Skip to main content

Sodium Diffusion Through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation

  • Chapter
  • First Online:
Multiscale and Multiphysics Computational Frameworks for Nano- and Bio-Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 722 Accesses

Abstract

To investigate the effect of hydration on the diffusion of sodium ions through the aluminum-doped zeolite BEA system (Si/Al = 30), we used the grand canonical Monte Carlo (GCMC) method to predict the water absorption into aluminosilicate zeolite structure under various conditions of vapor pressure and temperature, followed by molecular dynamics (MD) simulations to investigate how the sodium diffusion depends on the concentration of water molecules. The predicted absorption isotherm shows first-order-like transition, which is commonly observed in hydrophobic porous systems. The MD trajectories indicate that the sodium ions diffuse through zeolite porous structures via hopping mechanism, as previously discussed for similar solid electrolyte systems. These results show that above 15 wt % hydration (good solvation regime) the formation of the solvation cage dramatically increases sodium diffusion by reducing the hopping energy barrier by 25% from the value of 3.8 kcal/mol observed in the poor solvation regime.

Reprinted with permission from Kim, H; Deng, W.-Q.; Goddard, W. A.; Jang S. S.; Davis M. E.; Yan Y. J. Phys. Chem. C 2009, 113 (3), 819-826. Copyright 2009 American Chemical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Zones, S. I.; Davis, M. E. Curr. Opin. Solid State Mater. Sci. 1996, 1, 107–117.

    Article  CAS  Google Scholar 

  2. Davis, M. E. Nature 2002, 417, 813–821.

    Article  CAS  Google Scholar 

  3. Truskett, T. M.; Debenedetti, P. G.; Torquato, S. J. Chem. Phys. 2001, 114, 2401–2418.

    Article  CAS  Google Scholar 

  4. Gallo, P.; Ricci, M. A.; Rovere, M. J. Chem. Phys. 2002, 116, 342–346.

    Article  CAS  Google Scholar 

  5. Giaya, A.; Thompson, R. W. J. Chem. Phys. 2002, 117, 3464–3475.

    Article  CAS  Google Scholar 

  6. Brovchenko, I.; Geiger, A.; Oleinikova, A. J. Chem. Phys. 2004, 120, 1958–1972.

    Article  CAS  Google Scholar 

  7. Maurin, G.; Bell, R. G.; Devautour, S.; Henn, F.; Giuntini, J. C. J. Phys. Chem. B 2004, 108, 3739–3745.

    Article  CAS  Google Scholar 

  8. Lee, Y.; Vogt, T.; Hriljac, J. A.; Parise, J. B.; Hanson, J. C.; Kim, S. J. Nature 2002, 420, 485–489.

    Article  CAS  Google Scholar 

  9. Demkov, A. A.; Sankey, O. F. Chem. Mater. 1996, 8, 1793–1806.

    Article  CAS  Google Scholar 

  10. Maurin, G.; Llewellyn, P.; Poyet, T.; Kuchta, B. J. Phys. Chem. B 2005, 109, 125–129.

    Article  CAS  Google Scholar 

  11. Calero, S.; Dubbeldam, D.; Krishna, R.; Smit, B.; Vlugt, T. J. H.; Denayer, J. F. M.; Martens, J. A.; Maesen, T. L. M. J. Am. Chem. Soc. 2004, 126, 11377–11386.

    Article  CAS  Google Scholar 

  12. Carrette, L.; Friedrich, K. A.; Stimming, U. ChemPhysChem 2000, 1, 162–193.

    Article  Google Scholar 

  13. Kreuer, K. D. J. Membr. Sci. 2001, 185, 29–39.

    Article  CAS  Google Scholar 

  14. Paddison, S. J. Annu. Rev. Mater. Res. 2003, 33, 289–319.

    Article  CAS  Google Scholar 

  15. Li, Q. F.; He, R. H.; Jensen, J. O.; Bjerrum, N. J. Chem. Mater. 2003, 15, 4896–4915.

    Article  CAS  Google Scholar 

  16. Mauritz, K. A.; Moore, R. B. Chem. Rev. 2004, 104, 4535–4585.

    Article  CAS  Google Scholar 

  17. Hickner, M. A.; Pivovar, B. S. Fuel Cells 2005, 5, 213–229.

    Article  CAS  Google Scholar 

  18. Holmberg, B. A.; Hwang, S. J.; Davis, M. E.; Yan, Y. S. Microporous Mesoporous Mater. 2005, 80, 347–356.

    Article  CAS  Google Scholar 

  19. Burchart, E. D.; Verheij, V. A.; Vanbekkum, H.; Vandegraaf, B. Zeolites 1992, 12, 183–189.

    Article  Google Scholar 

  20. Levitt, M.; Hirshberg, M.; Sharon, R.; Laidig, K. E.; Daggett, V. J. Phys. Chem. B 1997, 101, 5051–5061.

    Article  CAS  Google Scholar 

  21. Rappe, A. K.; Goddard, W. A. J. Phys. Chem. 1991, 95, 3358–3363.

    Article  CAS  Google Scholar 

  22. Hockney, R. W.; Eastwood, J. W. Computer simulation using particles; McGraw-Hill: New York, 1981.

    Google Scholar 

  23. Razmus, D. M.; Hall, C. K. AiChE J. 1991, 37, 769–779.

    Article  CAS  Google Scholar 

  24. Goodbody, S. J.; Watanabe, K.; Macgowan, D.; Walton, J.; Quirke, N. J. Chem. Soc., Faraday Trans. 1991, 87, 1951–1958.

    Article  CAS  Google Scholar 

  25. Accelrys Inc.: San Diego, CA, 1999.

    Google Scholar 

  26. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: Oxford, U.K., 1987.

    Google Scholar 

  27. Frenkel, D.; Smit, B. Understanding Molecular Simulations: From Algorithms to Applications; Academic Press: London, 2002.

    Google Scholar 

  28. Plimpton, S. J. Comput. Phys. 1995, 117, 1–19.

    Article  CAS  Google Scholar 

  29. Plimpton, S. J.; Pollock, R.; Stevens, M. Minneapolis, MN, 1997.

    Google Scholar 

  30. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637–649.

    Article  CAS  Google Scholar 

  31. Baerlocher, C.; McCusker, L. B. Database of zeolite Structures: http://www.iza-structure.org/databases/.

  32. Di Lella, A.; Desbiens, N.; Boutin, A.; Demachy, I.; Ungerer, P.; Bellat, J. P.; Fuchs, A. H. Phys. Chem. Chem. Phys. 2006, 8, 5396–5406.

    Article  Google Scholar 

  33. Desbiens, N.; Demachy, I.; Fuchs, A. H.; Kirsch-Rodeschini, H.; Soulard, M.; Patarin, J. Angew. Chem., Int. Ed. 2005, 44, 5310–5313.

    Article  CAS  Google Scholar 

  34. Desbiens, N.; Boutin, A.; Demachy, I. J. Phys. Chem. B 2005, 109, 24071–24076.

    Article  CAS  Google Scholar 

  35. Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414, 188–190.

    Article  CAS  Google Scholar 

  36. Gorbach, A.; Stegmaier, M.; Eigenberger, G. Ads.-J. Int. Ads. Soc. 2004, 10, 29–46.

    CAS  Google Scholar 

  37. Soper, A. K.; Phillips, M. G. Chem. Phys. 1986, 107, 47–60.

    Article  CAS  Google Scholar 

  38. Jang, S. S.; Goddard, W. A., III J. Phys. Chem. C 2007, 111, 2759–2769.

    Article  CAS  Google Scholar 

  39. Jang, S. S.; Lin, S. T.; Cagin, T.; Molinero, V.; Goddard, W. A., III J. Phys. Chem. B 2005, 109, 10154–10167.

    Article  CAS  Google Scholar 

  40. Jang, S. S.; Molinero, V.; Cagin, T.; Goddard, W. A., III J. Phys. Chem. B 2004, 108, 3149–3157.

    Article  CAS  Google Scholar 

  41. Vaudry, F.; DiRenzo, F.; Espiau, P.; Fajula, F.; Schulz, P. Zeolites 1997, 19, 253–258.

    Article  CAS  Google Scholar 

  42. Keffer, D.; McCormick, A. V.; Davis, H. T. Mol. Phys. 1996, 87, 367–387.

    CAS  Google Scholar 

  43. Faux, D. A.; Smith, W.; Forester, T. R. J. Phys. Chem. B 1997, 101, 1762–1768.

    Article  CAS  Google Scholar 

  44. Faux, D. A. J. Phys. Chem. B 1998, 102, 10658–10662.

    Article  CAS  Google Scholar 

  45. Faux, D. A. J. Phys. Chem. B 1999, 103, 7803–7808.

    Article  CAS  Google Scholar 

  46. Franke, M. E.; Simon, U. Phys. Status Solidi B: Basic Res. 2000, 218, 287–290.

    Article  CAS  Google Scholar 

  47. Kim, K. K.; Mundy, J. N.; Chen, W. K. J. Phys. Chem. Solids 1979, 40, 743–755.

    Article  CAS  Google Scholar 

  48. Whitting, Ms; Huggins, R. A. J. Chem. Phys. 1971, 54, 414.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Department of Energy (DE-FG02-05ER15716, William S. Millman). The facilities of the Materials and Process Simulation Center used for these studies were supported by DURIP-ARO, DURIP-ONR.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, H. (2011). Sodium Diffusion Through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation. In: Multiscale and Multiphysics Computational Frameworks for Nano- and Bio-Systems. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7601-7_4

Download citation

Publish with us

Policies and ethics