Overview: The Impact of Microbial Genomics on Food Safety

Part of the Food Microbiology and Food Safety book series (FMFS)


The first use of the term “genome” is attributed to Hans Winkler in his 1920 publication Verbeitung und Ursache der Parthenogenesis im Pflanzen und Tierreiche (Winkler, 1920). However, it was not until 1986 that the study of genomic concepts coalesced with the creation of a new journal by the same name (McKusick, 1997). The study of genomics was initially defined as the use or the application of “informatic tools” to study features of a sequenced genome (Strauss and Falkow, 1997). Today the field of genomics is typically considered to encompass efforts to determine the nucleic acid DNA sequence of an organism as well as the expression of genetic information using high-throughput, genome-wide methods, including transcriptomic, proteomic, and metabolomic analyses.


Hemolytic Uremic Syndrome Foodborne Pathogen Solexa Sequencing Foodborne Illness Foodborne Outbreak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alcaine SD, Warnick LD, Wiedmann M (2007) Antimicrobial resistance in nontyphoidal Salmonella. J Food Prot 70:780–790Google Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402Google Scholar
  3. Anderson S (1981) Shotgun DNA sequencing using cloned DNAse i-generated fragments. Nucleic Acids Res 9:3015–3027Google Scholar
  4. Archer DL, Kvenberg JE (1985) Incidence and cost of foodborne diarrhoeal disease in the United States. J Food Prot 48:887–894Google Scholar
  5. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2006) Genbank. Nucleic Acids Res 34:D16–D20Google Scholar
  6. Bergholz TM, Wick LM, Qi W, Riordan JT, Ouellette LM, Whittam TS (2007) Global transcriptional response of Escherichia coli O157:H7 to growth transitions in glucose minimal medium. BMC Microbiol 7:97Google Scholar
  7. Best EL, Fox AJ, Owen RJ, Cheesbrough J, Bolton FJ (2007) Specific detection of Campylobacter jejuni from faeces using single nucleotide polymorphisms. Epidemiol Infect 135:839–846Google Scholar
  8. Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121–127Google Scholar
  9. Boshoff HI, Reed MB, Barry CE 3rd, Mizrahi V (2003) Dnae2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113:183–193Google Scholar
  10. Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5:R35Google Scholar
  11. Bowman MD, O’Neill JC, Stringer JR, Blackwell HE (2007) Rapid identification of antibacterial agents effective against Staphylococcus aureus using small-molecule macroarrays. Chem Biol 14:351–357Google Scholar
  12. Bunning VK, Lindsay JA, Archer DL (1997) Chronic health effects of microbial foodborne disease. World Health Stat Q 50:51–56Google Scholar
  13. Burns-Keliher L, Nickerson CA, Morrow BJ, Curtiss R 3rd (1998) Cell-specific proteins synthesized by Salmonella Typhimurium. Infect Immun 66:856–861Google Scholar
  14. Burns-Keliher LL, Portteus A, Curtiss R 3rd (1997) Specific detection of Salmonella Typhimurium proteins synthesized intracellularly. J Bacteriol 179:3604–3612Google Scholar
  15. Cash P (2003) Proteomics of bacterial pathogens. Adv Biochem Eng Biotechnol 83:93–115Google Scholar
  16. CDC (Centers for Disease Control and Prevention) (2007) Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food – 10 states, 2006. MMWR Morb Mortal Wkly Rep 56:336–339Google Scholar
  17. Cebula TA, Jackson SA, Brown EW, Goswami B, LeClerc JE (2005) Chips and SNPs, bugs and thugs: a molecular sleuthing perspective. J Food Prot 68:1271–1284Google Scholar
  18. Chan YC, Raengpradub S, Boor KJ, Wiedmann M (2007) Microarray-based characterization of the Listeria monocytogenes cold regulon in log- and stationary-phase cells. Appl Environ Microbiol 73:6484–6498Google Scholar
  19. Church GM (2006) Technology transfer and commercial scientific advisory roles (last revised 11/8/2006).
  20. Cochrane G, Aldebert P, Althorpe N, Andersson M, Baker W, Baldwin A, Bates K, Bhattacharyya S, Browne P, van den Broek A, Castro M, Duggan K, Eberhardt R, Faruque N, Gamble J, Kanz C, Kulikova T, Lee C, Leinonen R, Lin Q, Lombard V, Lopez R, McHale M, McWilliam H, Mukherjee G, Nardone F, Pastor MP, Sobhany S, Stoehr P, Tzouvara K, Vaughan R, Wu D, Zhu W, Apweiler R (2006) EMBL nucleotide sequence database: developments in 2005. Nucleic Acids Res 34:D10–D15Google Scholar
  21. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Petti JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287Google Scholar
  22. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403Google Scholar
  23. Date SV, Marcotte EM (2003) Discovery of uncharacterized cellular systems by genome wide analysis of functional linkages. Nat Biotech 21:1055–1062Google Scholar
  24. Date SV, Marcotte EM (2005) Protein function prediction using the protein link explorer (PLEX). Bioinformatics 21:2558–2559Google Scholar
  25. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641Google Scholar
  26. Dieterich G, Karst U, Fischer E, Wehland J, Jansch L (2006) Leger: knowledge database and visualization tool for comparative genomics of pathogenic and non-pathogenic Listeria species. Nucleic Acids Res 34:D402–D406Google Scholar
  27. Djikeng A, Halpin R, Kuzmickas R, Depasse J, Feldblyum J, Sengamalay N, Afonso C, Zhang X, Anderson NG, Ghedin E, Spiro DJ (2008) Viral genome sequencing by random priming methods. BMC Genomics 9:5Google Scholar
  28. Donaldson JR, Nanduri B, Burgess SC, Lawrence ML (2009) Comparative proteomic analysis of Listeria monocytogenes strains F2365 and EGD. Appl Environ Microbiol 75:366–373Google Scholar
  29. Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, Martin P, Cossart P, Glaser P, Buchrieser C (2004) New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 72:1072–1083Google Scholar
  30. Drudy D, Mullane NR, Quinn T, Wall PG, Fanning S (2006) Enterobacter sakazakii: an emerging pathogen in powdered infant formula. Clin Infect Disease 42:996–1002Google Scholar
  31. Ducey TF, Page B, Usgaard T, Borucki MK, Pupedis K, Ward TJ (2007) A single nucleotide-polymorphism-based multilocus genotyping assay for subtyping lineage I isolates of Listeria monocytogenes. Appl Environ Microbiol 73:133–147Google Scholar
  32. Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106Google Scholar
  33. Esaki H, Noda K, Otsuki N, Kojima A, Asai T, Tamura Y, Takahashi T (2004) Rapid detection of quinolone-resistant Salmonella by real time SNP genotyping. J Microbiol Methods 58:131–134Google Scholar
  34. Eskra L, Mathison A, Splitter G (2003) Microarray analysis of mRNA levels from RAW264.7 macrophages infected with Brucella abortus. Infect Immun 71:1125–1133Google Scholar
  35. Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berghe A, Volckaert G, Ysebaert M (1976) Complete nucleotide sequence of bacteriophage ms2 RNA: primary and secondary structure of the replicase gene. Nature 260:500–507Google Scholar
  36. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251Google Scholar
  37. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512Google Scholar
  38. Flint J, Duynhoven YV, Angulo FJ, DeLong SM, Braun P, Kirk M, Scallan E, Fitzgerald M, Adak GK, Sockett P, Ellis A, Hall G, Gargouri N, Walke H, Braam P (2005) Estimating the burden of acute gastroenteritis, foodborne disease, and pathogens commonly transmitted by food: an international review. Clin Infect Dis 41:698–704Google Scholar
  39. Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, Brinkac LM, DeBoy RT, Parker CT, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Sullivan SA, Shetty JU, Ayodeji MA, Shvartsbeyn A, Schatz MC, Badger JH, Fraser CM, Nelson KE (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3:e15Google Scholar
  40. Frishman D (2007) Protein annotation at genomic scale: the current status. Chem Rev 107:3448–3466Google Scholar
  41. Garg AX, Suri RS, Barrowman N, Rehman F, Matsell D, Rosas-Arellano MP, Salvadori M, Haynes RB, Clark WF (2003) Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA 290:1360–1370Google Scholar
  42. Gat O, Grosfeld H, Ariel N, Inbar I, Zaide G, Broder Y, Zvi A, Chitlaru T, Altboum Z, Stein D, Cohen S, Shafferman A (2006) Search for Bacillus anthracis potential vaccine candidates by a functional genomic–-serologic screen. Infect Immun 74:3987–4001Google Scholar
  43. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359Google Scholar
  44. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294:849–852Google Scholar
  45. Glasner JD, Rusch M, Liss P, Plunkett G 3rd, Cabot EL, Darling A, Anderson BD, Infield-Harm P, Gilson MC, Perna NT (2006) Asap: a resource for annotating, curating, comparing, and disseminating genomic data. Nucleic Acids Res 34:D41–D45Google Scholar
  46. Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117Google Scholar
  47. Gresham D, Dunham MJ, Botstein D (2008) Comparing whole genomes using DNA microarrays. Nat Rev Genet 9:291–302Google Scholar
  48. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730Google Scholar
  49. Hardy ME (2005) Norovirus protein structure and function. FEMS Microbiol Lett 253:1–8Google Scholar
  50. Harrington SM, Dudley EG, Nataro JP (2006) Pathogenesis of enteroaggregative Escherichia coli infection. FEMS Microbiol Lett 254:12–18Google Scholar
  51. Hoffmaster AR, Fitzgerald CC, Ribot E, Mayer LW, Popovic T (2002) Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerg Infect Dis 8:1111–1116Google Scholar
  52. Holt LJ, Enever C, de Wildt RM, Tomlinson IM (2000) The use of recombinant antibodies in proteomics. Curr Opin Biotechnol 11:445–449Google Scholar
  53. Hommais F, Pereira S, Acquaviva C, Escobar-Paramo P, Denamur E (2005) Single nucleotide polymorphism phylotyping of Escherichia coli. Appl Environ Microbiol 71:4784–4792Google Scholar
  54. Hu H, Lan R, Reeves PR (2006) Adaptation of multilocus sequencing for studying variation within a major clone: evolutionary relationships of Salmonella enterica serovar Typhimurium. Genetics 172:743–750Google Scholar
  55. Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ (2005) Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310:670–674Google Scholar
  56. Hyytia-Trees EK, Cooper K, Ribot EM, Gerner-Smidt P (2007) Recent developments and future prospects in subtyping of foodborne bacterial pathogens. Future Microbiol 2:175–185Google Scholar
  57. Imirzalioglu C, Hain T, Chakraborty T, Domann E (2008) Hidden pathogens uncovered: metagenomic analysis of urinary tract infections. Andrologia 40:66–71Google Scholar
  58. Jay JM (2003) A review of recent taxonomic changes in seven genera of bacteria commonly found in foods. J Food Prot 66:1304–1309Google Scholar
  59. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280Google Scholar
  60. Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M (2003) Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 185:5722–5734Google Scholar
  61. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, Harris D, Clarke L, Whitehead S, Sangal V, Marsh K, Achtman M, Molyneux ME, Cormican M, Parkhill J, MacLennan CA, Heyderman RS, Dougan G (2009) Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 19:2279–2287Google Scholar
  62. LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37:4181–4193Google Scholar
  63. Lecuit M, Sonnenburg JL, Cossart P, Gordon JI (2007) Functional genomic studies of the intestinal response to a foodborne enteropathogen in a humanized gnotobiotic mouse model. J Biol Chem 282:15065–15072Google Scholar
  64. Lehner A, Tasara T, Stephan R (2004) 16S rRNA gene based analysis of Enterobacter sakazakii strains from different sources and development of a PCR assay for identification. BMC Microbiol 4:43Google Scholar
  65. Lillehoj HS, Kim CH, Keeler CL Jr, Zhang S (2007) Immunogenomic approaches to study host immunity to enteric pathogens. Poult Sci 86:1491–1500Google Scholar
  66. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC (2008) The genomes on line database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 36:D475–D479Google Scholar
  67. Liu XS (2007) Getting started in tiling microarray analysis. PLoS Comput Biol 3:1842–1844Google Scholar
  68. Liu JM, Livny J, Lawrence MS, Kimball MD, Waldor MK, Camilli A (2009) Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37. doi:10.1093/nar/gkp080Google Scholar
  69. Maltsev N, Glass E, Sulakhe D, Rodriguez A, Syed MH, Bompada T, Zhang Y, D’Souza M (2006) PUMA2 – grid-based high-throughput analysis of genomes and metabolic pathways. Nucleic Acids Res 34:D369–D372Google Scholar
  70. Manganelli R, Voskuil MI, Schoolnik GK, Smith I (2001) The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in macrophages. Mol Microbiol 41:423–437Google Scholar
  71. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380Google Scholar
  72. Mastronicolis SK, Boura A, Karaliota A, Magiatis P, Arvanitis N, Litos C, Tsakirakis A, Paraskevas P, Moustaka H, Heropoulos G (2006) Effect of cold temperature on the composition of different lipid classes of the foodborne pathogen Listeria monocytogenes: focus on neutral lipids. Food Microbiol 23:184–194Google Scholar
  73. McKusick VA (1997) Genomics: structural and functional studies of genomes. Genomics 45:244–249Google Scholar
  74. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625Google Scholar
  75. Mehta S (2006) Neuromuscular disease causing acute respiratory failure. Respir Care 51:1016–1021Google Scholar
  76. Moorhead SM, Dykes GA, Cursons RT (2003) An SNP-based PCR assay to differentiate between Listeria monocytogenes lineages derived from phylogenetic analysis of the sigB gene. J Microbiol Methods 55:425–432Google Scholar
  77. Nagayama K (1997) Protein arrays: concepts and subjects. Adv Biophys 34:3–23Google Scholar
  78. Nakamura, Maeda, Miron, Yoh, Izutsu, Kataoka, Honda, Yasunaga, Nakaya, Kawai, Hayashizaki, Horii, Iida, 2008] Nakamura S, Maeda N, Miron IM, Yoh M, Izutsu K, Kataoka C, Honda T, Yasunaga T, Nakaya T, Kawai J, Hayashizaki Y, Horii T, Iida T (2008) Metagenomic diagnosis of bacterial infections. Emerg Infect Dis 14:1784–1786Google Scholar
  79. Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM (2004) Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32:2386–2395Google Scholar
  80. Newell DG (2005) Campylobacter concisus: an emerging pathogen? Eur J Gastroenterol Hepatol 17:1013–1014Google Scholar
  81. Noller AC, McEllistrem MC, Pacheco AG, Boxrud DJ, Harrison LH (2003) Multilocus variable-number tandem repeat analysis distinguishes outbreak and sporadic Escherichia coli O157:H7 isolates. J Clin Microbiol 41:5389–5397Google Scholar
  82. Nygard K, Lindstedt BA, Wahl W, Jensvoll L, Kjelso C, Molbak K, Torpdahl M, Kapperud G (2007) Outbreak of Salmonella Typhimurium infection traced to imported cured sausage using MLVA-subtyping. Euro Surveill 12:E0703155Google Scholar
  83. Octavia S, Lan R (2007) Single-nucleotide-polymorphism typing and genetic relationships of Salmonella enterica serovar Typhi isolates. J Clin Microbiol 45:3795–3801Google Scholar
  84. Okubo K, Sugawara H, Gojobori T, Tateno Y (2006) DDBJ in preparation for overview of research activities behind data submissions. Nucleic Acids Res 34:D6–D9Google Scholar
  85. Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511Google Scholar
  86. Oliver HF, Orsi RH, Ponnala L, Keich U, Wang W, Sun Q, Cartinhour SW, Filiatrault MJ, Wiedmann M, Boor KJ (2009) Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics 10:641Google Scholar
  87. Ollinger J, Bowen B, Wiedmann M, Boor KJ, Bergholz TM (2009) Listeria monocytogenes {sigma}B modulates PrfA-mediated virulence factor expression. Infect Immun 77:2113–2124Google Scholar
  88. Olsen SJ, MacKinnon LC, Goulding JS, Bean NH, Slutsker L (2000) Surveillance for foodborne-disease outbreaks – United States, 1993–1997. MMWR CDC Surveill Summ 49:1–62Google Scholar
  89. Raengpradub S, Wiedmann M, Boor KJ (2008) Comparative analysis of the {sigma}B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl Envir Microbiol 74:158–171Google Scholar
  90. Rajashekara G, Eskra L, Mathison A, Petersen E, Yu Q, Harms J, Splitter G (2006) Brucella: functional genomics and host–pathogen interactions. Anim Health Res Rev 7:1–11Google Scholar
  91. Raskin DM, Seshadri R, Pukatzki SU, Mekalanos JJ (2006) Bacterial genomics and pathogen evolution. Cell 124:703–714Google Scholar
  92. Rasooly A, Herold KE (2008) Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog Dis 5:531–550Google Scholar
  93. Razzaq S (2006) Hemolytic uremic syndrome: an emerging health risk. Am Fam Physician 74:991–996Google Scholar
  94. Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296:2028–2033Google Scholar
  95. Reen FJ, Boyd EF, Porwollik S, Murphy BP, Gilroy D, Fanning S, McClelland M (2005) Genomic comparisons of Salmonella enterica serovar Dublin, Agona, and Typhimurium strains recently isolated from milk filters and bovine samples from Ireland, using a Salmonella microarray. Appl Environ Microbiol 71:1616–1625Google Scholar
  96. Riedel K, Lehner A (2007) Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics. Proteomics 7:1217–1231Google Scholar
  97. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89Google Scholar
  98. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547Google Scholar
  99. Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124Google Scholar
  100. Rudi K, Holck AL (2003) Real-time closed tube single nucleotide polymorphism (SNP) quantification in pooled samples by quencher extension (qext). Nucleic Acids Res 31:e117Google Scholar
  101. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977a) Nucleotide sequence of bacteriophage phi x174 DNA. Nature 265:687–695Google Scholar
  102. Sanger F, Nicklen S, Coulson AR (1977b) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467Google Scholar
  103. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310Google Scholar
  104. Schoolnik GK (2002) Functional and comparative genomics of pathogenic bacteria. Curr Opin Microbiol 5:20–26Google Scholar
  105. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18Google Scholar
  106. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732Google Scholar
  107. Skovgaard N (2007) New trends in emerging pathogens. Int J Food Microbiol 120:217–224Google Scholar
  108. Smith JL (2001) A review of hepatitis E virus. J Food Prot 64:572–586Google Scholar
  109. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679Google Scholar
  110. Stears RL, Martinsky T, Schena M (2003) Trends in microarray analysis. Nat Med 9:140–145Google Scholar
  111. Stothard P, Wishart DS (2006) Automated bacterial genome analysis and annotation. Curr Opin Microbiol 9:505–510Google Scholar
  112. Strauss EJ, Falkow S (1997) Microbial pathogenesis: genomics and beyond. Science 276:707–712Google Scholar
  113. Suen G, Arshinoff BI, Taylor RG, Welch RD (2007) Practical applications of bacterial functional genomics. Biotechnol Genet Eng Rev 24:213–242Google Scholar
  114. Tartof SY, Solberg OD, Riley LW (2007) Genotypic analyses of uropathogenic Escherichia coli based on fimH single nucleotide polymorphisms (SNPs). J Med Microbiol 56:1363–1369Google Scholar
  115. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36Google Scholar
  116. Tauxe RV (2002) Emerging foodborne pathogens. Int J Food Microbiol 78:31–41Google Scholar
  117. Toh M, Moffitt MC, Henrichsen L, Raftery M, Barrow K, Cox JM, Marquis CP, Neilan BA (2004) Cereulide, the emetic toxin of Bacillus cereus, is putatively a product of nonribosomal peptide synthesis. J Appl Microbiol 97:992–1000Google Scholar
  118. Toledo-Arana A, Dussurget D, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Régnault B, Coppée JY, Lecuit M, Johansson J, Cossart P (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956Google Scholar
  119. Toner B (2005) Harvard’ s church calls for open source, non-anonymous personal genome project. Genome Web Daily News, 14 Nov.
  120. Torpdahl M, Sorensen G, Ethelberg S, Sando G, Gammelgard K, Porsbo LJ (2006) A regional outbreak of S. Typhimurium in Denmark and identification of the source using MLVA typing. Euro Surveill 11:134–136Google Scholar
  121. Tsang RS (2002) The relationship of Campylobacter jejuni infection and the development of Guillain–Barre syndrome. Curr Opin Infect Dis 15:221–228Google Scholar
  122. Umejiego NN, Gollapalli D, Sharling L, Volftsun A, Lu J, Benjamin NN, Stroupe AH, Riera TV, Striepen B, Hedstrom L (2008) Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. Chem Biol 15:70–77Google Scholar
  123. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Medigue C (2006) MAGE: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65Google Scholar
  124. Vazquez-Boland JA, Dominguez-Bernal G, Gonzalez-Zorn B, Kreft J, Goebel W (2001) Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 3:571–584Google Scholar
  125. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–650Google Scholar
  126. Walter G, Bussow K, Cahill D, Lueking A, Lehrach H (2000) Protein arrays for gene expression and molecular interaction screening. Curr Opin Microbiol 3:298–302Google Scholar
  127. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63Google Scholar
  128. Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci 99:17020–17024Google Scholar
  129. Widdowson MA, Sulka A, Bulens SN, Beard RS, Chaves SS, Hammond R, Salehi ED, Swanson E, Totaro J, Woron R, Mead PS, Bresee JS, Monroe SS, Glass RI (2005) Norovirus and foodborne disease, United States, 1991–2000. Emerg Infect Dis 11:95–102Google Scholar
  130. Wilkinson M (2007) ABI launch SOLiD gene sequencer. (7/11/2007).
  131. Widdowson MA, Jaspers WJ, van der Poel WH, Verschoor F, de Roda Husman AM, Winter HL, Zaaijer HL, Koopmans M (2003) Cluster of cases of acute hepatitis associated with hepatitis E virus infection acquired in the Netherlands. Clin Infect Dis 36:29–33Google Scholar
  132. Winkler H (1920) Verbeitung und Ursache der Parthenogenesis im Pflanzen und Tierreiche. Springer, JenaGoogle Scholar
  133. WHO (World Health Organization) (2007) Food safety and foodborne illness. Fact Sheet No. 327Google Scholar
  134. van Belkum A, Scherer S, van Alphen L, Verbrugh H (1998) Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62:275–293Google Scholar
  135. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) String: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–D437Google Scholar
  136. Zhu H, Snyder M (2001) Protein arrays and microarrays. Curr Opin Chem Biol 5:40–45Google Scholar

Copyright information

© Springer New York 2011

Authors and Affiliations

  • Sara R. Milillo
    • 1
  • Martin Wiedmann
    • 1
  • Karin Hoelzer
    • 1
  1. 1.Department of Food ScienceCornell UniversityIthacaUSA

Personalised recommendations