Gene Discovery by MMTV Mediated Insertional Mutagenesis

Chapter

Abstract

Transformation of a normal cell into a cancer cell requires sequential accumulation of several genetic changes that affect various collaborating signaling cascades mainly involved in cell proliferation, survival and development [46]. To develop novel specific therapeutic compounds for cancer treatment, identification of these cancer causing genes, and subsequently the oncogenic pathways in which these genes act, is of utmost importance. Although a great deal of insight in the cellular mechanisms that lead to cancer has been obtained, many key players are still unidentified. Retroviral insertional mutagenesis (IM) screens provide one of the most efficient tools to identify genes involved in tumorigenesis and from there the specific oncogenic pathways involved.

Keywords

Migration Lymphoma Estrogen Codon Tyrosine 

References

  1. 1.
    Acha-Orbea, H., & MacDonald, H. R. (1995). Superantigens of mouse mammary tumor virus. Annual Reviews of Immunology, 13, 459–486.CrossRefGoogle Scholar
  2. 2.
    Andrechek, E. R., Laing, M. A., Girgis-Gabardo, A. A., Siegel, P. M., Cardiff, R. D., & Muller, W. J. (2003). Gene expression profiling of neu-induced mammary tumors from transgenic mice reveals genetic and morphological similarities to ErbB2-expressing human breast cancers. Cancer Research, 63, 4920–4926.PubMedGoogle Scholar
  3. 3.
    Androutsellis-Theotokis, A., Leker, R. R., Soldner, F., Hoeppner, D. J., Ravin, R., Poser, S. W., et al. (2006). Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 442, 823–826.PubMedCrossRefGoogle Scholar
  4. 4.
    Ayyanan, A., Civenni, G., Ciarloni, L., Morel, C., Mueller, N., Lefort, K., et al. (2006). Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proceedings of the National Academy of Sciences USA, 103, 3799–3804.CrossRefGoogle Scholar
  5. 5.
    Ball, J. K., Diggelmann, H., Dekaban, G. A., Grossi, G. F., Semmler, R., Waight, P. A., et al. (1988). Alterations in the U3 region of the long terminal repeat of an infectious thymotropic type B retrovirus. Journal of Virology, 62, 2985–2993.PubMedGoogle Scholar
  6. 6.
    Bannert, N., & Kurth, R. (2004). Retroelements and the human genome: New perspectives on an old relation. Proceedings of the National Academy of Sciences USA, 101(Suppl 2), 14572–14579.CrossRefGoogle Scholar
  7. 7.
    Bhadra, S., Lozano, M. M., & Dudley, J. P. (2005). Conversion of mouse mammary tumor virus to a lymphomagenic virus. Journal of Virology, 79, 12592–12596.PubMedCrossRefGoogle Scholar
  8. 8.
    Binnerts, M., Kim, K., Bright, J., Patel, S., Tran, K., Zhou, M., et al. (2007). R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proceedings of the National Academy of Sciences USA, 104, 14700–14705.CrossRefGoogle Scholar
  9. 9.
    Bittner, J. J. (1936). Some possible effects of nursing on the mammary gland tumor incidence in mice. Science, 84, 162.PubMedCrossRefGoogle Scholar
  10. 10.
    Broussard, D. R., Lozano, M. M., & Dudley, J. P. (2004). Rorgamma (Rorc) is a common integration site in type B leukemogenic virus-induced T-cell lymphomas. Journal of Virology, 78, 4943–4946.PubMedCrossRefGoogle Scholar
  11. 11.
    Brown, P. O. (1997). Integration. In J. M. Coffin, S. H. Hughes, & H. E. Varmus (Eds.), Retroviruses (pp. 161–203). Cold Spring Harbor Laboratory Press (NY), USA.Google Scholar
  12. 12.
    Callahan, R., & Smith, G. H. (2000). MMTV-induced mammary tumorigenesis: Gene discovery, progression to malignancy and cellular pathways. Oncogene, 19, 992–1001.PubMedCrossRefGoogle Scholar
  13. 13.
    Callahan, R., & Smith, G. H. (2008). Common integration sites for MMTV in viral induced mouse mammary tumors. Journal of Mammary Gland Biology and Neoplasia, 13, 309–321.PubMedCrossRefGoogle Scholar
  14. 14.
    Cardiff, R. D., Anver, M. R., Gusterson, B. A., Hennighausen, L., Jensen, R. A., Merino, M. J., et al. (2000). The mammary pathology of genetically engineered mice: The consensus report and recommendations from the annapolis meeting. Oncogene, 19, 968–988.PubMedCrossRefGoogle Scholar
  15. 15.
    Cato, A. C., Miksicek, R., Schutz, G., Arnemann, J., & Beato, M. (1986). The hormone regulatory element of mouse mammary tumour virus mediates progesterone induction. EMBO Journal, 5, 2237–2240.PubMedGoogle Scholar
  16. 16.
    Chalepakis, G., Arnemann, J., Slater, E., Bruller, H. J., Gross, B., & Beato, M. (1988). Differential gene activation by glucocorticoids and progestins through the hormone regulatory element of mouse mammary tumor virus. Cell, 53, 371–382.PubMedCrossRefGoogle Scholar
  17. 17.
    Choi, Y., Kappler, J. W., & Marrack, P. (1991). A superantigen encoded in the open reading frame of the 3’ long terminal repeat of mouse mammary tumour virus. Nature, 350, 203–207.PubMedCrossRefGoogle Scholar
  18. 18.
    Chu, E. Y., Hens, J., Andl, T., Kairo, A., Yamaguchi, T. P., Brisken, C., et al. (2004). Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development, 131, 4819–4829.PubMedCrossRefGoogle Scholar
  19. 19.
    Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127, 469–480.PubMedCrossRefGoogle Scholar
  20. 20.
    Collier, L. S., Carlson, C. M., Ravimohan, S., Dupuy, A. J., & Largaespada, D. A. (2005). Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature, 436, 272–276.PubMedCrossRefGoogle Scholar
  21. 21.
    Courreges, M. C., Burzyn, D., Nepomnaschy, I., Piazzon, I., & Ross, S. R. (2007). Critical role of dendritic cells in mouse mammary tumor virus in vivo infection. Journal of Virology, 81, 3769–3777.PubMedCrossRefGoogle Scholar
  22. 22.
    de Ridder, J., Uren, A., Kool, J., Reinders, M., & Wessels, L. (2006). Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Computational Biology, 2, e166.PubMedCrossRefGoogle Scholar
  23. 23.
    DeOme, K. B., Faulkin, L. J., Jr., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520.PubMedGoogle Scholar
  24. 24.
    Dickson, C., & Peters, G. (1987). Potential oncogene product related to growth factors. Nature, 326, 833.PubMedCrossRefGoogle Scholar
  25. 25.
    Dievart, A., Beaulieu, N., & Jolicoeur, P. (1999). Involvement of Notch1 in the development of mouse mammary tumors. Oncogene, 18, 5973–5981.PubMedCrossRefGoogle Scholar
  26. 26.
    Dillon, R. L., White, D. E., & Muller, W. J. (2007). The phosphatidyl inositol 3-kinase signaling network: Implications for human breast cancer. Oncogene, 26, 1338–1345.PubMedCrossRefGoogle Scholar
  27. 27.
    Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6, R605–R615.PubMedCrossRefGoogle Scholar
  28. 28.
    Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447, 1087–1093.PubMedCrossRefGoogle Scholar
  29. 29.
    Entin-Meer, M., Avidan, O., & Hizi, A. (2003). The mature reverse transcriptase molecules in virions of mouse mammary tumor virus possess protease-derived sequences. Virology, 310, 157–162.PubMedCrossRefGoogle Scholar
  30. 30.
    Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine and Growth Factor Reviews, 16, 139–149.PubMedCrossRefGoogle Scholar
  31. 31.
    Fantozzi, A., & Christofori, G. (2006). Mouse models of breast cancer metastasis. Breast Cancer Research, 8, 212.PubMedCrossRefGoogle Scholar
  32. 32.
    Faschinger, A., Rouault, F., Sollner, J., Lukas, A., Salmons, B., Gunzburg, W. H., et al. (2008). Mouse mammary tumor virus integration site selection in human and mouse genomes. Journal of Virology, 82, 1360–1367.PubMedCrossRefGoogle Scholar
  33. 33.
    Fioravanti, L., Cappelletti, V., Coradini, D., Miodini, P., Borsani, G., Daidone, M. G., et al. (1997). Int-2 oncogene amplification and prognosis in node-negative breast carcinoma. International Journal of Cancer, 74, 620–624.CrossRefGoogle Scholar
  34. 34.
    Gallahan, D., & Callahan, R. (1997). The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene, 14, 1883–1890.PubMedCrossRefGoogle Scholar
  35. 35.
    Gallahan, D., & Callahan, R. (1987). Mammary tumorigenesis in feral mice: Identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. Journal of Virology, 61, 66–74.PubMedGoogle Scholar
  36. 36.
    Gallahan, D., Jhappan, C., Robinson, G., Hennighausen, L., Sharp, R., Kordon, E., et al. (1996). Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Research, 56, 1775–1785.PubMedGoogle Scholar
  37. 37.
    Gattelli, A., Zimberlin, M. N., Meiss, R. P., Castilla, L. H., & Kordon, E. C. (2006). Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines. Journal of Virology, 80, 11409–11415.PubMedCrossRefGoogle Scholar
  38. 38.
    Goedert, J. J., Rabkin, C. S., & Ross, S. R. (2006). Prevalence of serologic reactivity against four strains of mouse mammary tumour virus among US women with breast cancer. British Journal of Cancer, 94, 548–551.PubMedCrossRefGoogle Scholar
  39. 39.
    Golovkina, T. V., Dudley, J. P., & Ross, S. R. (1998). B and T cells are required for mouse mammary tumor virus spread within the mammary gland. Journal of Immunology, 161, 2375–2382.Google Scholar
  40. 40.
    Gotoh, N. (2009). Control of stemness by fibroblast growth factor signaling in stem cells and cancer stem cells. Current Stem Cell Research and Therapy, 4, 9–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Grimm, S. L., & Nordeen, S. K. (1998). Mouse mammary tumor virus sequences responsible for activating cellular oncogenes. Journal of Virology, 72, 9428–9435.PubMedGoogle Scholar
  42. 42.
    Grimm, S. L., & Nordeen, S. K. (1999). A composite enhancer element directing tissue-specific expression of mouse mammary tumor virus requires both ubiquitous and tissue-restricted factors. Journal of Biological Chemistry, 274, 12790–12796.PubMedCrossRefGoogle Scholar
  43. 43.
    Grose, R., & Dickson, C. (2005). Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Reviews, 16, 179–186.PubMedCrossRefGoogle Scholar
  44. 44.
    Gunther, E. J., Moody, S. E., Belka, G. K., Hahn, K. T., Innocent, N., Dugan, K. D., et al. (2003). Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes and Development, 17, 488–501.PubMedCrossRefGoogle Scholar
  45. 45.
    Gunzburg, W. H., & Salmons, B. (1992). Factors controlling the expression of mouse mammary tumour virus. Biochemical Journal, 283(Pt 3), 625–632.PubMedGoogle Scholar
  46. 46.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Hankinson, S. E., Willett, W. C., Colditz, G. A., Hunter, D. J., Michaud, D. S., Deroo, B., et al. (1998). Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet, 351, 1393–1396.PubMedCrossRefGoogle Scholar
  48. 48.
    Held, W., Shakhov, A. N., Izui, S., Waanders, G. A., Scarpellino, L., MacDonald, H. R., et al. (1993a). Superantigen-reactive CD4+ T cells are required to stimulate B cells after infection with mouse mammary tumor virus. Journal of Experimental Medicine, 177, 359–366.PubMedCrossRefGoogle Scholar
  49. 49.
    Held, W., Waanders, G. A., Shakhov, A. N., Scarpellino, L., Acha-Orbea, H., & MacDonald, H. R. (1993b). Superantigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission. Cell, 74, 529–540.PubMedCrossRefGoogle Scholar
  50. 50.
    Henrard, D., & Ross, S. R. (1988). Endogenous mouse mammary tumor virus is expressed in several organs in addition to the lactating mammary gland. Journal of Virology, 62, 3046–3049.PubMedGoogle Scholar
  51. 51.
    Hilkens, J. (2006). Recent translational research: Oncogene discovery by insertional mutagenesis gets a new boost. Breast Cancer Research, 8, 102.PubMedCrossRefGoogle Scholar
  52. 52.
    Hilkens, J., van der, Z. B., Buijs, F., Kroezen, V., Bleumink, N., & Hilgers, J. (1983). Identification of a cellular receptor for mouse mammary tumor virus and mapping of its gene to chromosome 16. Journal of Virology, 45, 140–147.PubMedGoogle Scholar
  53. 53.
    Hollmann, C. A., Kittrell, F. S., Medina, D., & Butel, J. S. (2001). Wnt-1 and int-2 mammary oncogene effects on the beta-catenin pathway in immortalized mouse mammary epithelial cells are not sufficient for tumorigenesis. Oncogene, 20, 7645–7657.PubMedCrossRefGoogle Scholar
  54. 54.
    Howe, L. R., & Brown, A. M. (2004). Wnt signaling and breast cancer. Cancer Biology and Therapy., 3, 36–41.PubMedGoogle Scholar
  55. 55.
    Hsu, C. L., Fabritius, C., & Dudley, J. (1988). Mouse mammary tumor virus proviruses in T-cell lymphomas lack a negative regulatory element in the long terminal repeat. Journal of Virology, 62, 4644–4652.PubMedGoogle Scholar
  56. 56.
    Hunter, D. J., Kraft, P., Jacobs, K. B., Cox, D. G., Yeager, M., Hankinson, S. E., et al. (2007). A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genetics, 39, 870–874.PubMedCrossRefGoogle Scholar
  57. 57.
    Hynes, N., van Ooyen, A. J., Kennedy, N., Herrlich, P., Ponta, H., & Groner, B. (1983). Subfragments of the large terminal repeat cause glucocorticoid-responsive expression of mouse mammary tumor virus and of an adjacent gene. Proceedings of the National Academy of Sciences of the USA, 80, 3637–3641.PubMedCrossRefGoogle Scholar
  58. 58.
    Imai, S., Morimoto, J., Tsubura, Y., Iwai, Y., Okumoto, M., Takamori, Y., et al. (1983). Tissue and organ distribution of mammary tumor virus antigens in low and high mammary cancer strain mice. European Journal of Cancer and Clinical Oncology, 19, 1011–1019.CrossRefGoogle Scholar
  59. 59.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics. CA Cancer Journal of Clinicians, 58, 71–96.CrossRefGoogle Scholar
  60. 60.
    Jessen, J. R. (2009). Noncanonical Wnt signaling in tumor progression and metastasis. Zebrafish, 6, 21–28.PubMedCrossRefGoogle Scholar
  61. 61.
    Jhappan, C., Gallahan, D., Stahle, C., Chu, E., Smith, G. H., Merlino, G., et al. (1992). Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes and Development, 6, 345–355.PubMedCrossRefGoogle Scholar
  62. 62.
    Jonkers, J., & Berns, A. (1996). Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochimica et Biophysica Acta, 1287, 29–57.PubMedGoogle Scholar
  63. 63.
    Jonkers, J., & Berns, A. (2002). Conditional mouse models of sporadic cancer. Nature Reviews Cancer, 2, 251–265.PubMedCrossRefGoogle Scholar
  64. 64.
    Kapoun, A. M., & Shackleford, G. M. (1997). Preferential activation of Fgf8 by proviral insertion in mammary tumors of Wnt1 transgenic mice. Oncogene, 14, 2985–2989.PubMedCrossRefGoogle Scholar
  65. 65.
    Kazanskaya, O., Glinka, A., Barco Barrantes, I., Stannek, P., Niehrs, C., & Wu, W. (2004). R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Developmental Cell, 7, 525–534.PubMedCrossRefGoogle Scholar
  66. 66.
    Kikuchi, A., Yamamoto, H., & Sato, A. (2009). Selective activation mechanisms of Wnt signaling pathways. Trends in Cell Biology, 19, 119–129.PubMedCrossRefGoogle Scholar
  67. 67.
    Kim, K. A., Kakitani, M., Zhao, J., Oshima, T., Tang, T., Binnerts, M., et al. (2005). Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science, 309, 1256–1259.PubMedCrossRefGoogle Scholar
  68. 68.
    Kim, K. A., Wagle, M., Tran, K., Zhan, X., Dixon, M. A., Liu, S., et al. (2008). R-Spondin family members regulate the Wnt pathway by a common mechanism. Molecular Biology of the Cell, 19, 2588–2596.PubMedCrossRefGoogle Scholar
  69. 69.
    Klarmann, G. J., Decker, A., & Farrar, W. L. (2008). Epigenetic gene silencing in the Wnt pathway in breast cancer. Epigenetics, 3, 59–63.PubMedCrossRefGoogle Scholar
  70. 70.
    Klinakis, A., Szabolcs, M., Politi, K., Kiaris, H., Artavanis-Tsakonas, S., & Efstratiadis, A. (2006). Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proceedings of the National Academy Of Sciences of theUSA, 103, 9262–9267.CrossRefGoogle Scholar
  71. 71.
    Kopan, R., & Ilagan, M. X. (2009). The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell, 137, 216–233.PubMedCrossRefGoogle Scholar
  72. 72.
    Koppe, B., Menendez-Arias, L., & Oroszlan, S. (1994). Expression and purification of the mouse mammary tumor virus gag-pro transframe protein p30 and characterization of its dUTPase activity. Journal of Virology, 68, 2313–2319.PubMedGoogle Scholar
  73. 73.
    Kordon, E. C., & Smith, G. H. (1998). An entire functional mammary gland may comprise the progeny from a single cell. Development, 125, 1921–1930.PubMedGoogle Scholar
  74. 74.
    Kwan, H., Pecenka, V., Tsukamoto, A., Parslow, T. G., Guzman, R., Lin, T. P., et al. (1992). Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Molecular and Cellular Biology, 12, 147–154.PubMedGoogle Scholar
  75. 75.
    Lane, T. F., & Leder, P. (1997). Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene, 15, 2133–2144.PubMedCrossRefGoogle Scholar
  76. 76.
    Lavan, B. E., Fantin, V. R., Chang, E. T., Lane, W. S., Keller, S. R., & Lienhard, G. E. (1997). A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. Journal of Biological Chemistry, 272, 21403–21407.PubMedCrossRefGoogle Scholar
  77. 77.
    Lee, F. S., Lane, T. F., Kuo, A., Shackleford, G. M., & Leder, P. (1995). Insertional mutagenesis identifies a member of the Wnt gene family as a candidate oncogene in the mammary epithelium of int-2/Fgf-3 transgenic mice. Proceedings of the National Academy of Sciences of the USA, 92, 2268–2272.PubMedCrossRefGoogle Scholar
  78. 78.
    Li, Y., Podsypanina, K., Liu, X., Crane, A., Tan, L. K., Parsons, R., et al. (2001). Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt-1 transgenic mice. BMC Molecular Biology, 2, 2.PubMedCrossRefGoogle Scholar
  79. 79.
    Lin, S. Y., Xia, W., Wang, J. C., Kwong, K. Y., Spohn, B., Wen, Y., et al. (2000). Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proceedings of the National Academy of Sciences of the USA, 97, 4262–4266.PubMedCrossRefGoogle Scholar
  80. 80.
    Liu, S., Dontu, G., Mantle, I. D., Patel, S., Ahn, N. S., Jackson, K. W., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66, 6063–6071.PubMedCrossRefGoogle Scholar
  81. 81.
    Lowther, W., Wiley, K., Smith, G. H., & Callahan, R. (2005). A new common integration site, Int7, for the mouse mammary tumor virus in mouse mammary tumors identifies a gene whose product has furin-like and thrombospondin-like sequences. Journal of Virology, 79, 10093–10096.PubMedCrossRefGoogle Scholar
  82. 82.
    MacArthur, C. A., Shankar, D. B., & Shackleford, G. M. (1995). Fgf-8, activated by proviral insertion, cooperates with the Wnt-1 transgene in murine mammary tumorigenesis. Journal of Virology, 69, 2501–2507.PubMedGoogle Scholar
  83. 83.
    Mant, C., Hodgson, S., Hobday, R., D’Arrigo, C., & Cason, J. (2004). A viral aetiology for breast cancer: Time to re-examine the postulate. Intervirology, 47, 2–13.PubMedCrossRefGoogle Scholar
  84. 84.
    Marchetti, A., Buttitta, F., Miyazaki, S., Gallahan, D., Smith, G. H., & Callahan, R. (1995). Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia. Journal of Virology, 69, 1932–1938.PubMedGoogle Scholar
  85. 85.
    Marsh, S. K., Bansal, G. S., Zammit, C., Barnard, R., Coope, R., Roberts-Clarke, D., et al. (1999). Increased expression of fibroblast growth factor 8 in human breast cancer. Oncogene, 18, 1053–1060.PubMedCrossRefGoogle Scholar
  86. 86.
    McCann, A. H., Miller, N., O’Meara, A., Pedersen, I., Keogh, K., Gorey, T., et al. (1996). Biallelic expression of the IGF2 gene in human breast disease. Human Molecular Genetics, 5, 1123–1127.PubMedCrossRefGoogle Scholar
  87. 87.
    Medina, D. (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 1, 5–19.PubMedCrossRefGoogle Scholar
  88. 88.
    Medina, D. (2000). The preneoplastic phenotype in murine mammary tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 5, 393–407.PubMedCrossRefGoogle Scholar
  89. 89.
    Medina, D. (2008). Premalignant and malignant mammary lesions induced by MMTV and chemical carcinogens. Journal of Mammary Gland Biology and Neoplasia, 13, 271–277.PubMedCrossRefGoogle Scholar
  90. 90.
    Mertz, J. A., Mustafa, F., Meyers, S., & Dudley, J. P. (2001). Type B leukemogenic virus has a T-cell-specific enhancer that binds AML-1. Journal of Virology, 75, 2174–2184.PubMedCrossRefGoogle Scholar
  91. 91.
    Mertz, J. A., Simper, M. S., Lozano, M. M., Payne, S. M., & Dudley, J. P. (2005). Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. Journal of Virology, 79, 14737–14747.PubMedCrossRefGoogle Scholar
  92. 92.
    Mester, J., Wagenaar, E., Sluyser, M., & Nusse, R. (1987). Activation of int-1 and int-2 mammary oncogenes in hormone-dependent and -independent mammary tumors of GR mice. Journal of Virology, 61, 1073–1078.PubMedGoogle Scholar
  93. 93.
    Meurette, O., Stylianou, S., Rock, R., Collu, G. M., Gilmore, A. P., & Brennan, K. (2009). Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Research, 69, 5015–5022.PubMedCrossRefGoogle Scholar
  94. 94.
    Michaelson, J. S., & Leder, P. (2001). beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene, 20, 5093–5099.PubMedCrossRefGoogle Scholar
  95. 95.
    Michalides, R., Wagenaar, E., Hilkens, J., Hilgers, J., Groner, B., & Hynes, N. E. (1982a). Acquisition of proviral DNA of mouse mammary tumor virus in thymic leukemia cells from GR mice. Journal of Virology, 43, 819–829.PubMedGoogle Scholar
  96. 96.
    Michalides, R., Wagenaar, E., & Sluyser, M. (1982b). Mammary tumor virus DNA as a marker for genotypic variance within hormone-responsive GR mouse mammary tumors. Cancer Research, 42, 1154–1158.PubMedGoogle Scholar
  97. 97.
    Michalides, R., Wagenaar, E., & Weijers, P. (1985). Rearrangements in the long terminal repeat of extra mouse mammary tumor proviruses in T-cell leukemias of mouse strain GR result in a novel enhancer-like structure. Molecular and Cellular Biology, 5, 823–830.PubMedGoogle Scholar
  98. 98.
    Miele, L. (2006). Notch signaling. Clinical Cancer Research, 12, 1074–1079.PubMedCrossRefGoogle Scholar
  99. 99.
    Mikkers, H., Allen, J., Knipscheer, P., Romeijn, L., Hart, A., Vink, E., et al. (2002). High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nature Genetics, 32, 153–159.PubMedCrossRefGoogle Scholar
  100. 100.
    Mink, S., Ponta, H., & Cato, A. C. (1990). The long terminal repeat region of the mouse mammary tumour virus contains multiple regulatory elements. Nucleic Acids Research, 18, 2017–2024.PubMedCrossRefGoogle Scholar
  101. 101.
    Mochizuki, S., & Okada, Y. (2007). ADAMs in cancer cell proliferation and progression. Cancer Science, 98, 621–628.PubMedCrossRefGoogle Scholar
  102. 102.
    Moore, R., Dixon, M., Smith, R., Peters, G., & Dickson, C. (1987). Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: Two frameshift suppression events are required for translation of gag and pol. Journal of Virology, 61, 480–490.PubMedGoogle Scholar
  103. 103.
    Morris, D. W., Barry, P. A., Bradshaw, H. D., Jr., & Cardiff, R. D. (1990). Insertion mutation of the int-1 and int-2 loci by mouse mammary tumor virus in premalignant and malignant neoplasms from the GR mouse strain. Journal of Virology, 64, 1794–1802.PubMedGoogle Scholar
  104. 104.
    Muller, W. J., Lee, F. S., Dickson, C., Peters, G., Pattengale, P., & Leder, P. (1990). The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO Journal, 9, 907–913.PubMedGoogle Scholar
  105. 105.
    Mustafa, F., Bhadra, S., Johnston, D., Lozano, M., & Dudley, J. P. (2003). The type B leukemogenic virus truncated superantigen is dispensable for T-cell lymphomagenesis. Journal of Virology, 77, 3866–3870.PubMedCrossRefGoogle Scholar
  106. 106.
    Mustafa, F., Lozano, M., & Dudley, J. P. (2000). C3H mouse mammary tumor virus superantigen function requires a splice donor site in the envelope gene. Journal of Virology, 74, 9431–9440.PubMedCrossRefGoogle Scholar
  107. 107.
    Nam, J. S., Turcotte, T. J., Smith, P. F., Choi, S., & Yoon, J. K. (2006). Mouse cristin/R-spondin family proteins are novel ligands for the Frizzled 8 and LRP6 receptors and activate beta-catenin-dependent gene expression. Journal of Biological Chemistry, 281, 13247–13257.PubMedCrossRefGoogle Scholar
  108. 108.
    Niehrs, C. (2006). Function and biological roles of the dickkopf family of Wnt modulators. Oncogene, 25, 7469–7481.PubMedCrossRefGoogle Scholar
  109. 109.
    Nusse, R., de Moes, J., Hilkens, J., & van Nie, R. (1980). Localization of a gene for expression of mouse mammary tumor virus antigens in the GR/Mtv-2- mouse strain. Journal of Experimental Medicine, 152, 712–719.PubMedCrossRefGoogle Scholar
  110. 110.
    Nusse, R., & Varmus, H. E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 31, 99–109.PubMedCrossRefGoogle Scholar
  111. 111.
    Paik, S. (1992). Expression of IGF-I and IGF-II mRNA in breast tissue. Breast Cancer Research and Treatment, 22, 31–38.PubMedCrossRefGoogle Scholar
  112. 112.
    Parks, W. P., Ransom, J. C., Young, H. A., & Scolnick, E. M. (1975). Mammary tumor virus induction by glucocorticoids. Characterization of specific transcriptional regulation. Journal of Biological Chemistry, 250, 3330–3336.PubMedGoogle Scholar
  113. 113.
    Peters, G., Brookes, S., Smith, R., & Dickson, C. (1983). Tumorigenesis by mouse mammary tumor virus: Evidence for a common region for provirus integration in mammary tumors. Cell, 33, 369–377.PubMedCrossRefGoogle Scholar
  114. 114.
    Peters, G., Brookes, S., Smith, R., Placzek, M., & Dickson, C. (1989). The mouse homolog of the hst/k-FGF gene is adjacent to int-2 and is activated by proviral insertion in some virally induced mammary tumors. Proceedings of the National Academy of Science of the USA, 86, 5678–5682.CrossRefGoogle Scholar
  115. 115.
    Peters, G., Lee, A. E., & Dickson, C. (1984). Activation of cellular gene by mouse mammary tumour virus may occur early in mammary tumour development. Nature, 309, 273–275.PubMedCrossRefGoogle Scholar
  116. 116.
    Powers, C. J., McLeskey, S. W., & Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocrine Related Cancer, 7, 165–197.PubMedCrossRefGoogle Scholar
  117. 117.
    Qin, W., Golovkina, T. V., Peng, T., Nepomnaschy, I., Buggiano, V., Piazzon, I., et al. (1999). Mammary gland expression of mouse mammary tumor virus is regulated by a novel element in the long terminal repeat. Journal of Virology, 73, 368–376.PubMedGoogle Scholar
  118. 118.
    Racevskis, J., & Beyer, H. (1989). Amplification of mouse mammary tumor virus genomes in non-mammary tumor cells. Journal of Virology, 63, 456–459.PubMedGoogle Scholar
  119. 119.
    Rajan, L., Broussard, D., Lozano, M., Lee, C. G., Kozak, C. A., & Dudley, J. P. (2000). The c-myc locus is a common integration site in type B retrovirus-induced T-cell lymphomas. Journal of Virology, 74, 2466–2471.PubMedCrossRefGoogle Scholar
  120. 120.
    Reedijk, M., Odorcic, S., Chang, L., Zhang, H., Miller, N., McCready, D. R., et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Research, 65, 8530–8537.PubMedCrossRefGoogle Scholar
  121. 121.
    Reuss, F. U., & Coffin, J. M. (1998). Mouse mammary tumor virus superantigen expression in B cells is regulated by a central enhancer within the pol gene. Journal of virology, 72, 6073–6082.PubMedGoogle Scholar
  122. 122.
    Richert, M. M., Schwertfeger, K. L., Ryder, J. W., & Anderson, S. M. (2000). An atlas of mouse mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 5, 227–241.PubMedCrossRefGoogle Scholar
  123. 123.
    Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., & Nusse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 50, 649–657.PubMedCrossRefGoogle Scholar
  124. 124.
    Ringold, G. M., Yamamoto, K. R., Tomkins, G. M., Bishop, M., & Varmus, H. E. (1975). Dexamethasone-mediated induction of mouse mammary tumor virus RNA: A system for studying glucocorticoid action. Cell, 6, 299–305.PubMedCrossRefGoogle Scholar
  125. 125.
    Robbins, J., Blondel, B. J., Gallahan, D., & Callahan, R. (1992). Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. Journal of Virology, 66, 2594–2599.PubMedGoogle Scholar
  126. 126.
    Roelink, H., Wagenaar, E., Lopes, dS., & Nusse, R. (1990). Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/Wnt-1 and is normally expressed in mouse embryos and adult brain. Proceedings of theNational Academy of Sciences of theUSA, 87, 4519–4523.CrossRefGoogle Scholar
  127. 127.
    Ross, S. R. (2008). MMTV infectious cycle and the contribution of virus-encoded proteins to transformation of mammary tissue. Journal of Mammary Gland Biology and Neoplasia, 13, 299–307.PubMedCrossRefGoogle Scholar
  128. 128.
    Ross, S. R., Hsu, C. L. L., Choi, Y., Mok, E., & Dudley, J. P. (1990). Negative regulation in correct tissue-specific expression of mouse mammary tumor virus in transgenic MICE. Molecular and Cellular Biology (November), 10, 5822–5829.Google Scholar
  129. 129.
    Ross, S. R., Schofield, J. J., Farr, C. J., & Bucan, M. (2002). Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proceedings of the National Academy of Sciences of the USA, 99, 12386–12390.PubMedCrossRefGoogle Scholar
  130. 130.
    Salmons, B., Erfle, V., Brem, G., & Gunzburg, W. H. (1990). naf, a trans-regulating negative-acting factor encoded within the mouse mammary tumor virus open reading frame region. Journal of virology, 64, 6355–6359.PubMedGoogle Scholar
  131. 131.
    Scheidereit, C., Geisse, S., Westphal, H. M., & Beato, M. (1983). The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumour virus. Nature, 304, 749–752.PubMedCrossRefGoogle Scholar
  132. 132.
    Shackleford, G. M., MacArthur, C. A., Kwan, H. C., & Varmus, H. E. (1993). Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proceedings of the National Academy of Sciences of the USA, 90, 740–744.PubMedCrossRefGoogle Scholar
  133. 133.
    Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439, 84–88.PubMedCrossRefGoogle Scholar
  134. 134.
    Shimizu, H., Julius, M. A., Giarre, M., Zheng, Z., Brown, A. M., & Kitajewski, J. (1997). Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth and Differentiation, 8, 1349–1358.PubMedGoogle Scholar
  135. 135.
    Sluyser, M., & van Nie, R. (1974). Estrogen receptor content and hormone-responsive growth of mouse mammary tumors. Cancer Research, 34, 3253–3257.PubMedGoogle Scholar
  136. 136.
    Smith, G. H. (1978). Evidence for a precursor-product relationship between intracytoplasmic a particles and mouse mammary tumour virus cores. Journal of General Virology, 41, 193–200.PubMedCrossRefGoogle Scholar
  137. 137.
    Sonnenberg, A., van Balen, P., Hilgers, J., Schuuring, E., & Nusse, R. (1987). Oncogene expression during progression of mouse mammary tumor cells; activity of a proviral enhancer and the resulting expression of int-2 is influenced by the state of differentiation. EMBO Journal, 6, 121–125.PubMedGoogle Scholar
  138. 138.
    Squartini, F., & Bistocchi, M. (1977). Bioactivity of C3H and RIII mammary tumor viruses in virgin female BALB/c mice. Journal of National Cancer Institute, 58, 1845–1847.Google Scholar
  139. 139.
    Squartini, F., Rossi, G., & Paoletti, I. (1963). Characters of mammary tumours in BALB/c female mice foster-nursed by C3H and RIII mothers. Nature, 197, 505–506.PubMedCrossRefGoogle Scholar
  140. 140.
    Stylianou, S., Clarke, R. B., & Brennan, K. (2006). Aberrant activation of notch signaling in human breast cancer. Cancer Research, 66, 1517–1525.PubMedCrossRefGoogle Scholar
  141. 141.
    Takahashi, K., Mitsui, K., & Yamanaka, S. (2003). Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature, 423, 541–545.PubMedCrossRefGoogle Scholar
  142. 142.
    Telesnitsky, A., & Goff, S. P. (1997). Reversed transcription and the generation of retroviral DNA. In J. M. Coffin, S. H. Hughes, & H. E. Varmus (Eds.), Retroviruses (pp. 121–160). Cold Spring Harbor Laboratory Press (NY), USA.Google Scholar
  143. 143.
    Theodorou, V., Boer, M., Weigelt, B., Jonkers, J., Van der Valk, M., & Hilkens, J. (2004). Fgf10 is an oncogene activated by MMTV insertional mutagenesis in mouse mammary tumors and overexpressed in a subset of human breast carcinomas. Oncogene, 23, 6047–6055.PubMedCrossRefGoogle Scholar
  144. 144.
    Theodorou, V., Kimm, M., Boer, M., Wessels, L., Theelen, W., Jonkers, J., et al. (2007). MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nature of Genetics, 39, 759–769.CrossRefGoogle Scholar
  145. 145.
    Touw, I. P., & Erkeland, S. J. (2007). Retroviral insertion mutagenesis in mice as a comparative oncogenomics tool to identify disease genes in human leukemia. Molecular Therapy, 15, 13–19.PubMedCrossRefGoogle Scholar
  146. 146.
    Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., Parslow, T., & Varmus, H. E. (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell, 55, 619–625.PubMedCrossRefGoogle Scholar
  147. 147.
    Uren, A. G., Kool, J., Berns, A., & van Lohuizen, M. (2005). Retroviral insertional mutagenesis: Past, present and future. Oncogene, 24, 7656–7672.PubMedCrossRefGoogle Scholar
  148. 148.
    Uren, A. G., Kool, J., Matentzoglu, K., de Ridder, J., Mattison, J., van Uitert, M., et al. (2008). Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell, 133, 727–741.PubMedCrossRefGoogle Scholar
  149. 149.
    van Amerongen, R., Mikels, A., & Nusse, R. (2008). Alternative wnt signaling is initiated by distinct receptors. Science Signaling, 1, re9.PubMedCrossRefGoogle Scholar
  150. 150.
    Van Der Valk, M. A. (1981). Tumor incidence of the inbred mouse strains in the Netherlands cancer institute. In J. Hilgers & M. Sluyser (Eds.), Mammary tumors in the mouse (pp. 45–115). Amsterdam: Elsevier.Google Scholar
  151. 151.
    Van Nie, R. (1981). Mammary tumorigenesis in the GR mouse strain. In M. Sluyser & J. Hilgers (Eds.), Mammary tumors in the mouse (pp. 202–266). Amsterdam: Elsevier/North-Holland Publishing.Google Scholar
  152. 152.
    van Nie, R., & Dux, A. (1971). Biological and morphological characteristics of mammary tumors in GR mice. Journal of National Cancer Institute, 46, 885–897.Google Scholar
  153. 153.
    van Nie, R., & Verstraeten, A. A. (1975). Studies of genetic transmission of mammary tumour virus by C3Hf mice. International Journal of Cancer, 16, 922–931.CrossRefGoogle Scholar
  154. 154.
    van Nie, R., Verstraeten, A. A., & de Moes, J. (1977). Genetic transmission of mammary tumour virus by GR mice. International Journal of Cancer, 19, 383–390.CrossRefGoogle Scholar
  155. 155.
    Varmus, H. E., Quintrell, N., Medeiros, E., Bishop, J. M., Nowinski, R. C., & Sarkar, N. H. (1973). Transcription of mouse mammary tumor virus genes in tissues from high and low tumor incidence mouse strains. Journal of Molecular Biology, 79, 663–679.PubMedCrossRefGoogle Scholar
  156. 156.
    Veltmaat, J. M., Mailleux, A. A., Thiery, J. P., & Bellusci, S. (2003). Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation, 71, 1–17.PubMedCrossRefGoogle Scholar
  157. 157.
    Vogt, V. M. (1997). Retroviral virions and genomes. In J. M. Coffin, S. H. Hughes and H. E. Varmus (Eds.), Retroviruses (pp. 27–69). Cold Spring Harbor Laboratory Press (NY), USA.Google Scholar
  158. 158.
    Wang, Y., Holland, J. F., Bleiweiss, I. J., Melana, S., Liu, X., Pelisson, I., et al. (1995). Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Research, 55, 5173–5179.PubMedGoogle Scholar
  159. 159.
    Wang-Johanning, F., Frost, A. R., Johanning, G. L., Khazaeli, M. B., LoBuglio, A. F., Shaw, D. R., et al. (2001). Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. Clinical Cancer Research, 7, 1553–1560.PubMedGoogle Scholar
  160. 160.
    Watson, C. J., & Khaled, W. T. (2008). Mammary development in the embryo and adult: A journey of morphogenesis and commitment. Development, 135, 995–1003.PubMedCrossRefGoogle Scholar
  161. 161.
    Wei, Q., Yokota, C., Semenov, M., Doble, B., Woodgett, J., & He, X. (2007). R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling. Journal of Biological Chemistry, 282, 15903–15911.PubMedCrossRefGoogle Scholar
  162. 162.
    Wellinger, R. J., Garcia, M., Vessaz, A., & Diggelmann, H. (1986). Exogenous mouse mammary tumor virus proviral DNA isolated from a kidney adenocarcinoma cell line contains alterations in the U3 region of the long terminal repeat. Journal of Virology, 60, 1–11.PubMedGoogle Scholar
  163. 163.
    Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. P., Silverman, L. B., Sanchez-Irizarry, C., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.PubMedCrossRefGoogle Scholar
  164. 164.
    Wong, G. T., Gavin, B. J., & McMahon, A. P. (1994). Differential transformation of mammary epithelial cells by Wnt genes. Molecular and Cellular Biology, 14, 6278–6286.PubMedGoogle Scholar
  165. 165.
    Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.PubMedCrossRefGoogle Scholar
  166. 166.
    Wu, X., Li, Y., Crise, B., & Burgess, S. M. (2003). Transcription start regions in the human genome are favored targets for MLV integration. Science, 300, 1749–1751.PubMedCrossRefGoogle Scholar
  167. 167.
    Yanagawa, S., Kakimi, K., Tanaka, H., Murakami, A., Nakagawa, Y., Kubo, Y., et al. (1993). Mouse mammary tumor virus with rearranged long terminal repeats causes murine lymphomas. Journal of Virology, 67, 112–118.PubMedGoogle Scholar
  168. 168.
    Yanagawa, S., Tanaka, H., & Ishimoto, A. (1991). Identification of a novel mammary cell line-specific enhancer element in the long terminal repeat of mouse mammary tumor virus, which interacts with its hormone-responsive element. Journal of Virology, 65, 526–531.PubMedGoogle Scholar
  169. 169.
    Yoshimura, N., Sano, H., Hashiramoto, A., Yamada, R., Nakajima, H., Kondo, M., et al. (1998). The expression and localization of fibroblast growth factor-1 (FGF-1) and FGF receptor-1 (FGFR-1) in human breast cancer. Clinical Immunology and Immunopathology, 89, 28–34.PubMedCrossRefGoogle Scholar
  170. 170.
    Zhu, Q., & Dudley, J. P. (2002). CDP binding to multiple sites in the mouse mammary tumor virus long terminal repeat suppresses basal and glucocorticoid-induced transcription. Journal of Virology, 76, 2168–2179.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Divisions of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations