Skip to main content

Interfacial Reactions of Ozone with Lipids and Proteins in a Model Lung Surfactant System

  • Chapter
  • First Online:
Book cover Multiscale and Multiphysics Computational Frameworks for Nano- and Bio-Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 674 Accesses

Abstract

Oxidative stresses from irritants such as hydrogen peroxide and ozone (O3) can cause dysfunction of the pulmonary surfactant (PS) in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of major components of PS due to the heterogeneous reaction with O3, field induced droplet ionization (FIDI) mass spectrometry is utilized to probe the surfactant layer system. FIDI is a soft ionization method in which ions are extracted from the surface of micro liter volume droplets. We report the structurally specific oxidative changes of \(\textrm{SP-B}_{1-25}\) (a shortened version of human surfactant protein B) and 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) due to reaction with O3 at the air-liquid interface. We also present studies of the interfacial oxidation of \(\textrm{SP-B}_{1-25}\) in a non-ionizable 1-palmitoyl-2-oleoyl-sn-glycerol monolayer as a model lung surfactant system, where the competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction at the interface is different from that in the bulk phase. For example, we observe the hydroxyhydroperoxide and the secondary ozonide as major products of the heterogeneous ozonolysis of POPG. These products are metastable and difficult to observe in the bulk-phase. In addition, compared to the nearly complete homogeneous oxidation of \(\textrm{SP-B}_{1-25}\), only a subset of the amino acids known to react with ozone is oxidized in the hydrophobic interfacial environment. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system when subject to oxidative stress.

In part with permission from Kim, H. I.; Kim, H; Shin, Y. S.; Beegle, L. W.; Jang, S. S.; Neidholdt, E. L.; Goddard, W. A.; Heath, J. R.; Kanik, I.; Beauchamp, J. L. J. Am. Chem. Soc. 2010, 132 (7), 2254–2263. Copyright 2010 American Chemical Society.

In part with permission from Kim, H. I.; Kim, H; Shin, Y. S.; Beegle, L. W.; Goddard, W. A.; Heath, J. R.; Kanik, I.; Beauchamp, J. L. J. Phys. Chem. B 2010, 114 (29), 9496–9503. Copyright 2010 American Chemical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Anseth, J.; Goffin, A.; Fuller, G.; Ghio, A.; Kao, P. Am. J. Respir. Cell Mol. Biol. 2005, 33, 161–168.

    Article  CAS  Google Scholar 

  2. Halliwell, B.; Gutteridge, J. Biochem. J. 1984, 219, 1–14.

    CAS  Google Scholar 

  3. Stansfield, A.; Jump, Z.; Sodlosky, S.; Rappaport, S.; Edelman, N.; Haldorsen, J.; Javed, T.; Martin, C.; Margulies, E. ed. Maple, D; American Lung Association National Headquarters: New York, 2008.

    Google Scholar 

  4. Vangolde, L.; Batenburg, J.; Robertson, B. Physiol. Rev. 1988, 68, 374–455.

    CAS  Google Scholar 

  5. Schram, V.; Hall, S. Biophys. J. 2004, 86, 3734–3743.

    CAS  Google Scholar 

  6. Hawco, M.; Davis, P.; Keough, K. J. Appl. Physiol. 1981, 51, 509–515.

    CAS  Google Scholar 

  7. Perez-Gil J.; Keough K. Biochim. Biophys. Acta-Mol. Basis Dis. 1998, 1408, 203–217.

    Article  CAS  Google Scholar 

  8. Clark J.; Wert S.; Bachurski C.; Stahlman M.; Stripp B.; Weaver T.; Whitsett J. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 7794–7798.

    Article  CAS  Google Scholar 

  9. Perez-Gil, J. Biophys. J. 2008, 94, 1542–1543.

    Article  CAS  Google Scholar 

  10. Pryor, W.; Das, B.; Church, D. Chem. Res. Toxicol. 1991, 4, 341–348.

    Article  CAS  Google Scholar 

  11. Uppu, R. M.; Cueto, R.; Squadrito, G. L.; Pryor, W. A. Arch. Biochem. Biophys. 1995, 319, 257–266.

    Article  CAS  Google Scholar 

  12. Manzanares, D.; Rodriguez-Capote, K.; Liu, S. Y.; Haines, T.; Ramos, Y.; Zhao, L.; Doherty-Kirby, A.; Lajoie, G.; Possmayer, F. Biochemistry 2007, 46, 5604–5615.

    Article  CAS  Google Scholar 

  13. Andersson, S.; Kheiter, A.; Merritt, T. A. Lung 1999, 177, 179–189.

    Article  CAS  Google Scholar 

  14. Rodriguez-Capote, K.; Manzanares, D.; Haines, T.; Possmayer, F. Biophys. J. 2006, 90, 2808–2821.

    Article  CAS  Google Scholar 

  15. Grimm, R. L.; Hodyss, R.; Beauchamp, J. L. Anal. Chem. 2006, 78, 3800–3806.

    Article  CAS  Google Scholar 

  16. Voss, L. F.; Hadad, C. M.; Allen, H. C. J. Phys. Chem. B 2006, 110, 19487–19490.

    Article  CAS  Google Scholar 

  17. Mundy, C. J.; Kuo, I. F. W. Chem. Rev. 2006, 106, 1282–1304.

    Article  CAS  Google Scholar 

  18. Enami, S.; Hoffmann, M. R.; Colussi, A. J. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 7365–7369.

    Article  CAS  Google Scholar 

  19. Enami, S.; Hoffmann, M. R.; Colussi, A. J. J. Phys. Chem. B 2008, 112, 4153–4156.

    Article  CAS  Google Scholar 

  20. Grimm, R. L.; Beauchamp, J. L. J. Phys. Chem. B 2003, 107, 14161–14163.

    Article  CAS  Google Scholar 

  21. Grimm, R. L.; Beauchamp, J. L. J. Phys. Chem. B 2005, 109, 8244–8250.

    Article  CAS  Google Scholar 

  22. Takamoto, D. Y.; Lipp, M. M.; von Nahmen, A.; Lee, K. Y. C.; Waring, A. J.; Zasadzinski, J. A. Biophys. J. 2001, 81, 153–169.

    Article  CAS  Google Scholar 

  23. Bruni, R.; Taeusch, H. W.; Waring, A. J. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 7451–7455.

    Article  CAS  Google Scholar 

  24. Longo, M. L.; Bisagno, A. M.; Zasadzinski, J. A. N.; Bruni, R.; Waring, A. J. Science 1993, 261, 453–456.

    Article  CAS  Google Scholar 

  25. MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586–3616.

    Article  CAS  Google Scholar 

  26. Plimpton, S. J. Comput. Phys. 1995, 117, 1–19.

    Article  CAS  Google Scholar 

  27. Hockney, R. W.; Eastwood, J. W. Computer simulation using particles; McGraw-Hill: New York, 1981.

    Google Scholar 

  28. Karagulian, F.; Lea, A. S.; Dilbeck, C. W.; Finlayson-Pitts, B. J. Phys. Chem. Chem. Phys. 2008, 10, 528–541.

    Article  CAS  Google Scholar 

  29. Santrock, J.; Gorski, R. A.; Ogara, J. F. Chem. Res. Toxicol. 1992, 5, 134–141.

    Article  CAS  Google Scholar 

  30. Rivera, J. L.; Starr, F. W.; Paricaud, P.; Cummings, P. T. J. Chem. Phys. 2006, 125, 8.

    Article  Google Scholar 

  31. Ghosh, A.; Smits, M.; Bredenbeck, J.; Bonn, M. J. Am. Chem. Soc. 2007, 129, 9608.

    Article  CAS  Google Scholar 

  32. Lai, C. C.; Yang, S. H.; Finlayson-Pitts, B. J. Langmuir 1994, 10, 4637–4644.

    Article  CAS  Google Scholar 

  33. Pryor, W. A. Am. J. Clin. Nutr. 1991, 53, 702–722.

    CAS  Google Scholar 

  34. Clauser, K. R.; Hall, S. C.; Smith, D. M.; Webb, J. W.; Andrews, L. E.; Tran, H. M.; Epstein, L. B.; Burlingame, A. L. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 5072–5076.

    Article  CAS  Google Scholar 

  35. Seinfeld, J. H.; Pandis, S. N. Atmospheric chemistry and physics: From air pollution to climate change; John Wiley & Sons: New York, 1998.

    Google Scholar 

  36. von Gunten, U. Water Res. 2003, 37, 1443–1467.

    Article  Google Scholar 

  37. Pryor, W. A. Free Radic. Biol. Med. 1994, 17, 451–465.

    Article  CAS  Google Scholar 

  38. Pryor, W. A.; Uppu, R. M. J. Biol. Chem. 1993, 268, 3120–3126.

    CAS  Google Scholar 

  39. Schoneich, C. BBA-Proteins Proteomics 2005, 1703, 111–119.

    Article  Google Scholar 

  40. Pryor, W. A.; Giamalva, D. H.; Church, D. F. J. Am. Chem. Soc. 1984, 106, 7094–7100.

    Article  CAS  Google Scholar 

  41. Berlett, B. S.; Stadtman, E. R. J. Biol. Chem. 1997, 272, 20313–20316.

    Article  CAS  Google Scholar 

  42. Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 513–886.

    Article  CAS  Google Scholar 

  43. Kaznessis, Y. N.; Kim, S.; Larson, R. G. J. Mol. Biol. 2002, 322, 569–582.

    Article  CAS  Google Scholar 

  44. Baoukina, S.; Monticelli, L.; Risselada, H. J.; Marrink, S. J.; Tieleman, D. P. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 10803–10808.

    Article  CAS  Google Scholar 

  45. Kaznessis, Y. N.; Kim, S. T.; Larson, R. G. Biophys. J. 2002, 82, 1731–1742.

    Article  CAS  Google Scholar 

  46. Kawashima, S.; Ogata, H.; Kanehisa, M. Nucleic Acids Research 1999, 27, 368–369.

    Article  CAS  Google Scholar 

  47. Freites, J. A.; Choi, Y.; Tobias, D. J. Biophys. J. 2003, 84, 2169–2180.

    Article  CAS  Google Scholar 

  48. Gilliard, N.; Heldt, G. P.; Loredo, J.; Gasser, H.; Redl, H.; Merritt, T. A.; Spragg, R. G. J. Clin. Invest. 1994, 93, 2608–2615.

    Article  CAS  Google Scholar 

  49. Pryor, W. A. Free Radic. Biol. Med. 1992, 12, 83–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research described in this paper was carried out at the Beckman Institute and the Noyes Laboratory of Chemical Physics at the California Institute of Technology, the Computational NanoBioTechnology Laboratory at Georgia Institute of Technology and Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration and funded through the Director’s Research and Development Fund. We appreciate the support provided by the Beckman Institute Mass Spectrometry Resource Center. Partial support was also provided by the National Science Foundation (NSF) under grant No. CHE-0416381 (JLB, PI) and the National Cancer Institute under grant No. 5U54 CA119347 (JRH, PI).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, H. (2011). Interfacial Reactions of Ozone with Lipids and Proteins in a Model Lung Surfactant System. In: Multiscale and Multiphysics Computational Frameworks for Nano- and Bio-Systems. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7601-7_7

Download citation

Publish with us

Policies and ethics