The Effects of Radionuclides on Animal Behavior

Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 210)

Abstract

Behavior refers to the observable or measurable actions or reactions of an organism (movements, physiological alterations, verbal expression, etc.) in response to a stimulus originating from its environment (Bone and Moore 2008). Animals express several types of behavior including sexual, reproductive, social (aggression, maternal relationship, etc.), activity (locomotion, feeding, defence and avoidance responses) and cognitive behaviors (attention, learning, memory) (Zala and Penn 2004).

Keywords

Behaviour Radionuclides Metals Chemoreception Neurological dysfunction Rodents Fish Humans 

Notes

Acknowledgments

The authors are very grateful to Prof. Tom Hinton for his reading and improving this manuscript. The work was partly supported by the French National Research Agency, the National Center for Scientific Research (CNRS) and by the ENVIRHOM research program supported by the Institute for Radioprotection and Nuclear Safety (IRSN).

References

  1. Abou-Donia MB, Dechkovskaia AM, Goldstein LB, Shah DU, Bullman SL, Khan WA (2002) Uranyl acetate-induced sensorimotor deficit and increased nitric oxide generation in the central nervous system in rats. Pharmacol Biochem Behav 72(4): 881–90.CrossRefGoogle Scholar
  2. Ait Fdil M, Mouabad A, Outzourhit A, Benhra A, Maarouf A, Pihan JC (2006) Valve movement response of the mussel Mytilus galloprovincialis to metals (Cu, Hg, Cd and Zn) and phosphate industry effluents from Moroccan Atlantic coast. Ecotoxicology 15(5): 477–486.CrossRefGoogle Scholar
  3. Albina ML, Belles M, Linares V, Sanchez DJ, Domingo JL (2005) Restraint stress does not enhance the uranium-induced developmental and behavioral effects in the offspring of uranium-exposed male rats. Toxicology 215(1–2): 69–79.CrossRefGoogle Scholar
  4. Ali MM, Mathur N, Chandra SV (1990) Effect of chronic cadmium exposure on locomotor behavior of rats. Indian J Exp Biol 28(7): 653–6.Google Scholar
  5. Ali MM, Shukla GS, Srivastava RS, Mathur N, Chandra SV (1993) Effects of vitamin E on cadmium-induced locomotor dysfunctions in rats. Vet Hum Toxicol 35(2): 109–11.Google Scholar
  6. Amiard JC, Amiard-Triquet C (1986) Influence de différents facteurs écologiques et de contaminations métalliques expérimentales sur le comportement d’enfouissement de Cardium edule L. (Mollusques Lamellibranches). Water Air Soil Pollut 27(1–2): 117–130.CrossRefGoogle Scholar
  7. Amorim MJB, Novais S, Römbke J, Soares AMVM (2008) Avoidance test with Enchytraeus albidus (Enchytraeidae): Effects of different exposure time and soil properties. Environ Pollut 155(1): 112–116.CrossRefGoogle Scholar
  8. Andre A, Antunes SC, Gonçalves F, Pereira R (2009) Bait-lamina assay as a tool to assess the effects of metal contamination in the feeding activity of soil invertebrates within a uranium mine area. Environ Pollut 157(8–9): 2368–77.CrossRefGoogle Scholar
  9. Antunes SC, Castro BB, Pereira R, Gonçalves F (2008) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): II. Soil ecotoxicological screening. Sci Tot Environ 390(2–3): 387–395.CrossRefGoogle Scholar
  10. Baatrup E (1991) Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 100(1–2): 253–257.Google Scholar
  11. Baatrup E (2009) Measuring complex behavior patterns in fish – Effects of endocrine disruptors on the guppy reproductive behavior. Hum Ecol Risk Assess 15(1): 53–62.Google Scholar
  12. Baranski B (1984) Behavioral alterations in offspring of female rats repeatedly exposed to cadmium oxide by inhalation. Toxicol Lett 22(1): 53–61.CrossRefGoogle Scholar
  13. Barillet S, Adam C, Palluel O, Devaux A (2007) Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ Toxicol Chem 26(3): 497–505.CrossRefGoogle Scholar
  14. Beauvais SL, Jones SB, Brewer SK, Little EE (2000) Physiological measures of neurotoxicity of diazinon and malathion to larval rainbow trout (Oncorhynchus mykiss) and their correlation with behavioral measures. Environ Toxicol Chem 19(7): 1875–1880.Google Scholar
  15. Beauvais SL, Jones SB, Parris JT, Brewer SK, Little EE (2001) Cholinergic and behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 49(1): 84–90.CrossRefGoogle Scholar
  16. Belles M, Albina ML, Linares V, Gomez M, Sanchez DJ, Domingo JL (2005) Combined action of uranium and stress in the rat. I. Behavioral effects. Toxicol Lett 158(3): 176–185.CrossRefGoogle Scholar
  17. Bensoussan H, Grancolas L, Dhieux-Lestaevel B, Delissen O, Vacher CM, Dublineau I, Voisin P, Gourmelon P, Taouis M, Lestaevel P (2009) Heavy metal uranium affects the brain cholinergic system in rat following sub-chronic and chronic exposure. Toxicology 261(1–2): 59–67.CrossRefGoogle Scholar
  18. Beyers DW, Farmer MS (2001) Effects of copper on olfaction of Colorado pikeminnow. Environ Toxicol Chem 20(4): 907–912.CrossRefGoogle Scholar
  19. Blechinger SR, Kusch RC, Haugo K, Matz C, Chivers DP, Krone PH (2007) Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish. Toxicol Appl Pharmacol 224(1): 72–80.CrossRefGoogle Scholar
  20. Block ML, Calderon-Garciduenas L (2009) Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32(9): 506–516.CrossRefGoogle Scholar
  21. Bone Q, Moore RH (2008) Behavior and Cognition. In: Francis T (ed) Biology of fishes, 3rd ed. Taylor & Francis Group, Abingdon, pp 409–436.Google Scholar
  22. Bourrachot S, Brion F, Palluel O, Adam-Guillermin C, Giblin R (submitted) Effect of uranium on zebrafish reproduction: Measurement of genotoxicity and vitellogenin. Aquat Toxicol.Google Scholar
  23. Brewer SK, Little EE, DeLonay AJ, Beauvais SL, Jones SB, Ellersieck MR (2001) Behavioral dysfunctions correlate to altered physiology in rainbow trout (Oncorynchus mykiss) exposed to cholinesterase-inhibiting chemicals. Arch Environ Contam Toxicol 40(1): 70–76.CrossRefGoogle Scholar
  24. Briner W, Murray J (2005) Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats. Neurotoxicol Teratol 27(1): 135–144.CrossRefGoogle Scholar
  25. Bussy C, Lestaevel P, Dhieux B, Amourette C, Paquet F, Gourmelon P, Houpert P (2006) Chronic ingestion of uranyl nitrate perturbs acetylcholinesterase activity and monoamine metabolism in male rat brain. Neurotoxicology 27(2): 245–252.CrossRefGoogle Scholar
  26. Carvan Iii MJ, Loucks E, Weber DN, Williams FE (2004) Ethanol effects on the developing zebrafish: Neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26(6): 757–768.CrossRefGoogle Scholar
  27. Cheung SG, Tai KK, Leung CK, Siu YM (2002) Effects of heavy metals on the survival and feeding behavior of the sandy shore scavenging gastropod Nassarius festivus (Powys). Mar Pollut Bull 45(1–12): 107–113.CrossRefGoogle Scholar
  28. Chivers DP, Smith RJF (1998) Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Ecoscience 5(3): 338–352.Google Scholar
  29. Clotfelter ED, Bell AM, Levering KR (2004) The role of animal behavior in the study of endocrine-disrupting chemicals. Anim Behav 68(4): 665–676.CrossRefGoogle Scholar
  30. Collin SP (2007) Nervous and sensory systems. In: McKenzie DJ, Farrell AP, Brauner CJ (eds) Primitive fishes. Fish physiology series, vol. 26. Academic Press, Amsterdam, pp 121–179.Google Scholar
  31. Comeau Y, Brisson J, Reville JP, Forget C, Drizo A (2001) Phosphorus removal from trout farm effluents by constructed wetlands. Water Sci Technol 44(11–12): 55–60.Google Scholar
  32. Cousin X, Strahle U, Chatonnet A (2005) Are there non-catalytic functions of acetylcholinesterases? Lessons from mutant animal models. Bioessays 27(2): 189–200.CrossRefGoogle Scholar
  33. Crichton CA, Conrad AU, Baird DJ (2004) Assessing stream grazer response to stress: a post-exposure feeding bioassay using the freshwater snail Lymnaea peregra (Muller). Bull Environ Contam Toxicol 72(3): 564–570.CrossRefGoogle Scholar
  34. Dlugos CA, Rabin RA (2003) Ethanol effects on three strains of zebrafish: Model system for genetic investigations. Pharmacol Biochem Behav 74(2): 471–480.CrossRefGoogle Scholar
  35. Døving KB, Lastein S (2009) The alarm reaction in fishes: odorants, modulations of responses, neural pathways. Ann NY Acad Sci (International Symposium on Olfaction and Taste) 1170: 413–423.Google Scholar
  36. Duquesne S, Liess M, Bird DJ (2004) Sub-lethal effects of metal exposure: Physiological and behavioral responses of the estuarine bivalve Macoma balthica. Mar Environ Res 58(2–5): 245–250.CrossRefGoogle Scholar
  37. Faucher K, Fichet D, Miramand P, Lagardere JP (2006) Impact of acute cadmium exposure on the trunk lateral line neuromasts and consequences on the “C-start” response behavior of the sea bass (Dicentrarchus labrax L.; Teleostei, Moronidae). Aquat Toxicol 76(3–4): 278–294.CrossRefGoogle Scholar
  38. Felten V, Charmantier G, Mons R, Geffard A, Rousselle P, Coquery M, Garric J, Geffard O (2008) Physiological and behavioral responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium. Aquat Toxicol 86(3): 413–425.CrossRefGoogle Scholar
  39. Fournier E, Tran D, Denison F, Massabuau JC, Garnier-Laplace J (2004) Valve closure response to uranium exposure for a freshwater bivalve (Corbicula fluminea): Quantification of the influence of pH. Environ Toxicol Chem 23(5): 1108–1114.CrossRefGoogle Scholar
  40. Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67(4): 773–782.CrossRefGoogle Scholar
  41. Goasguen J, Lapresle J, Ribot C, Rocquet G (1982) Chronic neurological syndrome resulting from intoxication with metallic uranium. Nouv Presse Med 11(2): 119–121.Google Scholar
  42. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368(9553): 2167–2178.CrossRefGoogle Scholar
  43. Grillitsch B, Vogl C, Wytek R (1999) Qualification of spontaneous undirected locomotor behavior of fish for sublethal toxicity testing. Part II. Variability of measurement parameters under toxicant-induced stress. Environ Toxicol Chem 18(12): 2743–2750.CrossRefGoogle Scholar
  44. Grue CE, Gardner SC, Gibert PL (2002) On the significance of pollutant-induced alterations in the behavior of fish and wildlife. In: Dell’Omo G (ed) Behavioral ecotoxicology. Ecotoxicology and environmental toxicology series. Wiley, Chichester, pp 1–90.Google Scholar
  45. Hansen JA, Marr JCA, Lipton J, Cacela D, Bergman HL (1999a) Differences in neurobehavioral responses of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper and cobalt: Behavioral avoidance. Environ Toxicol Chem 18(9): 1972–1978.Google Scholar
  46. Hansen JA, Woodward DF, Little EE, Delonay AJ, Bergman HL (1999b) Behavioral avoidance: Possible mechanism for explaining abundance and distribution of trout species in a metal-impacted river. Environ Toxicol Chem 18(2): 313–317.Google Scholar
  47. Hart RP, Rose CS, Hamer RM (1989) Neuropsychological effects of occupational exposure to cadmium. J Clin Exp Neuropsychol 11(6): 933–943.CrossRefGoogle Scholar
  48. Heinis F, Timmermans KR, Swain WR (1990) Short-term sublethal effects of cadmium on the filter feeding chironomid larva Glyptotendipes pallens (Meigen) (Diptera). Aquat Toxicol 16(1): 73–86.CrossRefGoogle Scholar
  49. Hertz Y, Madar Z, Hepher B, Gertler A (1989) Glucose metabolism in the common carp (Cyprinus carpio L.): the effects of cobalt and chromium. Aquaculture 76(3–4): 255–267.CrossRefGoogle Scholar
  50. Houpert P, Lestaevel P, Bussy C, Paquet F, Gourmelon P (2005) Enriched but not depleted uranium affects central nervous system in long-term exposed rat. Neurotoxicology 26(6): 1015–1020.CrossRefGoogle Scholar
  51. Houpert P, Bizot JC, Bussy C, Dhieux B, Lestaevel P, Gourmelon P, Paquet F (2007) Comparison of the effects of enriched uranium and 137-cesium on the behavior of rats after chronic exposure. Int J Radiat Biol 83(2): 99–104.CrossRefGoogle Scholar
  52. Howland JW (1949) Studies on human exposures to uranium compounds. In: Voegtlin C, Hodge HC (eds) Pharmacology and toxicology of uranium. McGraw-Hill Book Company, New York, NY, pp 993–1017.Google Scholar
  53. IUPAC (2004) International Union for Pure and Applied Chemistry (IUPAC) stability constant database. http://www.acadsoft.co.uk.
  54. Ivanov VK, Maksioutov MA, Chekin S, Kruglova ZG, Petrov AV, Tsyb AF (2000) Radiation-epidemiological analysis of incidence of non-cancer diseases among the Chernobyl liquidators. Health Phys 78(5): 495–501.CrossRefGoogle Scholar
  55. Jiang HM, Han GA, He ZL (1990) Clinical significance of hair cadmium content in the diagnosis of mental retardation of children. Chin Med J 103(4): 331–334.Google Scholar
  56. Jordan CM, Whitman RD, Harbut M (1997) Memory deficits and industrial toxicant exposure: a comparative study of hard metal, solvent and asbestos workers. Int J Neurosci 90(1–2): 113–128.CrossRefGoogle Scholar
  57. Kamarli Z, Abdulina A (1996) Health conditions among workers who participated in the cleanup of the Chernobyl accident. World Health Stat Q 49(1): 29–31.Google Scholar
  58. Karpenko NA, Buntova EG, Alesina NY, Lyabik VV (2003) Estimation of long-time effects of Chernobyl NPP accident on behavior markers in a little rodent populations. Radiatsionnaya Biologiya. Radioekologiya 43(6): 682–687.Google Scholar
  59. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 104(Suppl 4): 715–740.CrossRefGoogle Scholar
  60. Konermann G (1970) Learning and memory abilities of exercised Japanese quails (Coturnix c. japonica) after irradiation of the head. Strahlentherapie 140(6): 757–764.Google Scholar
  61. Kumano N, Haraguchi D, Kohama T (2008) Effect of irradiation on mating performance and mating ability in the West Indian sweetpotato weevil, Euscepes postfasciatus. Entomol Exp Appl 127(3): 229–236.CrossRefGoogle Scholar
  62. Kusch R, Krone P, Chivers D (2007) Chronic exposure to low concentrations of water-borne cadmium during embryonic and larval development results in the long-term hindrance of anti-predator behavior in zebrafish. Environ Toxicol Chem 27(3): 705–710.CrossRefGoogle Scholar
  63. Lagauzere S, Terrail R, Bonzom JM (2009) Ecotoxicity of uranium to Tubifex tubifex worms (Annelida, Clitellata, Tubificidae) exposed to contaminated sediment. Ecotoxicol Environ Saf 72(2): 527–537.CrossRefGoogle Scholar
  64. Lam PKS, Wo KT, Wu RSS (2000) Effects of cadmium on the development and swimming behavior of barnacle larvae Balanus amphitrite Darwin. Environ Toxicol 15(1): 8–13.CrossRefGoogle Scholar
  65. Lefcort H, Abbott DP, Cleary DA, Howell E, Keller NC, Smith MM (2004) Aquatic snails from mining sites have evolved to detect and avoid heavy metals. Arch Environ Contam Toxicol 46(4): 478–484.CrossRefGoogle Scholar
  66. Lefrancois C, Domenici P (2006) Locomotor kinematics and behavior in the escape response of European sea bass, Dicentrarchus labrax L., exposed to hypoxia. Mar Biol 149(4): 969–977.CrossRefGoogle Scholar
  67. Lefrancois C, Nieto Amat J, Kostecki C, Ferrari R, Domenici P (2007) The effect of oxygen and temperature on the energetics of swimming in Mugil cephalus. Comp Biochem Physiol A Mol Integr Physiol 146(4, Supplement 1): S85.CrossRefGoogle Scholar
  68. Lerebours A, Bourdineaud J-P, Van der Ven K, Vandenbrouck T, Gonzalez P, Camilleri V, Floriani M, Garnier-Laplace J, Adam-Guillermin C (2010) Sub-lethal effects of waterborne uranium exposures on the zebrafish brain: transcriptional responses and alterations of the olfactory bulb ultrastructure. Environ Sci Technol 44: 1438–1443.CrossRefGoogle Scholar
  69. Leret ML, Millan JA, Antonio MT (2003) Perinatal exposure to lead and cadmium affects anxiety-like behavior. Toxicology 186(1–2): 125–130.CrossRefGoogle Scholar
  70. Lestaevel P, Houpert P, Bussy C, Dhieux B, Gourmelon P, Paquet F (2005a) The brain is a target organ after acute exposure to depleted uranium. Toxicology 212(2–3): 219–226.CrossRefGoogle Scholar
  71. Lestaevel P, Bussy C, Paquet F, Dhieux B, Clarencon D, Houpert P, Gourmelon P (2005b) Changes in sleep-wake cycle after chronic exposure to uranium in rats. Neurotoxicol Teratol 27(6): 835–840.CrossRefGoogle Scholar
  72. Lestaevel P, Dhieux B, Tourlonias E, Houpert P, Paquet F, Voisin P, Aigueperse J, Gourmelon P (2006) Evaluation of the effect of chronic exposure to 137Cesium on sleep-wake cycle in rats. Toxicology 226(2–3): 118–125.CrossRefGoogle Scholar
  73. Lestaevel P, Romero E, Dhieux B, Ben Soussan H, Berradi H, Dublineau I, Voisin P, Gourmelon P (2009) Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats. Toxicology 258(1): 1–9.CrossRefGoogle Scholar
  74. Levin ED, Chen E (2004) Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26(6): 731–735.CrossRefGoogle Scholar
  75. Linney E, Upchurch L, Donerly S (2004) Zebrafish as a neurotoxicological model. Neurotoxicol Teratol 26(6): 709–718.CrossRefGoogle Scholar
  76. Little EE, Finger SE (1990) Swimming behavior as an indicator of sublethal toxicity in fish. Environ Toxicol Chem 9(1): 13–19.CrossRefGoogle Scholar
  77. Markich SJ, Brown PL, Jeffree RA, Lim RP (2000) Valve movement responses of Velesunio angasi (Bivalvia: Hyriidae) to manganese and uranium: an exception to the free ion activity model. Aquat Toxicol 51(2): 155–175.CrossRefGoogle Scholar
  78. Matz CJ, Krone PH (2007) Cell death, stress-responsive transgene activation, and deficits in the olfactory system of larval zebrafish following cadmium exposure. Environ Sci Technol 41(14): 5143–5148.CrossRefGoogle Scholar
  79. McDiarmid MA, Keogh JP, Hooper FJ, McPhaul K, Squibb K, Kane R, DiPino R, Kabat M, Kaup B, Anderson L, Hoover D, Brown L, Hamilton M, Jacobson-Kram D, Burrows B, Walsh M (2000) Health effects of depleted uranium on exposed Gulf War veterans. Environ Res 82(2): 168–180.CrossRefGoogle Scholar
  80. McGreer ER (1979) Sublethal effects of heavy metal contaminated sediments on the bivalve Macoma balthica (L.). Mar Pollut Bull 10(9): 259–262.CrossRefGoogle Scholar
  81. McGeer JC, Szebedinszky C, McDonald DG, Wood CM (2000) Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquat Toxicol 50(3): 231–243.CrossRefGoogle Scholar
  82. Migliore L, Coppedè F (2009) Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res – Genet Toxicol Environ Mutagen 674(1–2): 73–84.CrossRefGoogle Scholar
  83. Millot S, Bégout ML, Chatain B (2009) Exploration behavior and flight response toward a stimulus in three sea bass strains (Dicentrarchus labrax L.). Appl Anim Behav Sci 119(1–2): 108–114.CrossRefGoogle Scholar
  84. Millot S, Bégout ML, Person-Le Ruyet J, Breuil G, Di-Poï C, Fievet J, Pineau P, Roué M, Sévère A (2008) Feed demand behavior in sea bass juveniles: Effects on individual specific growth rate variation and health (inter-individual and inter-group variation). Aquaculture 274(1): 87–95.CrossRefGoogle Scholar
  85. Moller AP, Mousseau TA (2006) Biological consequences of Chernobyl: 20 years on. Trends Ecol Evol 21(4): 200–207.CrossRefGoogle Scholar
  86. Moller AP, Mousseau TA (2007a) Birds prefer to breed in sites with low radioactivity in Chernobyl. Proc R Soc B Biol Sci 274(1616): 1443–1448.CrossRefGoogle Scholar
  87. Moller AP, Mousseau TA (2007b) Species richness and abundance of forest birds in relation to radiation at Chernobyl. Biol Lett 3(5): 483–486.CrossRefGoogle Scholar
  88. Moller AP, Mousseau TA (2009) Reduced abundance of raptors in radioactively contaminated areas near Chernobyl. J Ornithol 150(1): 239–246.CrossRefGoogle Scholar
  89. Moller AP, Mousseau TA, Milinevsky G, Peklo A, Pysanets E, Szep T (2005) Condition, reproduction and survival of barn swallows from Chernobyl. J Anim Ecol 74(6): 1102–1111.CrossRefGoogle Scholar
  90. Moller AP, Hobson KA, Mousseau TA, Peklo AM (2006) Chernobyl as a population sink for barn swallows: Tracking dispersal using stable-isotope profiles. Ecol Appl 16(5): 1696–1705.CrossRefGoogle Scholar
  91. Monleau M, Bussy C, Lestaevel P, Houpert P, Paquet F, Chazel V (2005) Bioaccumulation and behavioral effects of depleted uranium in rats exposed to repeated inhalations. Neurosci Lett 390(1): 31–36.CrossRefGoogle Scholar
  92. Mouabad A, Ait Fdil M, Maarouf A, Pihan JC (2001) Pumping behavior and filtration rate of the freshwater mussel Potomida littoralis as a tool for rapid detection of water contamination. Aquat Ecol 35(1): 51–60.CrossRefGoogle Scholar
  93. Nath K, Kumar N (1988) Cobalt induced alterations in the carbohydrate metabolism of a freshwater tropical perch, Colisa fasciatus. Chemosphere 17(2): 465–474.CrossRefGoogle Scholar
  94. Neuberger-Cywiak L, Achituv Y, Garcia EM (2003) Effects of zinc and cadmium on the burrowing behavior, LC50, and LT50 on Donax trunculus linnaeus (Bivalvia-Donacidae). Bull Environ Contam Toxicol 70(4): 713–722.CrossRefGoogle Scholar
  95. Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the toxicology of metals, 3rd ed. Academic Press/Elsevier, Amsterdam, 996p.Google Scholar
  96. Olla BL, Estelte VB, Swartz RC, Braun G, Studholme AL (1988) Responses of polychaetes to cadmium-contaminated sediment: Comparison of uptake and behavior. Environ Toxicol Chem 7(7): 587–592.Google Scholar
  97. Oppenheim RW, Jones JR, Gottlieb G (1970) Embryonic motility and posthatching perception in birds after prenatal gamma irradiation. J Comp Physiol Psychol 71(1): 6–21.CrossRefGoogle Scholar
  98. Oskarsson A, Palminger Hallen I, Sundberg J, Petersson Grawe K (1998) Risk assessment in relation to neonatal metal exposure. Analyst 123(1): 19–23.CrossRefGoogle Scholar
  99. Peakall DB (1996) Disrupted patterns of behavior in natural populations as an index of ecotoxicity. Environ Health Perspect 104(suppl 2): 331–335.CrossRefGoogle Scholar
  100. Pellmar TC, Keyser DO, Emery C, Hogan JB (1999) Electrophysiological changes in hippocampal slices isolated from rats embedded with depleted uranium fragments. Neurotoxicology 20(5): 785–792.Google Scholar
  101. Pestana JLT, Ré A, Nogueira AJA, Soares AMVM (2007) Effects of cadmium and zinc on the feeding behavior of two freshwater crustaceans: Atyaephyra desmarestii (Decapoda) and Echinogammarus meridionalis (Amphipoda). Chemosphere 68(8): 1556–1562.Google Scholar
  102. Pynnonen K (1996) Heavy metal-induced changes in the feeding and burrowing behavior of a Baltic isopod, Saduria (Mesidotea) entomon L. Mar Environ Res 41(2): 145–156.CrossRefGoogle Scholar
  103. Real LA (1994) Behavioral mechanisms in evolutionary ecology. University of Chicago Press, Chicago, USA. 469p.Google Scholar
  104. Richards JG, Curtis PJ, Burnison BK, Playle RC (2001) Effects of natural organic matter source on reducing metal toxicity to rainbow trout (Oncorhynchus mykiss) and on metal binding to their gills. Environ Toxicol Chem 20(6): 1159–1166.Google Scholar
  105. Roast SD, Widdows J, Jones MB (2001) Impairment of mysid (Neomysis integer) swimming ability: an environmentally realistic assessment of the impact of cadmium exposure. Aquat Toxicol 52(3–4): 217–227.CrossRefGoogle Scholar
  106. Roex EW, Keijzers R, van Gestel CA (2003) Acetylcholinesterase inhibition and increased food consumption rate in the zebrafish, Danio rerio, after chronic exposure to parathion. Aquat Toxicol 64(4): 451–60.CrossRefGoogle Scholar
  107. Salanki J, Hiripi L (1990) Effect of heavy metals on the serotonin and dopamine systems in the central nervous system of the freshwater mussel (Anodonta cygnea L.). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 95(2): 301–305.CrossRefGoogle Scholar
  108. Salanki J, Budai D, Hiripi L, Kasa P (1993) Acetylcholine level in the brain and other organs of the bivalve Anodonta cygnea L. and its modification by heavy metals. Acta Biol Hung 44(1): 21–24.Google Scholar
  109. Salanki J, Farkas A, Kamardina T, Rozsa KS (2003) Molluscs in biological monitoring of water quality. Toxicol Lett 140–141: 403–410.CrossRefGoogle Scholar
  110. Scalzo FM, Levin ED (2004) The use of zebrafish (Danio rerio) as a model system in neurobehavioral toxicology. Neurotoxicol Teratol 26(6): 707–718.CrossRefGoogle Scholar
  111. Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behavior: integrating behavioral and physiological indicators of toxicity. Aquat Toxicol 68(4): 369–392.CrossRefGoogle Scholar
  112. Scott GR, Sloman KA, Rouleau C, Wood CM (2003) Cadmium disrupts behavioral and physiological responses to alarm substance in juvenile rainbow trout (Oncorhynchus mykiss). J Exp Biol 206(Pt 11): 1779–1790.CrossRefGoogle Scholar
  113. Sellars MJ, Coman GJ, Callaghan TR, Arnold SJ, Wakeling J, Degnan BM, Preston NP (2007) The effect of ionizing irradiation of post-larvae on subsequent survival and reproductive performance in the Kuruma shrimp, Penaeus (Marsupenaeus) japonicus (Bate). Aquaculture 264(1–4): 309–322.CrossRefGoogle Scholar
  114. Sivakumar S, Kavitha K, Sivaraj R, Prabha D, Subburam V (2003) Effect of cadmium and mercury on the survival morphology and burrowing behavior of the earthworm Lambito mauritii (Kinberg). Ind J Environ Protect 23(7): 792–799.Google Scholar
  115. Smorgon C, Mari E, Atti AR, Dalla Nora E, Zamboni PF, Calzoni F, Passaro A, Fellin R (2004) Trace elements and cognitive impairment: an elderly cohort study. Arch Gerontol Geriatr (S9): 393–402.Google Scholar
  116. Sulkowski WJ, Rydzewski B, Miarzynska M (2000) Smell impairment in workers occupationally exposed to cadmium. Acta Oto-Laryngol 120(2): 316–318.CrossRefGoogle Scholar
  117. Swaileh KM, Ezzughayyar A (2000) Effects of dietary Cd and Cu on feeding and growth rates of the landsnail Helix engaddensis. Ecotoxicol Environ Saf 47(3): 253–260.CrossRefGoogle Scholar
  118. Tallkvist J, Persson E, Henriksson J, Tjalve H (2002) Cadmium-metallothionein interactions in the olfactory pathways of rats and pikes. Toxicol Sci 67(1): 108–113.CrossRefGoogle Scholar
  119. Tawari-Fufeyin P, Opute P, Ilechie I (2007) Toxicity of cadmium to Parachanna obscura: As evidenced by alterations in hematology, histology, and behavior. Toxicol Environ Chem 89(2): 243–248.CrossRefGoogle Scholar
  120. Tomasek L, Swerdlow AJ, Darby SC, Placek V, Kunz E (1994) Mortality in uranium miners in west Bohemia: a long-term cohort study. Occup Environ Med 51(5): 308–315.CrossRefGoogle Scholar
  121. Tournier BB, Frelon S, Tourlonias E, Agez L, Delissen O, Dublineau I, Paquet F, Petitot F (2009) Role of the olfactory receptor neurons in the direct transport of inhaled uranium to the rat brain. Toxicol Lett 190(1): 66–73.CrossRefGoogle Scholar
  122. Tran D, Ciret P, Ciutat A, Durrieu G, Massabuau JC (2003) Estimation of potential and limits of bivalve closure response to detect contaminants: application to cadmium. Environ Toxicol Chem 22(4): 914–920.CrossRefGoogle Scholar
  123. Tran D, Bourdineaud JP, Massabuau JC, Garnier-Laplace J (2005) Modulation of uranium bioaccumulation by hypoxia in the freshwater clam Corbicula fluminea: Induction of multixenobiotic resistance protein and heat shock protein 60 in gill tissues. Environ Toxicol Chem 24(9): 2278–2284.CrossRefGoogle Scholar
  124. Turcani M, Vakula J (2007) The influence of irradiation on the behavior and reproduction success of eight toothed bark beetle Ips typographus (Coleoptera: Scolytidae). J For Sci 53(speciss): 31–37.Google Scholar
  125. Untersteiner H, Gretschel G, Puchner T, Napetschnig S, Kaiser H (2005) Monitoring behavioral responses to the heavy metal cadmium in the marine shrimp Hippolyte inermis Leach (Crustacea: Decapoda) with video imaging. Zool Stud 44(1): 71–80.Google Scholar
  126. Vetillard A, Bailhache T (2005) Cadmium: an endocrine disrupter that affects gene expression in the liver and brain of juvenile Rainbow trout. Biol Reprod 72(1): 119–126.CrossRefGoogle Scholar
  127. Williams FE, White D, Messer WS (2002) A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes 58(3): 125–132.CrossRefGoogle Scholar
  128. Yilmaz M, Gül A, Karaköse E (2004) Investigation of acute toxicity and the effect of cadmium chloride (CdCl2 · H2O) metal salt on behavior of the guppy (Poecilia reticulata). Chemosphere 56(4): 375–380.CrossRefGoogle Scholar
  129. Zala SM, Penn DJ (2004) Abnormal behaviors induced by chemical pollution: A review of the evidence and new challenges. Anim Behav 68(4): 649–664.CrossRefGoogle Scholar
  130. Zalups RK, Koropatnick J (2000) Molecular biology and toxicology of metals. Taylor & Francis, London, 603p.Google Scholar
  131. Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606(2): 135–150.CrossRefGoogle Scholar
  132. Zidar P, Kaschl UI, Drobne D, Bozic J, Strus J (2003) Behavioral response in paired food choice experiments with Oniscus asellus (Crustacea, Isopoda) as an indicator of different food quality. Arh Hig Rada Toksikol 54(3): 177–181.Google Scholar
  133. Zuniè A, Eokl A, Sersa G (2002) Effects of 5-Gy irradiation on fertility and mating behavior of Nezara viridula (Heteroptera: Pentatomidae). Radiol Oncol 36(3) 231–237.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratoire de Radioécologie et d’EcotoxicologieIRSN (Institut de Radioprotection et de Sûreté Nucléaire), Centre de CadaracheSaint-Paul-Lez-Durance CedexFrance
  2. 2.Laboratoire de Radioécologie et d’EcotoxicologieIRSN (Institut de Radioprotection et de Sûreté Nucléaire), Centre de CadaracheSaint-Paul-Lez-Durance CedexFrance
  3. 3.CEA, Institut de Recherche en Technologies et Sciences pour le VivantGrenobleFrance
  4. 4.CNRS, UMR 5249, Laboratoire de Chimie et Biologie des MétauxGrenobleFrance
  5. 5.Université Joseph FourierGrenobleFrance
  6. 6.Laboratoire de Radiotoxicologie ExpérimentaleIRSNFontenay-aux-Roses CedexFrance

Personalised recommendations