Advertisement

Introduction to the Problems of Relaxation and Diffusion in Complex Systems

  • K.L. NgaiEmail author
Chapter
Part of the Partially Ordered Systems book series (PARTIAL.ORDERED)

Abstract

Relaxation and diffusion are physical and chemical processes that occur by various ways in condensed matter of all kinds (inorganic, organic, polymeric, biomolecular, colloidal, and metallic), in different states (crystalline, glassy, liquid, molten, and ceramic) and of different sizes or dimensions (from bulk to nanometer). The processes are often involved in the formation of natural substances and in the fabrication of synthetic materials. For the latter, we can go back to ancient history of the Babylonians making glasses out of sand. The recipe of making glasses, which is recorded in history, involves rapid cooling of the liquid material at a high temperature to a lower temperature to form the glass.

Keywords

Glass Transition Anomalous Property Dielectric Relaxation Electric Displacement Creep Compliance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Brown, Edinb. Phil. J. 5, 358 (1828); Philos. Mag. 4, 161 (1828); See also A. Fick, Poggendorff’s Annalen 94, 59 (1855), and (in English) Philos. Mag. S.4, 10, 30–39 (1855).Google Scholar
  2. 2.
    R. Kohlrausch, Theorie des elektrischen Rückstandes in der Leidener Flasche; von R. Kohlrausch, Pogg. Ann. Phys. Chem. 91, 179–214 (1854). For experimental data, see R. Kohlrausch, Pogg. Ann. Phys. Chem. 91, 56 (1854).Google Scholar
  3. 3.
    F. Kohlrausch, Ueber die elastische Nachwirkung bei der Torsion, Pogg. Ann. Phys. Chem. 119, 337–368 (1863). Beiträge zur Kenntniss der elastischen Nachwirkung, Pogg. Ann. Phys. Chem.128, 1–20, 207–228, 399–419 (1866).ADSGoogle Scholar
  4. 4.
    F. Kohlrausch, Beiträge zur Kenntniss der elastischen Nachwirkung, Pogg. Ann. Phys. Chem. 128, 1–20, 207–228, 399–419 (1866).ADSGoogle Scholar
  5. 5.
    J.C. Maxwell, Philos. Trans. R. Soc. (London) 157, 49 (1867).Google Scholar
  6. 6.
    J.P. Joule, Mem. Manchr Literary Philos. Soc., 3rd ser., 3, 292 (1867); The Scientific Papers of J. P. Joule, Vol. 1, Physical Society, London, p. 558 (1884).Google Scholar
  7. 7.
    S.V. Nemilov, G.P. Johari, Philos. Mag. 83, 3117 (2003).ADSGoogle Scholar
  8. 8.
    A. Einstein, Investigations on the Theory of Brownian Movement, Dover, New York, NY (1956).zbMATHGoogle Scholar
  9. 9.
    J. Stachel, Ed., The Collected Papers of Albert Einstein, Vol. 2, pp. 170–182, 206–222, Princeton University Press (1987).Google Scholar
  10. 10.
    G.G. Stokes, On the Effect of the Internal Friction of Fluid on the Motion of Pendulums, Proc. Camb. Philos. Soc. 9, 8–106 (1851).ADSGoogle Scholar
  11. 11.
    A. Einstein, Ann. d. Physik 17, 549 (1905).ADSzbMATHGoogle Scholar
  12. 12.
    J. Perrin, Le Mouvement Brownien et la Réalité Moleculaire, Ann. Chim. Phys. (8me Serie), 5–114 (1909); J. Phys. Radium 5, 497 (1934); Atoms, Constable, London (1916). See also R. Newburgh, J. Peidle, W. Rueckner, Einstein, Perrin, and the Reality of Atoms:1905 Revisited, Am. J. Phys. 74, 478 (2006).Google Scholar
  13. 13.
    M.V. Smoluchowski, Ann. d. Physik. 21, 756 (1906).zbMATHGoogle Scholar
  14. 14.
    P. Langevin, Sur la Theorie du Mouvement Brownien, C. R. Acad. Sci. (Paris) 146, 530 (1908). In English, Am. J. Phys. 65(11), 1079 (1997).zbMATHGoogle Scholar
  15. 15.
    R. Kubo, M. Toda, N. Hashitsumi, Statistical Physics II, Nonequilibrium Statistical Mechanics, Springer, Berlin (1985).Google Scholar
  16. 16.
    F. Perrin, J. Phys. Radium 5, 497 (1934).Google Scholar
  17. 17.
    A. Einstein, Ann. d. Physik 19, 371 (1906).ADSzbMATHGoogle Scholar
  18. 18.
    P. Debye, Physik. Z. 13n, 97 (1912).Google Scholar
  19. 20.
    P. Debye, Polar Molecules, Dover, New York, NY (1929).zbMATHGoogle Scholar
  20. 21.
    S. Chandrasekhar, Rev. Modern Phys. 15, 1 (1943).MathSciNetADSzbMATHGoogle Scholar
  21. 22.
    J.K.G. Dhont, An Introduction to Dynamics of Colloids, Elsevier, Amsterdam (1996).Google Scholar
  22. 23.
    B.J. Berne, R. Percora, Dynamic Light Scattering, Wiley, New York, NY (1976).Google Scholar
  23. 24.
    K. Chang, The Nature of Glass Remains Anything but Clear (The New York Times, July 29, 2008). See a technical response to this New York Times article entitled The Nature of Glass: Somethings are Clear, by K.L. Ngai, S. Capaccioli, D. Prevosto, M. Paluch, published in Metastable Systems under Pressure, NATO Science for Peace and Security Series-A: Chemistry and Biology, S. Rzoska, A. Drozd-Rzoska, V. Mazur, Eds., Springer, pp. 3–30 (2010).Google Scholar
  24. 27.
    A.K. Doolittle, D.B. Doolittle, J. Appl. Phys. 28, 901 (1957).ADSGoogle Scholar
  25. 29.
    J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York, NY (1980).Google Scholar
  26. 30.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).ADSGoogle Scholar
  27. 31.
    W. Götze, in Liquids, Freezing and the Glass Transition, Proceedings of the Les Houches Summer School of Theoretical Physics, Session LI (1989), J.-P. Hansen, D. Levesque, J. Zinn-Justin, Eds., North-Holland, Amsterdam, p. 287 (1991).Google Scholar
  28. 35.
    M. Sperl, Phys. Rev. E 74, 011503 (2006).ADSGoogle Scholar
  29. 36.
    M. Goldstein, J. Chem. Phys. 51, 3728 (1969).ADSGoogle Scholar
  30. 40.
    D.J. Wales, Energy Landscapes, Cambridge University Press, Cambridge (2003).Google Scholar
  31. 41.
    P.G. de Gennes, J. Chem. Phys. 55, 572 (1971).ADSGoogle Scholar
  32. 42.
    M. Doi, S.F. Edwards, J. Chem. Soc. Faraday Trans. II 14, 1789, 1802, 1818 (1978).Google Scholar
  33. 43.
    W.W. Graessley, Adv. Polym. Sci. 47, 67 (1982).Google Scholar
  34. 44.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford (1986).Google Scholar
  35. 45.
    T.C.B. McLeish, Adv. Phys. 51, 1379 (2002).ADSGoogle Scholar
  36. 46.
    J.C. Dyre, T.B. Schrøder, Rev. Mod. Phys. 72, 873 (2000).ADSGoogle Scholar
  37. 47.
    K.L. Ngai, Comment Solid State Phys. 9, 127 (1979).Google Scholar
  38. 48.
    K.L. Ngai, Comment Solid State Phys. 9, 141 (1979).Google Scholar
  39. 49.
    L. Boltzmann, Pogg. Ann. Physik 7, 108 (1876).Google Scholar
  40. 50.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York, NY (1975).zbMATHGoogle Scholar
  41. 51.
    H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951).MathSciNetADSzbMATHGoogle Scholar
  42. 52.
    I.L. Hopkins, R.W. Hamming, J. Appl. Phys. 28, 906 (1957).ADSGoogle Scholar
  43. 53.
    J.E. McKinney, H.V. Belcher, J. Res. Nat. Bur. Stand. A67, 43 (1963).Google Scholar
  44. 54.
    P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972).Google Scholar
  45. 56.
    (a) For a review of electric modulus, see I.M. Hodge, K.L. Ngai, C.T. Moynihan, J. Non-Cryst. Solids 351, 104 (2005); (b) K.L. Ngai, C. León, Phys. Rev. B, 60, 9396 (1999); (c) K.L. Ngai, R.W. Rendell, Phys. Rev. B, 61, 9393 (2000).ADSGoogle Scholar
  46. 57.
    R. Richert, H. Wagner, Solid State Ion. 105, 167 (1998).Google Scholar
  47. 58.
    N.O. Birge, S.R. Nagel, Phys. Rev. Lett. 54, 2674 (1985).ADSGoogle Scholar
  48. 59.
    M. Beiner, J. Korus, H. Lockwenz, K. Schröter, E. Donth, Macromolecules 29, 5183 (1996).ADSGoogle Scholar
  49. 60.
    M. Beiner, S. Kahle, E. Hempel, K. Schröter, E. Donth, Europhys. Lett. 44, 321 (1998).ADSGoogle Scholar
  50. 61.
    R. Greiner, F.R. Schwarzl, Rheol. Acta, 23, 378 (1984).Google Scholar
  51. 62.
    A.J. Kovacs, Fortschr. Hochpolym.-Forsch. 3, 394 (1964).Google Scholar
  52. 63.
    R. Richert, J. Chem. Phys., 113, 8404 (2000).ADSGoogle Scholar
  53. 64.
    C. Bauer, R. Böhmer, S. Moreno-Flores, R. Richert, H. Sillescu, D. Neher, Phys. Rev. E 61, 1755 (2000).ADSGoogle Scholar
  54. 65.
    R. Kubo, J. Phys. Soc. Jpn, 12, 570 (1957).MathSciNetADSGoogle Scholar
  55. 66.
    N.H. March, M.P. Tosi, Atomic Dynamics in Liquids, McMillan, London (1976).Google Scholar
  56. 69.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, Academic, London (1986).Google Scholar
  57. 70.
    S. Dattagupta, Relaxation Phenomena in Condensed Matter Physics, Academic, Orlando, FL (1987).Google Scholar
  58. 71.
    G.D.J. Phillies, Elementary Lectures in Statistical Mechanics, Springer, New York, NY (2000).zbMATHGoogle Scholar
  59. 72.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966).ADSGoogle Scholar
  60. 73.
    R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 (1965).ADSGoogle Scholar
  61. 74.
    S.H. Glarum, J. Chem. Phys. 33, 639 (1960).MathSciNetADSGoogle Scholar
  62. 75.
    R.H. Cole, Ann. Rev. Phys. Chem. 40, 1 (1989).ADSGoogle Scholar
  63. 76.
    G. Williams, Adv. Polym. Sci. 33, 60 (1979).Google Scholar
  64. 77.
    G. Williams, D.C. Watts, in NMR Basic Principles and Progress, P. Diehl, E. Flick, E. Kosfeld, Eds., Springer, Berlin, Vol. 4, p. 271 (1971).Google Scholar
  65. 78.
    D.M.F. Edwards, P.A. Madden, I.R. McDonald, Mol. Phys. 51, 1141 (1984).ADSGoogle Scholar
  66. 79.
    H. Takeuchi, R. Roe, J. Chem. Phys. 94, 7446 (1991).ADSGoogle Scholar
  67. 80.
    D. Bedrov, G.D. Smith, Macromolecules 38, 10314 (2005).ADSGoogle Scholar
  68. 81.
    B. Chu, Laser Light Scattering, Academic, New York, NY (1974).Google Scholar
  69. 83.
    C.H. Wang, Spectroscopy of Condensed Media, Academic, New York, NY (1985).Google Scholar
  70. 87.
    K.L. Ngai, G. Floudas, D.J. Plazek, A.K. Rizos, in Encyclopedia of Polymer Science and Technology, Wiley, New York, NY (2002).Google Scholar
  71. 88.
    C.H. Wang, Mol. Phys. 41, 541 (1980).ADSGoogle Scholar
  72. 89.
    K.M. Zero, R. Pecora, Macromolecules, 15, 87 (1982).ADSGoogle Scholar
  73. 91.
    G. Petekidis, D. Vlassopoulos, G. Fytas, R. Ruelkens, G. Wegner, Macromolecules 31, 6129 (1998).ADSGoogle Scholar
  74. 92.
    A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford (1962).Google Scholar
  75. 93.
    K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid State NMR and Polymers, Academic, London (1994).Google Scholar
  76. 94.
    R. Böhmer, G. Diezemann, G. Hinze, E. Rössler, Prog. Nucl. Mag. Reson. Spectrosc. 39, 191 (2001).Google Scholar
  77. 95.
    S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Oxford University Press, Oxford (1994).Google Scholar
  78. 96.
    (a) T. Springer, Quasielastic Neutron Scattering for the Investigation of Diffusive Motions in Solids and Liquids, Springer Tracts in Modern Physics, Vol. 64, Springer, Berlin (1972); (b) F. Mezei, in Liquids, Freezing and Glass Transition, J.P. Hansen, D. Levesque, J. Zinn-Justin, J., Eds., North Holland, Amsterdam, p. 629 (1991).Google Scholar
  79. 97.
    L. Van Hove, Phys. Rev. 95, 249 (1954).ADSzbMATHGoogle Scholar
  80. 98.
    A. Rahman, Phys. Rev. A 136, 405 (1964).ADSGoogle Scholar
  81. 99.
    M.S. Green, J. Chem. Phys. 19, 1036 (1951).MathSciNetADSGoogle Scholar
  82. 100.
    H. Nyquist, Phys. Rev. 32, 110 (1928).ADSGoogle Scholar
  83. 101.
    R. Kubo, Rep. Progr. Phys. 29, 255 (1966). Cited before as [72].ADSGoogle Scholar
  84. 102.
    H.K. Onnes, Commun. Phys. Lab. Univ. Leiden, Nos. 119, 120, 122 (1911).Google Scholar
  85. 103.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957).MathSciNetADSGoogle Scholar
  86. 104.
    See articles in Ann. N.Y. Acad. Sci. 279 (1976), 371 (1981), 484 (1986).Google Scholar
  87. 109.
    See articles in Proceedings of the 1st, 2nd , 3rd, 4th and 5th International Discussion Meetings on Relaxations in Complex Systems, J. Non-Cryst. Solids 131–133 (1991), 172–174 (1994), 235–237 (1998), 307–310 (2002), 352, issues 42–49 (2006).Google Scholar
  88. 110.
    See articles in Disorder Effects on Relaxational Processes, R. Richert, A. Blumen, Eds., Springer, Berlin (1994), in particular pp. 89–150 of the article by K.L. Ngai entitled Universal Patterns of Relaxations in Complex Correlated Systems. Google Scholar
  89. 111.
    K.L. Ngai, Evidences for Universal Behavior of Condensed Mater at Low Frequencies/Long Times, in Non-Debye Relaxation in Condensed Matter, T.V. Ramakrishnan, M. Raj Lakshmi, Eds., World Scientific, Singapore, pp. 23–193 (1987).Google Scholar
  90. 114.
    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000).ADSGoogle Scholar
  91. 117.
    See articles in Adv. Chem. Phys. Part B, Fractals, Diffusion and Relaxation in Disordered Complex Systems, Y.P. Kalmykov, W.T. Coffey, S.A. Rice, Eds., Vol. 133, Wiley, New York, NY (2006).Google Scholar
  92. 120.
    K.L. Ngai, R. Casalini, S. Capaccioli, M. Paluch, C.M. Roland, Adv. Chem. Phys. Part B, Fractals, Diffusion and Relaxation in Disordered Complex Systems, Y.P. Kalmykov, W.T. Coffey, S.A. Rice, Eds., Chapter 10, Wiley, New York, NY, Vol. 133, pp. 497–585 (2006).Google Scholar
  93. 121.
    E. Donth, The Glass Transition, Springer Series in Material Science, Vol. 48, Springer, Berlin, Heidelberg (2001).Google Scholar
  94. 122.
    See articles in Structure, Dynamics and Properties of Silicate Melts, Reviews in Mineralogy, J.F. Stebbins, P.F. McMillan, D.B. Dingwell, Eds., Mineralogical Society of America, Washington, DC, Vol. 32 (1995).Google Scholar
  95. 124.
    A.K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London (1983).Google Scholar
  96. 125.
    A. Inoue, Bulk Amorphous Alloys, Trans Tech Publications, Zürich (1998).Google Scholar
  97. 129.
    See articles in Amorphous Metallic Alloys, F.E. Luborsky, Ed., Butterworth, London (1983).Google Scholar
  98. 130.
    P.G. Debenedetti, J. Phys. Condens. Matter 15, R1669–R1726 (2003).ADSGoogle Scholar
  99. 131.
    K.L. Ngai, S. Capaccioli, N. Shinyashiki, J. Phys. Chem. B 112, 3826 (2008).Google Scholar
  100. 132.
    F. Parak, G.U. Nienhaus, J. Non-Cryst. Solids 131–133, 362 (1991); F.G. Parak, K. Achterhold, S. Croci, M. Schmidt, J. Biol. Phys. 33, 371 (2007).Google Scholar
  101. 134.
    P. Fenimore, H. Frauenfelder, B. McMahon, R.D. Young, Proc. Natl. Acad. Sci. 101, 14408 (2005).ADSGoogle Scholar
  102. 135.
    G. Cottone, G. Ciccotti, L. Cordone, J. Chem. Phys. 117, 9862 (2002).ADSGoogle Scholar
  103. 136.
    B.C. Hancock, G. Zografi, J. Pharm. Sci. 86, 1 (1997).Google Scholar
  104. 137.
    C. Bhugra, R. Shmeis, S.L. Krill, M.J. Pikal, J. Pharm. Sci. 97, 455 (2008).Google Scholar
  105. 138.
    J. Einfeldt, D. Meissner, A. Kwasniewski, Prog. Polym. Sci. 26, 1419 (2001).Google Scholar
  106. 139.
    K. Kaminski, E. Kaminska, S. Hensel-Bielowka, E. Chelmecka, M. Paluch, J. Ziolo, P. Wlodarczyk, K.L. Ngai, J. Phys. Chem. B 112, 7662 (2008).Google Scholar
  107. 140.
    A. Robert, E. Wandersman, E. Dubois, V. Dupuis, R. Perzynski, Europhys. Lett. 75, 764 (2006).ADSGoogle Scholar
  108. 141.
    (a) E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Science 287, 627 (2000); (b) E.R. Weeks, D.A. Weitz, Phys. Rev. Lett. 89, 095704 (2002).ADSGoogle Scholar
  109. 143.
    P.N. Segre, P.N. Pusey, Phys. Rev. Lett. 77, 771 (1996). Equilibrium dynamics of concentration suspensions of colloidal hard spheres have been extended to times ~ 105 s and volume fraction up to 0.5970 by G. Bramilla et al., Phys. Rev. Lett. 102, 085703 (2009); ibid. 104, 169602 (2010); D. El Masri et al., J. Stat. Mech. P07015 (2009).ADSGoogle Scholar
  110. 144.
    D.L. Leslie-Pelecky, N.O. Birge, Phys. Rev. Lett. 72, 1232 (1994).ADSGoogle Scholar
  111. 145.
    R. Brand, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 116, 10386 (2002); Th. Bauer, M. Köhler, P. Lunkenheimer, A. Loidl, C.A. Angell, J. Chem. Phys. 133, 144509 (2010).ADSGoogle Scholar
  112. 146.
    C.A. Angell, Chem. Rev. 90, 523 (1990).Google Scholar
  113. 149.
    K.L. Ngai, J. Habasaki, C. Leon, A. Rivera, Z. Phys. Chem. 219, 47 (2005).Google Scholar
  114. 153.
    M. Pirzada, R.W. Grimes, L. Minervini, J.F. Maguire, K.E. Sickafus, Solid State Ionics 140, 201 (2001).Google Scholar
  115. 154.
    T. Welton, Chem. Rev. 99, 2071 (1999).Google Scholar
  116. 159.
    K.L. Ngai, J. Phys. Chem. B 110, 26211 (2006).Google Scholar
  117. 160.
    P.W. Anderson, Phys. Today, 43, 9 (1990).ADSGoogle Scholar
  118. 161.
    F. Crick, What Mad Pursuit, Basic Books, New York, NY (1988).Google Scholar
  119. 162.
    C.A. Reynolds, B. Serin, W.H. Wright, L.B. Nesbitt, Phys. Rev. 78, 487 (1950); E. Maxwell, Phys. Rev. 78, 477 (1950).ADSGoogle Scholar
  120. 163.
    H. Fröhlich, Phys. Rev. 79, 845 (1950).ADSzbMATHGoogle Scholar
  121. 164.
    J. Bardeen, Rev. Mod. Phys. 23, 261 (1951).ADSzbMATHGoogle Scholar
  122. 165.
    K.L. Ngai, D.J. Plazek, Rubber Chem. Tech. Rubber Rev. 68, 376 (1995).Google Scholar
  123. 166.
    D.J. Plazek, J. Phys. Chem. 69, 3480 (1965).Google Scholar
  124. 171.
    D.J. Plazek, J. Rheol. 40, 987 (1996); J. Non-Cryst. Solids 353, 3783 (2007).ADSGoogle Scholar
  125. 172.
    K.L. Ngai, D.J. Plazek, S.S. Deo, Macromolecules 20, 3047 (1987).ADSGoogle Scholar
  126. 173.
    K.L. Ngai, in Physical Properties of Polymers, 3rd ed., Chapter 2, Cambridge University Press, Cambridge (2003).Google Scholar
  127. 174.
    K. Popper, The Logic of Scientific Discovery, but see also the Duhem-Quine thesis in Can Theories Be Refuted? Essays on the Duhem-Quine Thesis, S.G. Harding ed., D. Reidel Publishing, Dordrecht, Holland (1975).Google Scholar
  128. 175.
    K.L. Ngai, Comment Solid State Phys. 9, 127 (1979).Google Scholar
  129. 196.
    K.L. Ngai, J. Non-Cryst. Solids 351, 2635 (2005).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.CNR-IPCF Associate, Dipartimento di FisicaUniversità di PisaPisaItaly
  2. 2.Formerly at Naval Research LaboratoryWashingtonUSA

Personalised recommendations