Negative Differential Resistance of Oligo (Phenylene Ethynylene) Self-Assembled Monolayer Systems: The Electric Field Induced Conformational Change Mechanism

  • Hyungjun Kim
Part of the Springer Theses book series (Springer Theses)


We investigate here a possible mechanism for the room temperature Negative Differential Resistance (NDR) in the Au/AN-OPE/RS/Hg self-assembled monolayer (SAM) system, where AN-OPE = 2’-amino, 5’-nitro oligo (phenylene ethynylene) and RS is a C14 alkyl thiolate. Kiehl and co-workers showed that this molecular system leads to NDR with hysteresis and sweep-rate-dependent position and amplitude in the NDR peak. To investigate a molecular basis for this interesting behavior, we combine first principles quantum mechanics (QM) and meso-scale lattice Monte Carlo (MC) methods to simulate the switching as a function of voltage and voltage rate, leading to results consistent with experimental observations. This simulation shows how the structural changes at the microscopic level lead to the NDR and sweep-rate dependent macroscopic I-V curve observed experimentally, suggesting a microscopic model that might aid in designing improved NDR systems.


Monte Carlo External Electric Field Sweep Rate Nearest Neighbor Hydrogen Bonding Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The computational work was initiated with support by the National Science Foundation (NIRT, WAG). The collaboration was supported by the Microelectronics Advanced Research Corporation (MARCO, WAG and RAK) and its Focus Centers on Functional Engineered NanoArchitectonics (FENA). The facilities of the MSC (WAG) were supported by ONR-DURIP, ARO-DURIP and the facilities of the CNBT lab (SSJ) were supported by the start-up from the MSE in Georgia Tech.


  1. 1.
    Esaki, L. Phys. Rev. 1958, 109, 603–604.CrossRefGoogle Scholar
  2. 2.
    Xue, Y. Q.; Datta, S.; Hong, S.; Reifenberger, R.; Henderson, J. I.; Kubiak, C. P. Phys. Rev. B 1999, 59, R7852–R7855.CrossRefGoogle Scholar
  3. 3.
    Tao, N. J. Nat. Nanotechnol. 2006, 1, 173–181.CrossRefGoogle Scholar
  4. 4.
    Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550–1552.CrossRefGoogle Scholar
  5. 5.
    Selzer, Y.; Salomon, A.; Ghabboun, J.; Cahen, D. Angew. Chem. Int. Ed. 2002, 41, 827.CrossRefGoogle Scholar
  6. 6.
    Pitters, J. L.; Wolkow, R. A. Nano Lett. 2006, 6, 390–397.CrossRefGoogle Scholar
  7. 7.
    He, J.; Lindsay, S. M. J. Am. Chem. Soc. 2005, 127, 11932–11933.CrossRefGoogle Scholar
  8. 8.
    Salomon, A.; Arad-Yellin, R.; Shanzer, A.; Karton, A.; Cahen, D. J. Am. Chem. Soc. 2004, 126, 11648–11657.CrossRefGoogle Scholar
  9. 9.
    Kiehl, R. A.; Le, J. D.; Candra, P.; Hoye, R. C.; Hoye, T. R. Appl. Phys. Lett. 2006, 88, 172102.CrossRefGoogle Scholar
  10. 10.
    Guisinger, N. P.; Yoder, N. L.; Hersam, M. C. Proc. Natl. Acad. Sci. USA. 2005, 102, 8838–8843.CrossRefGoogle Scholar
  11. 11.
    Kratochvilova, I.; Kocirik, M.; Zambova, A.; Mbindyo, J.; Mallouk, T. E.; Mayers, T. S. J. Mater. Chem. 2002, 12, 2927–2930.CrossRefGoogle Scholar
  12. 12.
    Rawlett, A. M.; Hopson, T. J.; Nagahara, L. A.; Tsui, R. K.; Ramachandran, G. K.; Lindsay, S. M. Appl. Phys. Lett. 2002, 81, 3043–3045.CrossRefGoogle Scholar
  13. 13.
    Amlani, I.; Rawlett, A. M.; Nagahara, L. A.; Tsui, R. K. Appl. Phys. Lett. 2002, 80, 2761–2763.CrossRefGoogle Scholar
  14. 14.
    Donhauser, Z. J.; Mantooth, B. A.; Kelly, K. F.; Bumm, L. A.; Monnell, J. D.; Stapleton, J. J.; Price, D. W.; Rawlett, A. M.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Science 2001, 292, 2303–2307.CrossRefGoogle Scholar
  15. 15.
    Fan, F. R. F.; Lai, R. Y.; Cornil, J.; Karzazi, Y.; Bredas, J. L.; Cai, L. T.; Cheng, L.; Yao, Y. X.; Price, D. W.; Dirk, S. M.; Tour, J. M.; Bard, A. J. J. Am. Chem. Soc. 2004, 126, 2568–2573.CrossRefGoogle Scholar
  16. 16.
    Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am. Chem. Soc. 2000, 122, 3015–3020.CrossRefGoogle Scholar
  17. 17.
    Xiao, X. Y.; Nagahara, L. A.; Rawlett, A. M.; Tao, N. J. J. Am. Chem. Soc. 2005, 127, 9235–9240.CrossRefGoogle Scholar
  18. 18.
    Reed, M. A.; Chen, J.; Rawlett, A. M.; Price, D. W.; Tour, J. M. Appl. Phys. Lett. 2001, 78, 3735–3737.CrossRefGoogle Scholar
  19. 19.
    Chen, J.; Wang, W.; Reed, M. A.; Rawlett, A. M.; Price, D. W.; Tour, J. M. Appl. Phys. Lett. 2000, 77, 1224–1226.CrossRefGoogle Scholar
  20. 20.
    Sollner, T. C. L. G.; Goodhue, W. D.; Tannenwald, P. E.; Parker, C. D.; Peck, D. D. Appl. Phys. Lett. 1983, 43, 588–590.CrossRefGoogle Scholar
  21. 21.
    Tsuchiya, M.; Sakaki, H.; Yoshino, J. Jpn. J. Appl. Phys., Part 2-Letters 1985, 24, L466–L468.CrossRefGoogle Scholar
  22. 22.
    Qiu, X. H.; Nazin, G. V.; Ho, W. Phys. Rev. Lett. 2004, 93, 4.Google Scholar
  23. 23.
    Akdim, B.; Pachter, R. J. Phys. Chem. C 2008, 112, 3170–3174.CrossRefGoogle Scholar
  24. 24.
    Troisi, A.; Ratner, M. A. Nano Lett. 2004, 4, 591–595.CrossRefGoogle Scholar
  25. 25.
    Emberly, E. G.; Kirczenow, G. Phys. Rev. B 2001, 64, 125318.CrossRefGoogle Scholar
  26. 26.
    Galperin, M.; Ratner, M. A.; Nitzan, A. Nano Lett. 2005, 5, 125–130.CrossRefGoogle Scholar
  27. 27.
    Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  28. 28.
    Jaguar, V. 6.5 ed.; Schrödinger Inc.: Portland, 2005.Google Scholar
  29. 29.
    Kim, Y. H.; Jang, S. S.; Jang, Y. H.; Goddard, W. A. Phys. Rev. Lett. 2005, 94, 156801.CrossRefGoogle Scholar
  30. 30.
    Schultz, P., SeqQuest Project; Sandia National Laboratories: Albuquerque, NM, 2003.Google Scholar
  31. 31.
    Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897–8909.CrossRefGoogle Scholar
  32. 32.
    Plimpton, S. J. J. Comput. Phys. 1995, 117, 1–19.CrossRefGoogle Scholar
  33. 33.
    Plimpton, S. J.; Pollock, R.; Stevens, M. The Eighth SIAM Conference on Parallel Processing for Scientific Computing Minneapolis; 1997.Google Scholar
  34. 34.
    Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637–649.CrossRefGoogle Scholar
  35. 35.
    Lo, W. S.; Pelcovits, R. A. Phys. Rev. A 1990, 42, 7471–7474.CrossRefGoogle Scholar
  36. 36.
    Stokbro, K.; Taylor, J.; Brandbyge, M.; Ordejn, P.; Ann. N Y. Acad. Sci. 2003, 1006, 212–216.CrossRefGoogle Scholar
  37. 37.
    Candra, P. M.S. Dissertations, University of Minnesota, 2006.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hyungjun Kim
    • 1
    • 2
  1. 1.Center for Materials Simulations & DesignKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Materials and Process Simulation CenterCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations