Skip to main content

Introduction to the Problems of Relaxation and Diffusion in Complex Systems

  • Chapter
  • First Online:

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

Abstract

Relaxation and diffusion are physical and chemical processes that occur by various ways in condensed matter of all kinds (inorganic, organic, polymeric, biomolecular, colloidal, and metallic), in different states (crystalline, glassy, liquid, molten, and ceramic) and of different sizes or dimensions (from bulk to nanometer). The processes are often involved in the formation of natural substances and in the fabrication of synthetic materials. For the latter, we can go back to ancient history of the Babylonians making glasses out of sand. The recipe of making glasses, which is recorded in history, involves rapid cooling of the liquid material at a high temperature to a lower temperature to form the glass.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    On a personal and historical note, the author was invited in 1982 by Prof. P.W. Anderson to give a talk at Princeton University on his paper published in Comment Solids State Phys. 9, 127 (1979), Roman Smoluchowski was the editor (now a defunct journal). A year later, he was invited again by Prof. Anderson to participate and give a talk in the workshop on glass transition organized at the Aspens Center for Physics, Aspens, Colorado. This activity was followed by another workshop on glass transition at the Institute for Theoretical Physics, University of California, Santa Barbara organized by Prof. Anderson and Prof. E. Abrahams, and I was one of the invited speakers. For the record, I must admit that my talk at Santa Barbara did not impress many people in the audience, particularly the theoreticians, and I would call it a failure. Dr. George Wright at the Office of Naval Research was aware of the upsurge of interest in the glass transition problem by the condensed matter physics community, and he funded me to organize a workshop entitled Relaxation in Complex Systems in the campus of Virginia Tech. at Blacksburg, VA, in July 1983. The proceedings with the same title was published in 1984 and widely distributed free of charge by the Naval Research Laboratory. Prof. T.V. Ramakrishnan was also interested in the problem. He organized a workshop in Bangalore, India, in 1985, and I was invited as the keynote speaker. This activity was followed by the publication of the monogram Non-Debye Relaxation in Condensed Matter, T.V. Ramakrishnan and M. Raj Lakshmi editors, World Scientific, Singapore (1987). In this book I contributed a 170-page review. Anyway, all the activities mentioned in the above indicate the tremendous interest of the research community at that period in the 1980s. Theoreticians interested were mostly those involved in spin glasses who logically viewed the glass transition as the next important problem to attack. The outlook changes dramatically in 1987, after the discovery of high T c superconductors by Bednorz and Müller in 1986. The excitement generated by the discovery of high T c superconductors occupied the attention of many scientists especially the theoreticians, including possibly Prof. Anderson himself. It is gratifying to see Prof. Anderson returned in 1995 to remind the community of the importance of the glass transition problem. On behalf of all workers in the field, I thank Prof. Anderson for his unwavering support given to the research area of glass transition.

References

  1. R. Brown, Edinb. Phil. J. 5, 358 (1828); Philos. Mag. 4, 161 (1828); See also A. Fick, Poggendorff’s Annalen 94, 59 (1855), and (in English) Philos. Mag. S.4, 10, 30–39 (1855).

    Google Scholar 

  2. R. Kohlrausch, Theorie des elektrischen Rückstandes in der Leidener Flasche; von R. Kohlrausch, Pogg. Ann. Phys. Chem. 91, 179–214 (1854). For experimental data, see R. Kohlrausch, Pogg. Ann. Phys. Chem. 91, 56 (1854).

    Google Scholar 

  3. F. Kohlrausch, Ueber die elastische Nachwirkung bei der Torsion, Pogg. Ann. Phys. Chem. 119, 337–368 (1863). Beiträge zur Kenntniss der elastischen Nachwirkung, Pogg. Ann. Phys. Chem.128, 1–20, 207–228, 399–419 (1866).

    ADS  Google Scholar 

  4. F. Kohlrausch, Beiträge zur Kenntniss der elastischen Nachwirkung, Pogg. Ann. Phys. Chem. 128, 1–20, 207–228, 399–419 (1866).

    ADS  Google Scholar 

  5. J.C. Maxwell, Philos. Trans. R. Soc. (London) 157, 49 (1867).

    Google Scholar 

  6. J.P. Joule, Mem. Manchr Literary Philos. Soc., 3rd ser., 3, 292 (1867); The Scientific Papers of J. P. Joule, Vol. 1, Physical Society, London, p. 558 (1884).

    Google Scholar 

  7. S.V. Nemilov, G.P. Johari, Philos. Mag. 83, 3117 (2003).

    ADS  Google Scholar 

  8. A. Einstein, Investigations on the Theory of Brownian Movement, Dover, New York, NY (1956).

    MATH  Google Scholar 

  9. J. Stachel, Ed., The Collected Papers of Albert Einstein, Vol. 2, pp. 170–182, 206–222, Princeton University Press (1987).

    Google Scholar 

  10. G.G. Stokes, On the Effect of the Internal Friction of Fluid on the Motion of Pendulums, Proc. Camb. Philos. Soc. 9, 8–106 (1851).

    ADS  Google Scholar 

  11. A. Einstein, Ann. d. Physik 17, 549 (1905).

    ADS  MATH  Google Scholar 

  12. J. Perrin, Le Mouvement Brownien et la Réalité Moleculaire, Ann. Chim. Phys. (8me Serie), 5–114 (1909); J. Phys. Radium 5, 497 (1934); Atoms, Constable, London (1916). See also R. Newburgh, J. Peidle, W. Rueckner, Einstein, Perrin, and the Reality of Atoms:1905 Revisited, Am. J. Phys. 74, 478 (2006).

    Google Scholar 

  13. M.V. Smoluchowski, Ann. d. Physik. 21, 756 (1906).

    MATH  Google Scholar 

  14. P. Langevin, Sur la Theorie du Mouvement Brownien, C. R. Acad. Sci. (Paris) 146, 530 (1908). In English, Am. J. Phys. 65(11), 1079 (1997).

    MATH  Google Scholar 

  15. R. Kubo, M. Toda, N. Hashitsumi, Statistical Physics II, Nonequilibrium Statistical Mechanics, Springer, Berlin (1985).

    Google Scholar 

  16. F. Perrin, J. Phys. Radium 5, 497 (1934).

    Google Scholar 

  17. A. Einstein, Ann. d. Physik 19, 371 (1906).

    ADS  MATH  Google Scholar 

  18. P. Debye, Physik. Z. 13n, 97 (1912).

    Google Scholar 

  19. P. Debye, Polar Molecules, Dover, New York, NY (1929).

    MATH  Google Scholar 

  20. S. Chandrasekhar, Rev. Modern Phys. 15, 1 (1943).

    MathSciNet  ADS  MATH  Google Scholar 

  21. J.K.G. Dhont, An Introduction to Dynamics of Colloids, Elsevier, Amsterdam (1996).

    Google Scholar 

  22. B.J. Berne, R. Percora, Dynamic Light Scattering, Wiley, New York, NY (1976).

    Google Scholar 

  23. K. Chang, The Nature of Glass Remains Anything but Clear (The New York Times, July 29, 2008). See a technical response to this New York Times article entitled The Nature of Glass: Somethings are Clear, by K.L. Ngai, S. Capaccioli, D. Prevosto, M. Paluch, published in Metastable Systems under Pressure, NATO Science for Peace and Security Series-A: Chemistry and Biology, S. Rzoska, A. Drozd-Rzoska, V. Mazur, Eds., Springer, pp. 3–30 (2010).

    Google Scholar 

  24. A.K. Doolittle, D.B. Doolittle, J. Appl. Phys. 28, 901 (1957).

    ADS  Google Scholar 

  25. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York, NY (1980).

    Google Scholar 

  26. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    ADS  Google Scholar 

  27. W. Götze, in Liquids, Freezing and the Glass Transition, Proceedings of the Les Houches Summer School of Theoretical Physics, Session LI (1989), J.-P. Hansen, D. Levesque, J. Zinn-Justin, Eds., North-Holland, Amsterdam, p. 287 (1991).

    Google Scholar 

  28. M. Sperl, Phys. Rev. E 74, 011503 (2006).

    ADS  Google Scholar 

  29. M. Goldstein, J. Chem. Phys. 51, 3728 (1969).

    ADS  Google Scholar 

  30. D.J. Wales, Energy Landscapes, Cambridge University Press, Cambridge (2003).

    Google Scholar 

  31. P.G. de Gennes, J. Chem. Phys. 55, 572 (1971).

    ADS  Google Scholar 

  32. M. Doi, S.F. Edwards, J. Chem. Soc. Faraday Trans. II 14, 1789, 1802, 1818 (1978).

    Google Scholar 

  33. W.W. Graessley, Adv. Polym. Sci. 47, 67 (1982).

    Google Scholar 

  34. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford (1986).

    Google Scholar 

  35. T.C.B. McLeish, Adv. Phys. 51, 1379 (2002).

    ADS  Google Scholar 

  36. J.C. Dyre, T.B. Schrøder, Rev. Mod. Phys. 72, 873 (2000).

    ADS  Google Scholar 

  37. K.L. Ngai, Comment Solid State Phys. 9, 127 (1979).

    Google Scholar 

  38. K.L. Ngai, Comment Solid State Phys. 9, 141 (1979).

    Google Scholar 

  39. L. Boltzmann, Pogg. Ann. Physik 7, 108 (1876).

    Google Scholar 

  40. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York, NY (1975).

    MATH  Google Scholar 

  41. H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951).

    MathSciNet  ADS  MATH  Google Scholar 

  42. I.L. Hopkins, R.W. Hamming, J. Appl. Phys. 28, 906 (1957).

    ADS  Google Scholar 

  43. J.E. McKinney, H.V. Belcher, J. Res. Nat. Bur. Stand. A67, 43 (1963).

    Google Scholar 

  44. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972).

    Google Scholar 

  45. (a) For a review of electric modulus, see I.M. Hodge, K.L. Ngai, C.T. Moynihan, J. Non-Cryst. Solids 351, 104 (2005); (b) K.L. Ngai, C. León, Phys. Rev. B, 60, 9396 (1999); (c) K.L. Ngai, R.W. Rendell, Phys. Rev. B, 61, 9393 (2000).

    ADS  Google Scholar 

  46. R. Richert, H. Wagner, Solid State Ion. 105, 167 (1998).

    Google Scholar 

  47. N.O. Birge, S.R. Nagel, Phys. Rev. Lett. 54, 2674 (1985).

    ADS  Google Scholar 

  48. M. Beiner, J. Korus, H. Lockwenz, K. Schröter, E. Donth, Macromolecules 29, 5183 (1996).

    ADS  Google Scholar 

  49. M. Beiner, S. Kahle, E. Hempel, K. Schröter, E. Donth, Europhys. Lett. 44, 321 (1998).

    ADS  Google Scholar 

  50. R. Greiner, F.R. Schwarzl, Rheol. Acta, 23, 378 (1984).

    Google Scholar 

  51. A.J. Kovacs, Fortschr. Hochpolym.-Forsch. 3, 394 (1964).

    Google Scholar 

  52. R. Richert, J. Chem. Phys., 113, 8404 (2000).

    ADS  Google Scholar 

  53. C. Bauer, R. Böhmer, S. Moreno-Flores, R. Richert, H. Sillescu, D. Neher, Phys. Rev. E 61, 1755 (2000).

    ADS  Google Scholar 

  54. R. Kubo, J. Phys. Soc. Jpn, 12, 570 (1957).

    MathSciNet  ADS  Google Scholar 

  55. N.H. March, M.P. Tosi, Atomic Dynamics in Liquids, McMillan, London (1976).

    Google Scholar 

  56. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, Academic, London (1986).

    Google Scholar 

  57. S. Dattagupta, Relaxation Phenomena in Condensed Matter Physics, Academic, Orlando, FL (1987).

    Google Scholar 

  58. G.D.J. Phillies, Elementary Lectures in Statistical Mechanics, Springer, New York, NY (2000).

    MATH  Google Scholar 

  59. R. Kubo, Rep. Prog. Phys. 29, 255 (1966).

    ADS  Google Scholar 

  60. R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 (1965).

    ADS  Google Scholar 

  61. S.H. Glarum, J. Chem. Phys. 33, 639 (1960).

    MathSciNet  ADS  Google Scholar 

  62. R.H. Cole, Ann. Rev. Phys. Chem. 40, 1 (1989).

    ADS  Google Scholar 

  63. G. Williams, Adv. Polym. Sci. 33, 60 (1979).

    Google Scholar 

  64. G. Williams, D.C. Watts, in NMR Basic Principles and Progress, P. Diehl, E. Flick, E. Kosfeld, Eds., Springer, Berlin, Vol. 4, p. 271 (1971).

    Google Scholar 

  65. D.M.F. Edwards, P.A. Madden, I.R. McDonald, Mol. Phys. 51, 1141 (1984).

    ADS  Google Scholar 

  66. H. Takeuchi, R. Roe, J. Chem. Phys. 94, 7446 (1991).

    ADS  Google Scholar 

  67. D. Bedrov, G.D. Smith, Macromolecules 38, 10314 (2005).

    ADS  Google Scholar 

  68. B. Chu, Laser Light Scattering, Academic, New York, NY (1974).

    Google Scholar 

  69. C.H. Wang, Spectroscopy of Condensed Media, Academic, New York, NY (1985).

    Google Scholar 

  70. K.L. Ngai, G. Floudas, D.J. Plazek, A.K. Rizos, in Encyclopedia of Polymer Science and Technology, Wiley, New York, NY (2002).

    Google Scholar 

  71. C.H. Wang, Mol. Phys. 41, 541 (1980).

    ADS  Google Scholar 

  72. K.M. Zero, R. Pecora, Macromolecules, 15, 87 (1982).

    ADS  Google Scholar 

  73. G. Petekidis, D. Vlassopoulos, G. Fytas, R. Ruelkens, G. Wegner, Macromolecules 31, 6129 (1998).

    ADS  Google Scholar 

  74. A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford (1962).

    Google Scholar 

  75. K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid State NMR and Polymers, Academic, London (1994).

    Google Scholar 

  76. R. Böhmer, G. Diezemann, G. Hinze, E. Rössler, Prog. Nucl. Mag. Reson. Spectrosc. 39, 191 (2001).

    Google Scholar 

  77. S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Oxford University Press, Oxford (1994).

    Google Scholar 

  78. (a) T. Springer, Quasielastic Neutron Scattering for the Investigation of Diffusive Motions in Solids and Liquids, Springer Tracts in Modern Physics, Vol. 64, Springer, Berlin (1972); (b) F. Mezei, in Liquids, Freezing and Glass Transition, J.P. Hansen, D. Levesque, J. Zinn-Justin, J., Eds., North Holland, Amsterdam, p. 629 (1991).

    Google Scholar 

  79. L. Van Hove, Phys. Rev. 95, 249 (1954).

    ADS  MATH  Google Scholar 

  80. A. Rahman, Phys. Rev. A 136, 405 (1964).

    ADS  Google Scholar 

  81. M.S. Green, J. Chem. Phys. 19, 1036 (1951).

    MathSciNet  ADS  Google Scholar 

  82. H. Nyquist, Phys. Rev. 32, 110 (1928).

    ADS  Google Scholar 

  83. R. Kubo, Rep. Progr. Phys. 29, 255 (1966). Cited before as [72].

    ADS  Google Scholar 

  84. H.K. Onnes, Commun. Phys. Lab. Univ. Leiden, Nos. 119, 120, 122 (1911).

    Google Scholar 

  85. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957).

    MathSciNet  ADS  Google Scholar 

  86. See articles in Ann. N.Y. Acad. Sci. 279 (1976), 371 (1981), 484 (1986).

    Google Scholar 

  87. See articles in Proceedings of the 1st, 2nd , 3rd, 4th and 5th International Discussion Meetings on Relaxations in Complex Systems, J. Non-Cryst. Solids 131–133 (1991), 172–174 (1994), 235–237 (1998), 307–310 (2002), 352, issues 42–49 (2006).

    Google Scholar 

  88. See articles in Disorder Effects on Relaxational Processes, R. Richert, A. Blumen, Eds., Springer, Berlin (1994), in particular pp. 89–150 of the article by K.L. Ngai entitled Universal Patterns of Relaxations in Complex Correlated Systems.

    Google Scholar 

  89. K.L. Ngai, Evidences for Universal Behavior of Condensed Mater at Low Frequencies/Long Times, in Non-Debye Relaxation in Condensed Matter, T.V. Ramakrishnan, M. Raj Lakshmi, Eds., World Scientific, Singapore, pp. 23–193 (1987).

    Google Scholar 

  90. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000).

    ADS  Google Scholar 

  91. See articles in Adv. Chem. Phys. Part B, Fractals, Diffusion and Relaxation in Disordered Complex Systems, Y.P. Kalmykov, W.T. Coffey, S.A. Rice, Eds., Vol. 133, Wiley, New York, NY (2006).

    Google Scholar 

  92. K.L. Ngai, R. Casalini, S. Capaccioli, M. Paluch, C.M. Roland, Adv. Chem. Phys. Part B, Fractals, Diffusion and Relaxation in Disordered Complex Systems, Y.P. Kalmykov, W.T. Coffey, S.A. Rice, Eds., Chapter 10, Wiley, New York, NY, Vol. 133, pp. 497–585 (2006).

    Google Scholar 

  93. E. Donth, The Glass Transition, Springer Series in Material Science, Vol. 48, Springer, Berlin, Heidelberg (2001).

    Google Scholar 

  94. See articles in Structure, Dynamics and Properties of Silicate Melts, Reviews in Mineralogy, J.F. Stebbins, P.F. McMillan, D.B. Dingwell, Eds., Mineralogical Society of America, Washington, DC, Vol. 32 (1995).

    Google Scholar 

  95. A.K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London (1983).

    Google Scholar 

  96. A. Inoue, Bulk Amorphous Alloys, Trans Tech Publications, Zürich (1998).

    Google Scholar 

  97. See articles in Amorphous Metallic Alloys, F.E. Luborsky, Ed., Butterworth, London (1983).

    Google Scholar 

  98. P.G. Debenedetti, J. Phys. Condens. Matter 15, R1669–R1726 (2003).

    ADS  Google Scholar 

  99. K.L. Ngai, S. Capaccioli, N. Shinyashiki, J. Phys. Chem. B 112, 3826 (2008).

    Google Scholar 

  100. F. Parak, G.U. Nienhaus, J. Non-Cryst. Solids 131–133, 362 (1991); F.G. Parak, K. Achterhold, S. Croci, M. Schmidt, J. Biol. Phys. 33, 371 (2007).

    Google Scholar 

  101. P. Fenimore, H. Frauenfelder, B. McMahon, R.D. Young, Proc. Natl. Acad. Sci. 101, 14408 (2005).

    ADS  Google Scholar 

  102. G. Cottone, G. Ciccotti, L. Cordone, J. Chem. Phys. 117, 9862 (2002).

    ADS  Google Scholar 

  103. B.C. Hancock, G. Zografi, J. Pharm. Sci. 86, 1 (1997).

    Google Scholar 

  104. C. Bhugra, R. Shmeis, S.L. Krill, M.J. Pikal, J. Pharm. Sci. 97, 455 (2008).

    Google Scholar 

  105. J. Einfeldt, D. Meissner, A. Kwasniewski, Prog. Polym. Sci. 26, 1419 (2001).

    Google Scholar 

  106. K. Kaminski, E. Kaminska, S. Hensel-Bielowka, E. Chelmecka, M. Paluch, J. Ziolo, P. Wlodarczyk, K.L. Ngai, J. Phys. Chem. B 112, 7662 (2008).

    Google Scholar 

  107. A. Robert, E. Wandersman, E. Dubois, V. Dupuis, R. Perzynski, Europhys. Lett. 75, 764 (2006).

    ADS  Google Scholar 

  108. (a) E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Science 287, 627 (2000); (b) E.R. Weeks, D.A. Weitz, Phys. Rev. Lett. 89, 095704 (2002).

    ADS  Google Scholar 

  109. P.N. Segre, P.N. Pusey, Phys. Rev. Lett. 77, 771 (1996). Equilibrium dynamics of concentration suspensions of colloidal hard spheres have been extended to times ~ 105 s and volume fraction up to 0.5970 by G. Bramilla et al., Phys. Rev. Lett. 102, 085703 (2009); ibid. 104, 169602 (2010); D. El Masri et al., J. Stat. Mech. P07015 (2009).

    ADS  Google Scholar 

  110. D.L. Leslie-Pelecky, N.O. Birge, Phys. Rev. Lett. 72, 1232 (1994).

    ADS  Google Scholar 

  111. R. Brand, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 116, 10386 (2002); Th. Bauer, M. Köhler, P. Lunkenheimer, A. Loidl, C.A. Angell, J. Chem. Phys. 133, 144509 (2010).

    ADS  Google Scholar 

  112. C.A. Angell, Chem. Rev. 90, 523 (1990).

    Google Scholar 

  113. K.L. Ngai, J. Habasaki, C. Leon, A. Rivera, Z. Phys. Chem. 219, 47 (2005).

    Google Scholar 

  114. M. Pirzada, R.W. Grimes, L. Minervini, J.F. Maguire, K.E. Sickafus, Solid State Ionics 140, 201 (2001).

    Google Scholar 

  115. T. Welton, Chem. Rev. 99, 2071 (1999).

    Google Scholar 

  116. K.L. Ngai, J. Phys. Chem. B 110, 26211 (2006).

    Google Scholar 

  117. P.W. Anderson, Phys. Today, 43, 9 (1990).

    ADS  Google Scholar 

  118. F. Crick, What Mad Pursuit, Basic Books, New York, NY (1988).

    Google Scholar 

  119. C.A. Reynolds, B. Serin, W.H. Wright, L.B. Nesbitt, Phys. Rev. 78, 487 (1950); E. Maxwell, Phys. Rev. 78, 477 (1950).

    ADS  Google Scholar 

  120. H. Fröhlich, Phys. Rev. 79, 845 (1950).

    ADS  MATH  Google Scholar 

  121. J. Bardeen, Rev. Mod. Phys. 23, 261 (1951).

    ADS  MATH  Google Scholar 

  122. K.L. Ngai, D.J. Plazek, Rubber Chem. Tech. Rubber Rev. 68, 376 (1995).

    Google Scholar 

  123. D.J. Plazek, J. Phys. Chem. 69, 3480 (1965).

    Google Scholar 

  124. D.J. Plazek, J. Rheol. 40, 987 (1996); J. Non-Cryst. Solids 353, 3783 (2007).

    ADS  Google Scholar 

  125. K.L. Ngai, D.J. Plazek, S.S. Deo, Macromolecules 20, 3047 (1987).

    ADS  Google Scholar 

  126. K.L. Ngai, in Physical Properties of Polymers, 3rd ed., Chapter 2, Cambridge University Press, Cambridge (2003).

    Google Scholar 

  127. K. Popper, The Logic of Scientific Discovery, but see also the Duhem-Quine thesis in Can Theories Be Refuted? Essays on the Duhem-Quine Thesis, S.G. Harding ed., D. Reidel Publishing, Dordrecht, Holland (1975).

    Google Scholar 

  128. K.L. Ngai, Comment Solid State Phys. 9, 127 (1979).

    Google Scholar 

  129. K.L. Ngai, J. Non-Cryst. Solids 351, 2635 (2005).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.L. Ngai .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ngai, K. (2011). Introduction to the Problems of Relaxation and Diffusion in Complex Systems. In: Relaxation and Diffusion in Complex Systems. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7649-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7649-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7648-2

  • Online ISBN: 978-1-4419-7649-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics