KK, Laker MT, Ticknor LO, Keim P (1999) Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis. J Appl Microbiol 87:263–269

    CAS  Google Scholar 

  • Jensen GB, Hansen BM, Eilenberg J, Mahillon J (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5:631–640

    CAS  Google Scholar 

  • Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, Galbraith M et al (2001) Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 7:933–944

    CAS  Google Scholar 

  • Keim P, Kalif A, Schupp J, Hill K, Travis SE, Richmond K et al (1997a) Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 179:818–824

    CAS  Google Scholar 

  • Keim P, Kalif A, Schupp J, Hill K, Travis SE, Richmond K et al (1997b) Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 179:818–824

    CAS  Google Scholar 

  • Klee SR, Brzuszkiewicz EB, Nattermann H, Brüggemann H, Dupke S, Wollherr A, Franz T, Pauli G, Appel B, Liebl W, Couacy-Hymann E, Boesch C, Meyer FD, Leendertz FH, Ellerbrok H, Gottschalk G, Grunow R, Liesegang H (2010) The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One 5(7):e10986.

    CAS  Google Scholar 

  • Klee SR, Ozel M, Appel B, Boesch C, Ellerbrok H, Jacob D et al (2006) Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Cote d’Ivoire and Cameroon. J Bacteriol 188:5333–5344

    CAS  Google Scholar 

  • Klevan A, Tourasse NJ, Stabell FB, Kolstø AB, Økstad OA (2007) Exploring the evolution of the Bacillus cereus group repeat element bcr1 by comparative genome analysis of closely related strains. Microbiology 153:3894–3908

    CAS  Google Scholar 

  • Kolstø AB, Tourasse NJ, Økstad OA (2009) What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 63:451–476

    Google Scholar 

  • Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198

    CAS  Google Scholar 

  • Kreft J, Berger H, Hartlein M, Muller B, Weidinger G, Goebel W (1983) Cloning and expression in Escherichia coli and Bacillus subtilis of the hemolysin (cereolysin) determinant from Bacillus cereus. J Bacteriol 155:681–689

    CAS  Google Scholar 

  • Kuppe A, Evans LM, McMillen DA, Griffith OH (1989) Phosphatidylinositol-specific phospholipase C of Bacillus cereus: cloning, sequencing, and relationship to other phospholipases. J Bacteriol 171:6077–6083

    CAS  Google Scholar 

  • Lapidus A, Goltsman E, Auger S, Galleron N, Segurens B, Dossat C et al (2008) Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem Biol Interact 171:236–249

    CAS  Google Scholar 

  • Leendertz FH, Ellerbrok H, Boesch C, Couacy-Hymann E, Matz-Rensing K, Hakenbeck R et al (2004) Anthrax kills wild chimpanzees in a tropical rainforest. Nature 430:451–452

    CAS  Google Scholar 

  • Leendertz FH, Lankester F, Guislain P, Neel C, Drori O, Dupain J et al (2006) Anthrax in Western and Central African great apes. Am J Primatol 68:928–933

    Google Scholar 

  • Lindback T, Fagerlund A, Rodland MS, Granum PE (2004) Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150:3959–3967

    Google Scholar 

  • Lindbäck T, Hardy SP, Dietrich R, Sødring M, Didier A, Moravek M, Fagerlund A, Bock S, Nielsen C, Casteel M, Granum PE, Märtlbauer E (2010) Cytotoxicity of the Bacillus cereus Nhe enterotoxin requires specific binding order of its three exoprotein components. Infect Immun. 78(9):3813–3821

    Google Scholar 

  • Lindback T, Økstad OA, Rishovd AL, Kolstø AB (1999) Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology 145(Pt 11):3139–3146

    CAS  Google Scholar 

  • Lovgren A, Carlson CR, Kang D, Eskils K, Kolstø AB (2002) Physical mapping of the Bacillus thuringiensis subsp. kurstaki and alesti chromosomes. Curr Microbiol 44:81–87

    Google Scholar 

  • Lucking G, Dommel MK, Scherer S, Fouet A, Ehling-Schulz M (2009) Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 155:922–931

    Google Scholar 

  • Lund T, De Buyser ML, Granum PE (2000) A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol 38:254–261

    CAS  Google Scholar 

  • Lund T, Granum PE (1996) Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol Lett 141:151–156

    CAS  Google Scholar 

  • Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bar W, Krahenbuhl S (1997) Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med 336:1142–1148

    CAS  Google Scholar 

  • Margulis L, Jorgensen JZ, Dolan S, Kolchinsky R, Rainey FA, Lo SC (1998) The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci USA 95:1236–1241

    CAS  Google Scholar 

  • McIntyre L, Bernard K, Beniac D, Isaac-Renton JL, Naseby DC (2008) Identification of Bacillus cereus group species associated with food poisoning outbreaks in British Columbia, Canada. Appl Environ Microbiol 74:7451–7453

    CAS  Google Scholar 

  • Mignot T, Couture-Tosi E, Mesnage S, Mock M, Fouet A (2004) In vivo Bacillus anthracis gene expression requires PagR as an intermediate effector of the AtxA signalling cascade. Int J Med Microbiol 293:619–624

    CAS  Google Scholar 

  • Mignot T, Mock M, Fouet A (2003) A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol Microbiol 47:917–927

    CAS  Google Scholar 

  • Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671

    CAS  Google Scholar 

  • Mock M, Mignot T (2003) Anthrax toxins and the host: a story of intimacy. Cell Microbiol 5:15–23

    CAS  Google Scholar 

  • Nieminen T, Rintaluoma N, Andersson M, Taimisto AM, Ali-Vehmas T, Seppala A et al (2007) Toxinogenic Bacillus pumilus and Bacillus licheniformis from mastitic milk. Vet Microbiol 124:329–339

    CAS  Google Scholar 

  • Okinaka R, Cloud K, Hampton O, Hoffmaster A, Hill K, Keim P et al (1999a) Sequence, assembly and analysis of pX01 and pX02. J Appl Microbiol 87:261–262

    CAS  Google Scholar 

  • Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P et al (1999b) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181:6509–6515

    CAS  Google Scholar 

  • Økstad OA, Hegna I, Lindback T, Rishovd AL, Kolstø AB (1999a) Genome organization is not conserved between Bacillus cereus and Bacillus subtilis. Microbiology 145(Pt 3):621–631

    Google Scholar 

  • Økstad OA, Gominet M, Purnelle B, Rose M, Lereclus D, Kolstø AB (1999b) Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145(Pt 11):3129–3138

    Google Scholar 

  • Økstad OA, Tourasse NJ, Stabell FB, Sundfaer CK, Egge-Jacobsen W, Risoen PA et al (2004) The bcr1 DNA repeat element is specific to the Bacillus cereus group and exhibits mobile element characteristics. J Bacteriol 186:7714–7725

    Google Scholar 

  • Oscarsson J, Mizunoe Y, Uhlin BE, Haydon DJ (1996) Induction of haemolytic activity in Escherichia coli by the slyA gene product. Mol Microbiol 20:191–199

    CAS  Google Scholar 

  • Oscarsson J, Westermark M, Lofdahl S, Olsen B, Palmgren H, Mizunoe Y et al (2002) Characterization of a pore-forming cytotoxin expressed by Salmonella enterica serovars typhi and paratyphi A. Infect Immun 70:5759–5769

    CAS  Google Scholar 

  • Pannucci J, Okinaka RT, Sabin R, Kuske CR (2002a) Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species. J Bacteriol 184:134–141

    CAS  Google Scholar 

  • Pannucci J, Okinaka RT, Williams E, Sabin R, Ticknor LO, Kuske CR (2002b) DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and genomic sequence from closely related bacteria. BMC Genomics 3:34

    Google Scholar 

  • Passalacqua KD, Bergman NH (2006) Bacillus anthracis: interactions with the host and establishment of inhalational anthrax. Future Microbiol 1:397–415

    Google Scholar 

  • Perego M, Hoch JA (2008) Commingling regulatory systems following acquisition of virulence plasmids by Bacillus anthracis. Trends Microbiol 16:215–221

    CAS  Google Scholar 

  • Preisz H (1909) Experimentelle studien über virulenz, empfänglichkeit und immunität beim milzbrand. Zeitschr Immunität-Forsch 5:341–452

    Google Scholar 

  • Priest FG (1993) Systematics and ecology of Bacillus. In: Bacillus subtilis and other Gram-positive bacteria - Biochemistry, physiology, and molecular genetics. In: Sonenshein AL, Hoch JA, Losick R (eds.) ASM press, American Society for Microbiology, Washington, D.C. ISBN 1-55581-053-5.

    Google Scholar 

  • Pruss BM, Dietrich R, Nibler B, Martlbauer E, Scherer S (1999) The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl Environ Microbiol 65:5436–5442

    CAS  Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329

    CAS  Google Scholar 

  • Rasko DA, Ravel J, Økstad OA, Helgason E, Cer RZ, Jiang L et al (2004) The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32:977–988

    CAS  Google Scholar 

  • Rasko DA, Rosovitz MJ, Økstad OA, Fouts DE, Jiang L, Cer RZ et al (2007) Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus-group plasmids, including Bacillus anthracis pXO1. J Bacteriol 189:52–64

    CAS  Google Scholar 

  • Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE et al (2003a) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86

    CAS  Google Scholar 

  • Read TD, Peterson SN, Tourasse NJ, Baillie LW, Paulsen IT, Nelson KE et al (2003b) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86

    CAS  Google Scholar 

  • Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L et al (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296:2028–2033

    CAS  Google Scholar 

  • Reddy A, Battisti L, Thorne CB (1987) Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol 169:5263–5270

    CAS  Google Scholar 

  • Richter S, Anderson VJ, Garufi G, Lu L, Budzik JM, Joachimiak A et al (2009) Capsule anchoring in Bacillus anthracis occurs by a transpeptidation reaction that is inhibited by capsidin. Mol Microbiol 71:404–420

    CAS  Google Scholar 

  • Saile E, Koehler TM (2006) Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl Environ Microbiol 72:3168–3174

    CAS  Google Scholar 

  • Salkinoja-Salonen MS, Vuorio R, Andersson MA, Kampfer P, Andersson MC, Honkanen-Buzalski T, Scoging AC (1999) Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl Environ Microbiol 65:4637–4645

    CAS  Google Scholar 

  • Scarano C, Virdis S, Cossu F, Frongia R, De Santis EP, Cosseddu AM (2009) The pattern of toxin genes and expression of diarrheal enterotoxins in Bacillus thuringiensis strains isolated from commercial bioinsecticides. Vet Res Commun 33(Suppl 1):257–260

    Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J et al (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  Google Scholar 

  • Shinagawa K, Sugiyama J, Terada T, Matsusaka N, Sugii S (1991) Improved methods for purification of an enterotoxin produced by Bacillus cereus. FEMS Microbiol Lett 64:1–5

    CAS  Google Scholar 

  • Slamti L, Lereclus D (2002) A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21:4550–4559

    CAS  Google Scholar 

  • Slamti L, Lereclus D (2005) Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J Bacteriol 187:1182–1187

    CAS  Google Scholar 

  • Soberon M, Pardo-Lopez L, Lopez I, Gomez I, Tabashnik BE, Bravo A (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640–1642

    CAS  Google Scholar 

  • Soule M (1932) Identity of Bacillus subtilis, Cohn 1872. J Infect Dis 51:191–215

    Google Scholar 

  • Sozhamannan S, Chute MD, McAfee FD, Fouts DE, Akmal A, Galloway DR et al (2006) The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages. BMC Microbiol 6:34

    Google Scholar 

  • Stenfors Arnesen LP, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606

    CAS  Google Scholar 

  • Stenfors LP, Granum PE (2001) Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol Lett 197:223–228

    CAS  Google Scholar 

  • Suyama M, Bork P (2001) Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet 17:10–13

    CAS  Google Scholar 

  • Thorsen L, Hansen BM, Nielsen KF, Hendriksen NB, Phipps RK, Budde BB (2006) Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl Environ Microbiol 72:5118–5121

    CAS  Google Scholar 

  • Ticknor LO, Kolstø AB, Hill KK, Keim P, Laker MT, Tonks M, Jackson PJ (2001) Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Appl Environ Microbiol 67:4863–4873

    CAS  Google Scholar 

  • Tourasse NJ, Helgason E, Klevan A, Sylvestre P, Moya M, Haustant M, Økstad OA, Fouet A, Mock M, Kolstø AB. Extended and global phylogenetic view of the Bacillus cereus group population by combination of MLST, AFLP, and MLEE genotyping data. Food Microbiology. In Press.

    Google Scholar 

  • Tourasse NJ, Helgason E, Økstad OA, Hegna IK, Kolstø AB (2006) The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol 101:579–593

    CAS  Google Scholar 

  • Tourasse NJ, Kolstø AB (2008) SuperCAT: a supertree database for combined and integrative multilocus sequence typing analysis of the Bacillus cereus group of bacteria (including B. cereus, B. anthracis and B. thuringiensis). Nucleic Acids Res 36:D461–D468

    CAS  Google Scholar 

  • Tran SL, Guillemet E, Gohar M, Lereclus D, Ramarao N (2010) CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J Bacteriol 192:2638–2642

    CAS  Google Scholar 

  • Uchida I, Hornung JM, Thorne CB, Klimpel KR, Leppla SH (1993) Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J Bacteriol 175:5329–5338

    CAS  Google Scholar 

  • Uchida I, Makino S, Sekizaki T, Terakado N (1997) Cross-talk to the genes for Bacillus anthracis capsule synthesis by atxA, the gene encoding the trans-activator of anthrax toxin synthesis. Mol Microbiol 23:1229–1240

    CAS  Google Scholar 

  • Van der Auwera GA, Andrup L, Mahillon J (2005) Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 6:103

    Google Scholar 

  • Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME, Ravel J et al (2007) Global genetic population structure of Bacillus anthracis. PLoS ONE 2:e461

    Google Scholar 

  • Vassileva M, Torii K, Oshimoto M, Okamoto A, Agata N, Yamada K et al (2007) A new phylogenetic cluster of cereulide-producing Bacillus cereus strains. J Clin Microbiol 45:1274–1277

    CAS  Google Scholar 

  • Verheust C, Fornelos N, Mahillon J (2005) GIL16, a new gram-positive tectiviral phage related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 elements. J Bacteriol 187:1966–1973

    CAS  Google Scholar 

  • Wallace AJ, Stillman TJ, Atkins A, Jamieson SJ, Bullough PA, Green J, Artymiuk PJ (2000) E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 100:265–276

    CAS  Google Scholar 

  • Whiteley HR, Schnepf HE (1986) The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annu Rev Microbiol 40:549–576

    CAS  Google Scholar 

  • Young JA, Collier RJ (2007) Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Nicolas Tourasse for performing the phylogenetic analyses for Figs. 2.1 and 2.3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ole Andreas Økstad or Anne-Brit Kolstø .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Økstad, O.A., Kolstø, AB. (2011). Genomics of Bacillus Species. In: Wiedmann, M., Zhang, W. (eds) Genomics of Foodborne Bacterial Pathogens. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7686-4_2

Download citation

Publish with us

Policies and ethics