Proteomics of Foodborne Bacterial Pathogens

Part of the Food Microbiology and Food Safety book series (FMFS)


This chapter is intended to be a relatively brief overview of proteomic techniques currently in use for the identification and analysis of microorganisms with a special emphasis on foodborne pathogens. The chapter is organized as follows. First, proteomic techniques are introduced and discussed. Second, proteomic applications are presented specifically as they relate to the identification and qualitative/quantitative analysis of foodborne pathogens.


Electron Capture Dissociation Electron Transfer Dissociation Foodborne Pathogen Peptide Mass Fingerprinting Proteomic Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The views expressed in this chapter are those of the author and are not intended to represent, explicitly or implicitly, the views of the US Department of Agriculture. Mention of a brand or firm name does not constitute an endorsement by the US Department of Agriculture over others of a similar nature not mentioned.

Acknowledgment I wish to acknowledge Dr. William H. Vensel for useful discussions during the preparation of this chapter.


  1. Adkins JN, Mottaz HM, Norbeck AD, Gustin JK, Rue J, Clauss TRW, Purvine SO, Rodlandt KD, Heffron F, Smith RD (2006) Analysis of the Salmonella typhimurium proteome through environmental response toward infectious conditions. Mol Cell Proteomics 5:1450–1461Google Scholar
  2. Anjum MF, Tucker JD, Sprigings KA, Woodward MJ, Ehricht R (2006) Use of miniaturized protein arrays for Escherichia coli O serotyping. Clin Vaccine Immunol 3:561–567Google Scholar
  3. Asakura H, Panutdaporn N, Kawamoto K, Igimi S, Yamamoto S, Makino S (2007) Proteomic characterization of enterohemorrhagic Escherichia coli O157:H7 in the oxidation-induced viable but non-culturable state. Microbiol Immunol 51:875–881Google Scholar
  4. Bakhoum SFW, Agnes GR (2005) Study of chemistry in droplets with net charge before and after Coulomb explosion: ion-induced nucleation in solution and implications for ion production in an electrospray. Anal Chem 77:3189–3197Google Scholar
  5. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795Google Scholar
  6. Bondarenko PV, Chelius D, Shaler TA (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem 74:4741–4749Google Scholar
  7. Brown RS, Lennon JJ (1995) Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal Chem 67:1998Google Scholar
  8. Burt SA, van der Zee R, Koets AP, de Graaff AM, van Knapen F, Gaastra. W, Haagsman HP, Veldhuizen EJ (2007) Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl Environ Microbiol 73:4484–4490Google Scholar
  9. Centers for Disease Control and Prevention (CDC) (2006) Emergency preparedness & response: bioterrorism agents/diseases. CDC, Atlanta, GA. Accessed 31 July 2006
  10. Chelius D, Bondarenko PV (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1:317–323Google Scholar
  11. Chelius D, Zhang T, Wang G, Shen RF (2003) Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Anal Chem 75:6658–6665Google Scholar
  12. Chen EI, Hewel J, Felding-Habermann B, Yates JR 3rd (2006) Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT). Mol Cell Proteomics 5:53–56Google Scholar
  13. Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom 36:849–865Google Scholar
  14. Chong PK, Burja AM, Radianingtyas H, Fazeli A, Wright PC (2007) Proteome analysis of Sulfolobus solfataricus P2 propanol metabolism. J Proteome Res 6:1430–1439Google Scholar
  15. Comisarow MB, Marshall AG (1974) Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 25:282–283Google Scholar
  16. Coon JJ, Ueberheide B, Syka JE, Dryhurst DD, Ausio J, Shabanowitz J, Hunt DF (2005) Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc Natl Acad Sci USA 102:9463–9468Google Scholar
  17. Cordwell SJ, Len ACL, Touma RG, Scott NE, Falconer L, Jones D, Connolly A, Crossett B, Djordjevic SP (2008) Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomic technologies. Proteomics 8:122–139Google Scholar
  18. Cornish TJ, Cotter RJ (1993) A curved-field reflectron for improved energy focusing of product ions in time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 7:1037–1040Google Scholar
  19. Cotter RJ, Gardner BD, Iltchenko S, English RD (2004) Tandem time-of-flight mass spectrometry with a curved field reflectron. Anal Chem 76:1976–1981Google Scholar
  20. Craig R, Beavis RC (2004) TANDEM: Matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467Google Scholar
  21. Demirev PA, Feldman AB, Kowalski P, Lin JS (2005) Top-down proteomics for rapid identification intact microorganisms. Anal Chem 77:7455–7461Google Scholar
  22. Demirev PA, Ho Y-P, Ryzhov V, Fenselau C (1999) Microorganism identification by mass spectrometry and protein database searches. Anal Chem 71:2732–2738Google Scholar
  23. Demirev PA, Lin JS, Pineda FJ, Fenselau C (2001a) Bioinformatics and mass spectrometry for microorganism identification: proteome-wide post-translational modifications and database search algorithms for characterization of intact H. pylori. Anal Chem 73:4566–4573Google Scholar
  24. Demirev PA, Ramirez J, Fenselau C (2001b) Tandem mass spectrometry of intact proteins for characterization of biomarkers from Bacillus cereus T spores. Anal Chem 73:5725–5731Google Scholar
  25. Douglas DJ, Frank AJ, Mao D (2005) Linear ion traps in mass spectrometry. Mass Spectrom Rev 24:1–29Google Scholar
  26. Edman P (1956) On the mechanism of the phenyl isothiocyanate degradation of peptides. Acta Chem Scand 10:761Google Scholar
  27. Eng JK, McCormack AL, Yates JR 3rd (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989Google Scholar
  28. Fagerquist CK (2007) Amino acid sequence determination of protein biomarkers of Campylobacter upsaliensis and C. helveticus by “composite” sequence proteomic analysis. J Proteome Res 6:2539–2549Google Scholar
  29. Fagerquist CK, Bates AH, Heath S, King BC, Garbus BR, Harden LA, Miller WG (2006) Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications. J Proteome Res 5:2527–2538Google Scholar
  30. Fagerquist CK, Garbus BR, Miller WG, Williams KE, Yee E, Bates AH, Boyle S, Harden LA, Cooley MB, Mandrell RE (2010) Rapid identification of protein biomarkers of Escherichia coli O157:H7 by matrix-assisted laser desorption ionization-time-of-flight-time-of-flight mass spectrometry and top-down proteomics. Anal Chem 82:2717–2725Google Scholar
  31. Fagerquist CK, Garbus BR, Williams KE, Bates AH, Boyle S, Harden LA (2009) Web-based software for rapid top-down proteomic identification of protein biomarkers, with implications for bacterial identification. Appl Environ Microbiol 75:4341–4353Google Scholar
  32. Fagerquist CK, Miller WG, Harden LA, Bates AH, Vensel WH, Wang G, Mandrell RE (2005) Genomic and proteomic identification of a DNA-binding protein used in the “fingerprinting” of Campylobacter species and strains by MALDI-TOF-MS protein biomarker analysis. Anal Chem 77:4897–4907Google Scholar
  33. Fagerquist CK, Yee E, Miller WG (2007) Composite sequence proteomic analysis of protein biomarkers of Campylobacter coli, C. lari and C. concisus for bacterial identification. Analyst 132:1010–1023Google Scholar
  34. Fang R, Elias DA, Monroe ME, Shen Y, McIntosh M, Wang P, Goddard CD, Callister SJ, Moore RJ, Gorby YA, Adkins JN, Fredrickson JK, Lipton MS, Smith RD (2006) Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach. Mol Cell Proteomics 5:714–725Google Scholar
  35. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71Google Scholar
  36. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520–526Google Scholar
  37. Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, Meinnel T (2006) The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 5:2336–2349Google Scholar
  38. Gao J, Opiteck GJ, Friedrichs MS, Dongre AR, Hefta SA (2003) Changes in the protein expression of yeast as a function of carbon source. J Proteome Res 2:643–649Google Scholar
  39. Gardy JL, Brinkman FSL (2006) Methods for predicting bacterial protein subcellular localization. Nat Rev Microbiol 4:741–751Google Scholar
  40. Gardy JL, Laird MR, Chenm F, Rey S, Walsh CJ, Ester M, Brinkman FS (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623Google Scholar
  41. Gatlin CL, Pieper R, Huang S-T, Mongodin E, Gebreorgis E, Parmar PP, Clark DJ, Alami H, Papazisi L, Fleischmann RD, Gill SR, Peterson SN (2006) Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus. Proteomics 6:1530–1549Google Scholar
  42. Gaynor K, Park SY, Kanenaka R, Colindres R, Mintz E, Ram PK, Kitsutani P, Nakata M, Wedel S, Boxrud D, Jennings D, Yoshida H, Tosaka N, He H, Ching-Lee M, Effler PV (Jan 2008) International foodborne outbreak of Shigella sonnei infection in airline passengers. Epidemiol Infect 4:1–7 [Epub ahead of print]Google Scholar
  43. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964Google Scholar
  44. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945Google Scholar
  45. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couvé E, de Daruvar A, Dehoux P, Domann E, Domínguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, García-del Portillo F, Garrido P, Gautier L, Goebel W, Gómez-López N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Pérez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vázquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294:849–852Google Scholar
  46. Gonzales T, Robert-Baudouy J (1996) Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev 18:319–344Google Scholar
  47. Griffiths J (2007) The way of the array. Anal Chem 35:8833–8837Google Scholar
  48. Guina T, Radulovic D, Bahrami AJ, Bolton DL, Rohmer L, Jones-Isaac KA, Chen J, Gallagher LA, Gallis B, Ryu S, Taylor GK, Brittnacher MJ, Manoil C, Goodlett DR (2007) MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J Bacteriol 189:6580–6586Google Scholar
  49. Gunther NW IV, Nunez A, Fett W, Solaiman DK (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293Google Scholar
  50. Gunther NW IV, Nunez A, Fortis L, Solaiman DKY (2006) Proteomic based investigation of rhamnolipid production by Pseudomonas chlororaphis strain NRRL B-3061. J Ind Microbio Biotech 33:914–920Google Scholar
  51. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999a) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol 17:994–999Google Scholar
  52. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999b) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730Google Scholar
  53. Han Y, Ma B, Zhang K (2005) SPIDER: software for protein identification from sequence tags with de novo sequencing error. J Bioinform Comput Biol 3:697–716Google Scholar
  54. Hardwidge PR, Donohoe S, Aebersold R, Finlay BB (2006) Proteomic analysis of the binding partners to enteropathogenic Escherichia coli virulence proteins expressed in Saccharomyces cerevisiae. Proteomics 6:2174–2179Google Scholar
  55. Henzel WJ, Watanabe C, Stults JT (2003) Protein identification: the origins of peptide mass fingerprinting. J Am Soc Mass Spectrom 14:931–942Google Scholar
  56. Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) A gas-liquid solid phase peptide and protein sequenator. J Biol Chem 256:7990–7997Google Scholar
  57. Hirel PH, Schmitter MJ, Dessen P, Fayat G, Blanquet S (1989) Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci USA 86:8247–8251Google Scholar
  58. Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE (1998) Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal Chem 70:2236–2242Google Scholar
  59. Hoaglund-Hyzer CS, Lee YJ, Counterman AE, Clemmer DE (2002) Coupling ion mobility separations, collisional activation techniques, and multiple stages of MS for analysis of complex peptide mixtures. Anal Chem 74:992–1006Google Scholar
  60. Hoaglund-Hyzer CS, Li J, Clemmer DE (2000) Mobility labeling for parallel CID of ion mixtures. Anal Chem 72:2737–2740Google Scholar
  61. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587Google Scholar
  62. Hu WS, Lin Y-H, Shih C-C (2007) A proteomic approach to study Salmonella enterica serovar Typhimurium putative transporter YjeH associated with ceftriaxone resistance. Biochem Biophys Res Commun 361:694–699Google Scholar
  63. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks GR (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443Google Scholar
  64. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (em-PAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272Google Scholar
  65. Jarmon KH, Cebula ST, Saenz AJ, Petersen CE, Valentine NB, Kingsley MT, Wahl KL (2000) An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72:1217–1223Google Scholar
  66. Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11Google Scholar
  67. Jennison AV, Raqib R, Verma NK (2006) Immunoproteome analysis of soluble and membrane proteins of Shigella flexneri 2457T. World J Gastroenterol 12:6683–6688Google Scholar
  68. Johnson RS, Taylor JA (2002) Searching sequence databases via de novo peptide sequencing by tandem mass spectrometry. Mol Biotechnol 22:301–315Google Scholar
  69. Jones JJ, Stump MJ, Fleming RC, Lay JO Jr, Wilkins CL (2003) Investigation of MALDI-TOF and FT-MS techniques for analysis of Escherichia coli whole cells. Anal Chem 75:1340–1347Google Scholar
  70. Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662Google Scholar
  71. Kan B, Habbi H, Schmid M, Liang W, Wang R, Wang D, Jungblut PR (2004) Proteome comparison of Vibrio cholerae cultured in aerobic and anaerobic conditions. Proteomics 4:3061–3067Google Scholar
  72. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68Google Scholar
  73. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301Google Scholar
  74. Lancaster KS, An HJ, Li B, Lebrilla CB (2006) Interrogation of N-linked oligosaccharides using infrared multiphoton dissociation in FT-ICR mass spectrometry. Anal Chem 78:4990–4997Google Scholar
  75. Le Guyader FS, Bon F, DeMedici D, Parnaudeau S, Bertone A, Crudeli S, Doyle A, Zidane M, Suffredini E, Kohli E, Maddalo F, Monini M, Gallay A, Pommepuy M, Pothier P, Ruggeri FM (2006) Detection of multiple noroviruses associated with an international gastroenteritis outbreak linked to oyster consumption. J Clin Microbiol 44:3878–3882Google Scholar
  76. Lee YJ, Hoaglund-Hyzera CS, Srebalus Barnes CA, Hilderbrand AE, Valentine SJ, Clemmer DE (2002) Development of high-throughput liquid chromatography injected ion mobility quadrupole time-of-flight techniques for analysis of complex peptide mixtures. J Chromatogr B Analyt Technol Biomed Life Sci 782:343–351Google Scholar
  77. Lenz LL, Mohammadi S, Geissler A, Portnoy DA (2003) SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Indian Natl Sci Acad B Biol Sci 100:12432–12437Google Scholar
  78. Lenz LL, Portnoy DA (2002) Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol Microbiol 45:1043–1056Google Scholar
  79. Li M, Rosenshine I, Tung SL, Wang XH, Freidberg D, Hew CL, Leung KY (2004) Comparative proteomic analysis of extracellular proteins of enterohemorrhagic and enteropathogenic Escherichia coli strains and their ihf and ler mutants. Appl Environ Microbiol 70:5274–5282Google Scholar
  80. Liao X, Ying T, Wang H, Wang J, Shi Z, Feng E, Wei K, Wang Y, Zhang X, Huang L, Su G, Huang P (2003) A two-dimensional proteome map of Shigella flexneri. Electrophoresis 24:2864–2882Google Scholar
  81. Lipton MS, Pasa-Tolic L, Anderson GA, Anderson DJ, Auberry DL, Battista JR, Daly MJ, Fredrickson J, Hixson KK, Kostandarithes H, Masselon C, Markillie LM, Moore RJ, Romine MF, Shen Y, Stritmatter E, Tolic N, Udseth HR, Venkateswaran A, Wong KK, Zhao R, Smith RD (2002) Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc Natl Acad Sci USA 99:11049–11054Google Scholar
  82. Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201Google Scholar
  83. Lo I, Denef VJ, Verberkmoes NC, Shah MB, Goltsman D, DiBartolo G, Tyson GW, Allen EE, Ram RJ, Detter JC, Richardson P, Thelen MP, Hettich RL, Banfield JF (2007) Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446:537–541Google Scholar
  84. Loboda AV, Ackloo S, Chernushevich IV (2003) A high-performance matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometer with collisional cooling. Rapid Commun Mass Spectrom 17:2508–2516Google Scholar
  85. Luo Y, Vilain S, Voigt B, Albrecht D, Hecker M, Brözel VS (2007) Proteomic analysis of Bacillus cereus growing in liquid soil organic matter. FEMS Microbiol Lett 271:40–47Google Scholar
  86. Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2337–2342Google Scholar
  87. MacGillivray AJ, Rickwood D (1974) The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. Eur J Biochem 41:181–190Google Scholar
  88. Maillet I, Berndt P, Malo C, Rodriguez S, Brunisholz RA, Pragai Z, Arnold S, Langen H, Wyss M (2007) From the genome sequence to the proteome and back: evaluation of E. coli genome annotation with a 2-D gel-based proteomics approach. Proteomics 7:1097–1106Google Scholar
  89. Makarov AA (1999) US Patent 5,886,346Google Scholar
  90. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162Google Scholar
  91. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78:2113–2120Google Scholar
  92. Mamyrin BA, Karataev VI, Shmikk DV, Zagulin VA (1973) The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Sov. Phys. JETP 37:45Google Scholar
  93. Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF, Fagerquist CK (2005) Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 71:6292–6307Google Scholar
  94. March RE (1997) An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32:351–369Google Scholar
  95. Marshall AG, Wang T-CL, Ricca TL (1985) Tailored excitation of Fourier transform ion cyclotron resonance mass spectrometry. J Am Chem Soc 107:7893–7897Google Scholar
  96. Martinović S, Veenstra TD, Anderson GA, Pasa-Tolić L, Smith RD (2002) Selective incorporation of isotopically labeled amino acids for identification of intact proteins on a proteome-wide level. J Mass Spectrom 37:99–107Google Scholar
  97. Mau B, Glasner JD, Darling AE, Perna NT (2006) Genome-wide detection and analysis of homologous recombination among sequenced strains of Escherichia coli. Genome Biol 7:R44Google Scholar
  98. McCormack AL, Schieltz DM, Goode B, Yang S, Barnes G, Drubin D, Yates JR 3rd (1997) Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal Chem 69:767–776Google Scholar
  99. Medzihradszky KF, Campbell JM, Baldwin MA, Falick AM, Juhasz P, Vestal ML, Burlingame AL (2000) The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 72:552–558Google Scholar
  100. Merenbloom SI, Koeniger SL, Valentine SJ, Plasencia MD, Clemmer DE (2006) IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragment ions. Anal Chem 78:2802–2809Google Scholar
  101. Morris HR, Paxton T, Dell A, Langhorne J, Berg M, Bordoli RS, Hoyes J, Bateman. RH (1996) High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 10:889–896Google Scholar
  102. Nakai K, Kanehisa M (1991) Expert system for predicting protein localization sites in Gram-negative bacteria. Proteins 11:95–110Google Scholar
  103. Nielsen H, Engelbrecht J, von Heijne G, Brunak S (1996) Defining a similarity threshold for a functional protein sequence pattern: the signal peptide cleavage site. Proteins 24:165–177Google Scholar
  104. Norbeck AD, Callister SJ, Monroe ME, Jaitly N, Elias DA, Lipton MS, Smith RD (2006) Proteomic approaches to bacterial differentiation. J Microbio Methods 67:473–486Google Scholar
  105. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA 96:6591–6596Google Scholar
  106. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021Google Scholar
  107. Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 246:376–386Google Scholar
  108. Oosthuizen MC, Steyn B, Lindsay D, Brözel VS, von Holy A (2001) Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm. FEMS Microbiol Lett 194:47–51Google Scholar
  109. Oosthuizen MC, Steyn B, Theron J, Cosette P, Lindsay D, Von Holy A, Brözel VS (2002) Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol 68:2770–2780Google Scholar
  110. Opiteck GJ, Lewis KC, Jorgenson JW, Anderegg RJ (1997) Comprehensive on-line LC/LC/MS of proteins. Anal Chem 69:1518–1524Google Scholar
  111. Pan S, Rush J, Peskind ER, Galasko D, Chung K, Quinn J, Jankovic J, Leverenz JB, Zabetian C, Pan C, Wang Y, Oh. JH, Gao J, Zhang J, Montine T, Zhang J (2008) Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform. J Proteome Res 7:720–730Google Scholar
  112. Pang JX, Ginanni N, Dongre AR, Hefta SA, Opitek GJ (2002) Biomarker discovery in urine by proteomics. J Proteome Res 1:161–169Google Scholar
  113. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567Google Scholar
  114. Pevtsov S, Fedulova I, Mirzaei H, Buck C, Zhang X (2006) Performance evaluation of existing de novo sequencing algorithms. J Proteome Res 5:3018–3028Google Scholar
  115. Pineda FJ, Lin JS, Fenselau C, Demirev PA (2000) Testing the significance of microorganism identification by mass spectrometry and proteome database search. Anal Chem 72:3739–3744Google Scholar
  116. Price WD, Schnier PD, Williams ER (1996) Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation. Anal Chem 68:859–866Google Scholar
  117. Qian MG, Lubman DM (1995) Analysis of tryptic digests using microbore HPLC with an ion trap storage/reflectron time-of-flight detector. Anal Chem 67:2870–2877Google Scholar
  118. Qian MG, Zhang Y, Lubman DM (1995) Collision-induced dissociation of multiply charged peptides in an ion-trap storage/reflectron time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 9:1275–1282Google Scholar
  119. Quiñones B, Guilhabert MR, Millerm WG, Mandrell RE, Lastovica AJ, Parker CT (2008) Comparative genomic analysis of clinical strains of Campylobacter jejuni from South Africa. PLoS ONE 3:e2015Google Scholar
  120. Rabilloud T (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10Google Scholar
  121. Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231–1245Google Scholar
  122. Reid GE, McLuckey SA (2002) ‘Top down’ protein characterization via tandem mass spectrometry. J Mass Spectrom 37:663–675Google Scholar
  123. Reller ME, Nelson JM, Mølbak K, Ackman DM, Schoonmaker-Bopp DJ, Root TP, Mintz ED (2006) A large, multiple-restaurant outbreak of infection with Shigella flexneri serotype 2a traced to tomatoes. Clin Infect Dis 42:163–169Google Scholar
  124. Reyzer ML, Caprioli RM (2005) MALDI mass spectrometry for direct tissue analysis: a new tool for biomarker discovery. J Proteome Res 4:1138–1142Google Scholar
  125. Rodríguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, Maggi T, Neumann A, Covre A, Telford JL, Grandi G (2006) Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol 24:191–197Google Scholar
  126. Romijn EP, Christis C, Wieffer M, Gouw JW, Fullaondo A, van der Sluijs P, Braakman I, Heck AJ (2005) Expression clustering reveals detailed co-expression patterns of functionally related proteins during B cell differentiation: a proteomic study using a combination of one-dimensional gel electrophoresis, LC-MS/MS, and stable isotope labeling by amino acids in cell culture (SILAC). Mol Cell Proteomics 4:1297–1310Google Scholar
  127. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169Google Scholar
  128. Ruotolo BT, Hyung SJ, Robinson PM, Giles K, Bateman RH, Robinson CV (2007) Ion mobility-mass spectrometry reveals long-lived, unfolded intermediates in the dissociation of protein complexes. Angew Chem Int Ed Engl 46:8001–8004Google Scholar
  129. Schaumburg J, Diekmann O, Hagendorff P, Bergmann S, Rohde M, Hammerschmidt S, Jansch L, Wehland J, Karst U (2004) The cell wall subproteome of Literia monocytogenes. Proteomics 4:2991–3006Google Scholar
  130. Scherl A, Francois P, Charbonnier Y, Deshusses JM, Koessler T, Huyghe A, Bento M, Stahl-Zeng J, Fischer A, Masselot A, Vaezzadeh A, Galle F, Renzoni A, Vaudaux P, Lew D, Zimmermann-Ivol CG, Binz P-A, Sanchez J-C, Hochstrasser DF, Schrenzel J (2006) Exploring glycopeptide-resistance in Staphylococcus aureus: a combined proteomics and transcriptomics approach for the identification of resistance-related markers. BMC Genomics 7:296Google Scholar
  131. Schnaible V, Wefing S, Resemann A, Suckau D, Bucker A, Wolf-Kummeth S, Hoffmann D (2002) Screening for disulfide bonds in proteins by MALDI in-source decay and LIFT-TOF/TOF-MS. Anal Chem 74:4980–4988Google Scholar
  132. Schwartz JC, Senko MW (2004) US Patent 6,797,950Google Scholar
  133. Scott NE, Marzook NB, Deutscher A, Falconer L, Crossett B, Djordjevic SP, Cordwell SJ (2010) Mass spectrometric characterization of the Campylobacter jejuni adherence factor CadF reveals post-translational processing that removes immunogenicity while retaining fibronectin binding. Proteomics 10:277–288Google Scholar
  134. Seal BS, Hiett KL, Kuntz RL, Woolsey R, Schegg KM, Ard M, Stintzi A (2007) Proteomic analyses of a robust versus a poor chicken gastrointestinal colonizing isolate of Campylobacter jejuni. J Proteome Res 6:4582–4591Google Scholar
  135. Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeño-Tárraga. AM, Wang H, Holden MT, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786Google Scholar
  136. Senko MW, Speir JP, McLafferty FW (1994) Collisional activation of large multiply charged ions using Fourier transform mass spectrometry. Anal Chem 66:2801–2808Google Scholar
  137. Shevchenko A, Chernushevich I, Ens W, Standing KG, Thomson B, Wilm M, Mann M (1997) Rapid ‘de Novo’ peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 11:1015–1024Google Scholar
  138. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H (2002a) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA 99:996–1001Google Scholar
  139. Shimizu T, Shima K, Yoshino K, Yonezawa K, Shimizu T, Hayashi H (2002b) Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in Clostridium perfringens. J Bacteriol 184:2587–2594Google Scholar
  140. Sinha P, Poland J, Schnölzer M, Rabilloud T (2001) A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis. Proteomics 1:835–840Google Scholar
  141. Solbiati J, Chapman-Smith A, Miller JL, Miller CG, Cronan JE Jr (1999) Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol 290:607–614Google Scholar
  142. Soufi B, Jers C, Hansen ME, Petranovic D, Mijakovic I (2008) Insights from site-specific phosphoproteomics in bacteria. Biochim Biophys Acta 1784:186–192Google Scholar
  143. Stephens WE (1946) A pulsed mass spectrometer with time dispersion. Phys Rev 69:691Google Scholar
  144. Strittmatter EF, Ferguson PL, Tang K, Smith RD (2003) Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry. J Am Soc Mass Spectrom 14:980–991Google Scholar
  145. Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci 101:9528–9533Google Scholar
  146. Tanaka K, Ido Y, Akita S, Yoshida Y, Yoshida T (1987) Second Japan-China joint symposium on mass spectrometry (Abstract), Osaka, Japan, 15–18 SeptGoogle Scholar
  147. Taverna F, Negri A, Piccinini R, Zecconi A, Nonnis S, Ronchi S, Tedeschi G (2007) Characterization of cell wall associated proteins of a Staphylococcus aureus isolated from bovine mastitis case by a proteomic approach. Vet Microbiol 119:240–247Google Scholar
  148. Taylor JA, Johnson RS (1997) Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 11:1067–1075Google Scholar
  149. Taylor JA, Johnson RS (2001) Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal Chem 73:2594–2604Google Scholar
  150. Taylor D, Schwartz J, Zhou J, James M, Bier M, Korsak A, Stafford G (1995). Application of tailored waveform generation to the quadrupole ion trap. Proceedings of the 43rd ASMS conference on mass spectrometry and allied topics, Atlanta, Georgia, May 21–26, 1995, 1103Google Scholar
  151. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396Google Scholar
  152. Trost M, Wehmhoner D, Karst U, Dieterich G, Wehland J, Jansch L (2005) Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics 5:1544–1557Google Scholar
  153. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077Google Scholar
  154. Valentine SJ, Counterman AE, Hoaglund CS, Reilly JP, Clemmer DE (1998) Gas-phase separations of protease digests. J Am Soc Mass Spectrom 9:1213–1216Google Scholar
  155. Veenstra TD, Martinović S, Anderson GA, Pasa-Tolić L, Smith RD (2000) Proteome analysis using selective incorporation of isotopically labeled amino acids. J Am Soc Mass Spectrom 11:78–82Google Scholar
  156. VerBerkmoes NC, Bundy JL, Hauser L, Asano KG, Razumovskaya J, Larimer F, Hettich RL, Stephenson JL Jr (2002) Integrating top-down and bottom-up mass spectrometric approaches for proteomic analysis of Shewanella oneidensis. J Proteome Res 1:239–252Google Scholar
  157. Voigt B, Schweder T, Sibbald MJ, Albrecht D, Ehrenreich A, Bernhardt J, Feesche J, Maurer KH, Gottschalk G, van Dijl JM, Hecker M (2006) The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 6:268–281Google Scholar
  158. Vytvytska O, Nagy E, Blüggel M, Meyer HE, Kurzbauer R, Huber LA, Klade CS (2002) Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2:580–590Google Scholar
  159. Waanders LF, Hanke S, Mann M (2007) Top-down quantitation and characterization of SILAC-labeled proteins. J Am Soc Mass Spectrom 18:2058–2064Google Scholar
  160. Wang G, Wu WW, Zeng W, Chou CL, Shen RF (2006) Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: reproducibility, linearity, and application with complex proteomes. J Proteome Res 5:1214–1223Google Scholar
  161. Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247Google Scholar
  162. Wheeler C, Vogt TM, Armstrong GL, Vaughan G, Weltman A, Nainan OV, Dato V, Xia G, Waller K, Amon J, Lee TM, Highbaugh-Battle A, Hembreem C, Evenson S, Ruta MA, Williams IT, Fiore AE, Bell BP (2005) An outbreak of hepatitis A associated with green onions. N Engl J Med 353:890–897Google Scholar
  163. Wiley WC, MacLaren IH (1955) Time-of-flight spectrometer with improved resolution. Rev Sci Instr 26:1150Google Scholar
  164. Williams TL, Leopold P, Musser S (2002) Automated postprocessing of electrospray LC/MS data for profiling protein expression in bacteria. Anal Chem 74:5807–5813Google Scholar
  165. Williams TL, Monday SR, Edelson-Mammel S, Buchanan R, Musser SM (2005a) A top-down proteomics approach for differentiating thermal resistant strains of Enterobacter sakazakii. Proteomics 5:4161–4169Google Scholar
  166. Williams TL, Monday SR, Feng PCH, Musser SM (2005b) Identifying new PCR targets for pathogenic bacteria using top-down LC/MS protein discovery. J Biomol Tech 16:134–142Google Scholar
  167. Williams TL, Musser SM, Nordstrom JL, DePaola A, Monday SR (2004) Identification of a protein biomarker unique to the pandemic O3:K6 clone of Vibrio parahaemolyticus. J Clin Microbio 42:1657–1665Google Scholar
  168. Wolters DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690Google Scholar
  169. Wright A, Wait R, Begum S, Crossett B, Nagy J, Brown K, Fairweather N (2005) Proteomic analysis of cell surface proteins from Clostridium difficile. Proteomics 5:2443–2452Google Scholar
  170. Wu JT, Qian MG, Li MX, Liu L, Lubman DM (1996) Use of an ion trap storage/reflectron time-of-flight mass spectrometer as a rapid and sensitive detector for capillary electrophoresis in protein digest analysis. Anal Chem 68:3388–3396Google Scholar
  171. Xu C, Ren H, Wang S, Peng X (2004) Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Research Microbio 155:835–842Google Scholar
  172. Yost RA, Enke CG (1978) Selected ion fragmentation with a tandem quadrupole mass spectrometer. J Amer Chem Soc 100:2274–2275Google Scholar
  173. Zamdborg L, LeDuc RD, Glowacz KJ, Kim YB, Viswanathan V, Spaulding IT, Early BP, Bluhm EJ, Babai S, Kelleher NL (2007) ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res 35(2):W701–W706Google Scholar
  174. Zheng S, Schneider KA, Barder TJ, Lubman DM (2003) Two-dimensional liquid chromatography protein expression mapping for differential proteomic analysis of normal and O157:H7 Escherichia coli. BioTechniques 35:1202–1212Google Scholar
  175. Zhou M, Boekhorst J, Francke C, Siezen RJ (2008) LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics 9:173Google Scholar
  176. Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266Google Scholar

Copyright information

© Springer New York 2011

Authors and Affiliations

  1. 1.Produce Safety and Microbiology Research Unit, US Department of AgricultureWestern Regional Research Center, Agricultural Research ServiceAlbanyUSA

Personalised recommendations