Skip to main content

A Robust Approach to Inorganic Aerogels: The Use of Epoxides in Sol–Gel Synthesis

  • Chapter
  • First Online:
Book cover Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Over the last decade, the diversity of metal oxide materials prepared using sol–gel techniques has increased significantly. This transformation can be attributed, in part, to the development of the technique known as epoxide-initiated gelation. The process utilizes organic epoxides as initiators for the sol–gel polymerization of simple inorganic metal salts in aqueous or alcoholic media. In this approach, the epoxide acts as an acid scavenger in the sol–gel reaction, driving the hydrolysis and condensation of hydrated metal species. This process is general and applicable to the synthesis of a wide range of metal oxide aerogels, xerogels, and nanocomposites. In addition, modification of synthetic parameters allows for control over the structure and properties of the sol–gel product. This method is particularly amenable to the synthesis of multi-component or composite sol–gel systems with intimately mixed nanostructures. This chapter describes both the reaction mechanisms associated with epoxide-initiated gelation as well as the variety of materials that have been prepared using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hüsing N, Schubert U (1998) Aerogels-airy materials: Chemistry, structure, and properties. Angew Chem Int Ed 37:22–47.

    Article  Google Scholar 

  2. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265.

    Article  CAS  Google Scholar 

  3. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227.

    Article  CAS  Google Scholar 

  4. Brinker CJ, Scherer GW (1990) Sol-gel science: The physics and chemistry of sol-gel processing. Academic Press, USA.

    Google Scholar 

  5. Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol-gel synthesis of porous iron oxide monoliths from Fe(III) salts. Chem Mater 13:999–1007.

    Article  CAS  Google Scholar 

  6. Jirgensons B, Straumanis ME (1962) A short textbook of colloid chemistry. The MacMillan Company, USA.

    Google Scholar 

  7. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid St Chem 18:259.

    Article  CAS  Google Scholar 

  8. Dobinson B, Hoffman W, Stark BP (1969) The determination of epoxide groups. Permagon Press, Oxford.

    Google Scholar 

  9. Gash AE, Satcher JH, Simpson RL (2003) Strong akaganeite aerogel monolith using epoxides: Synthesis and characterization. Chem Mater 15:3268–3275.

    Article  CAS  Google Scholar 

  10. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater 17:395–401.

    Article  CAS  Google Scholar 

  11. Kucheyev SO, Baumann TF, Cox CA, Wang YM, Satcher JH, Hamza AV, Bradby JE (2006) Nanoengineering mechanically robust aerogels via control of foam morphology. Appl Phys Lett 89:041911.

    Article  Google Scholar 

  12. Itoh H, Tabata T, Kokitsu M, Okazaki N, Imizu Y, Tada A (1993) Preparation of SiO2-Al2O3 gels from tetraethoxysilane and aluminum chloride: A new sol-gel method using propylene oxide as a gelation promoter. J Ceramic Soc Jap 101:1081.

    Article  CAS  Google Scholar 

  13. Gan L, Xu Z, Feng Y, Chen L (2005) Synthesis of alumina aerogels by ambient drying method and control of their structures. J Porous Mater 12:317–321.

    Article  CAS  Google Scholar 

  14. Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation. Chem Mater 19:3393–3398.

    Article  CAS  Google Scholar 

  15. Hund JF, McElfresh J, Frederick CA, Nikroo A, Greenwood AL, Luo W (2007) Fabrication and characterization of aluminum oxide aerogel backlighter targets. Fusion Sci Tech 51:701–704.

    CAS  Google Scholar 

  16. Tokudome Y, Nakanishi K, Hanada T (2009) Effect of La addition on thermal microstructural evolution of macroporous alumina monolith prepared from ionic precursors. J Ceramic Soc Japan 117:351–355.

    Article  CAS  Google Scholar 

  17. Baumann TF, Kucheyev SO, Gash AE, Satcher JH (2005) Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Adv Mater 17:1546–1548.

    Article  CAS  Google Scholar 

  18. Gash AE, Tillotson TM, Satcher JH, Hrubesh LW, Simpson RL (2001) New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids 285:22–28.

    Article  CAS  Google Scholar 

  19. Tillotson TM, Gash AE, Simpson RL, Hrubesh LW, Satcher JH, Poco JF (2001) Nanostructured energetic materials using sol-gel methodologies. J Non-Cryst Solids 285:338–345.

    Article  CAS  Google Scholar 

  20. Prakash A, McCormick AV, Zachariah MR (2004) Aero-sol-gel synthesis of nanoporous iron oxide particles: A potential oxidizer for nanoenergetic materials. Chem Mater 16:1466–1471.

    Article  CAS  Google Scholar 

  21. Long JW, Logan MS, Rhodes CP, Carpenter EE, Stroud RM, Rolison DR (2004) Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. J Amer Chem Soc 126:16879–16889.

    Article  CAS  Google Scholar 

  22. Park C, Magana D, Stiegman AE (2007) High-quality Fe and γ-Fe2O3 magnetic thin films from an epoxide-catalyzed sol-gel process. Chem Mater 19:677–683.

    Article  CAS  Google Scholar 

  23. Carpenter EE, Long JW, Rolison DR, Logan MS, Pettigrew K, Stroud RM, Kuhn LT, Hansen BR, MØrup S (2006) Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels. J Appl Phys 99:08N711.

    Google Scholar 

  24. Cui, H, Ren W (2008) Low temperature and size controlled synthesis of monodispersed γ-Fe2O3 nanoparticles by an apoxide assisted sol-gel route. J Sol-Gel Sci Technol 47:81–84.

    Article  CAS  Google Scholar 

  25. Bali S, Huggins FE, Huffman GP, Ernst RD, Pugmire RJ, Eyring EM (2009) Iron aerogel and xerogel catalysts for Fischer-Tropsch synthesis of diesel fuel. Energy & Fuels 23:14–18.

    Article  CAS  Google Scholar 

  26. Bali S, Turpin GC, Ernst RD, Pugmire RJ, Singh V, Seehra MS, Eyring EM (2008) Water gas shift catalysis using iron aerogels doped with palladium by the gas-phase incorporation method. Energy & Fuels 22:1439–1443.

    Article  CAS  Google Scholar 

  27. Suh DJ, Park T, Kim W, Hong I (2003) Synthesis of high-surface-area ruthenium oxide aerogels by non-alkoxide sol-gel route. J Power Sources 117:1–6.

    Article  CAS  Google Scholar 

  28. Kucheyev SO, van Buuren T, Baumann TF, Satcher JH, Willey TM, Meulenberg RW, Felter TE, Poco JF, Gammon SA, Terminello LJ (2004) Electronic structure of titania aerogels from soft x-ray absorption spectroscopy. Phys Rev B 69:245102.

    Article  Google Scholar 

  29. Chen L, Zhu J, Liu Y, Cao Y, Li H, He H, Dai W, Fan K (2006) Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying. J Mol Catal A 255:260–268.

    Article  CAS  Google Scholar 

  30. Sisk CN, Hope-Weeks LJ (2008) Copper(II) aerogels via 1,2-epoxide gelation. J Mater Chem 18:2607–2610.

    Article  CAS  Google Scholar 

  31. Gao YP, Sisk CN, Hope-Weeks LJ (2007) A sol-gel route to synthesize monolithic zinc oxide aerogels. Chem Mater 19:6007–6011.

    Article  CAS  Google Scholar 

  32. Gash AE, Satcher JH, Simpson RL (2004) Monolithic nickel(II)-based aerogels using an organic epoxide: The importance of the counterion. J Non-Cryst Solids 350:145–151.

    Article  CAS  Google Scholar 

  33. Wei T, Chen C, Chang K, Lu S, Hu C (2009) Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem Mater 21:3228–3233.

    Article  CAS  Google Scholar 

  34. Laberty-Robert C, Long JW, Lucas EM, Pettigrew KA, Stroud RM, Doescher MS, Rolison DR (2006) Sol-gel derived ceria nanoarchitectures: Synthesis, characterization and electrical properties. Chem Mater 18:50–58.

    Article  CAS  Google Scholar 

  35. Tillotson TM, Sunderland WE, Thomas IM, Hrubesh LW (1994) Synthesis of lanthanide and lanthanide-silicate aerogels. J Sol-Gel Sci Tech 1:241.

    Article  CAS  Google Scholar 

  36. Zhang HD, Li B, Zheng QX, Jiang MH, Tao XT (2008) Synthesis and characterization of monolithic Gd2O3 aerogels. J Non-Cryst Solids 354:4089–4093.

    Article  CAS  Google Scholar 

  37. Reibold RA, Poco JF, Baumann TF, Simpson RL, Satcher JH (2003) Synthesis and characterization of a low-density urania (UO3) aerogel. J Non-Cryst Solids 319:241–246.

    Article  CAS  Google Scholar 

  38. Reibold RA, Poco JF, Baumann TF, Simpson RL, Satcher JH (2004) Synthesis and characterization of a nanocrystalline thoria aerogel. J Non-Cryst Solids 341:35–39.

    Article  CAS  Google Scholar 

  39. Chervin CN, Clapsaddle BJ, Chiu HW, Gash AE, Satcher JH, Kauzlarich SM (2005) Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route. Chem Mater 17:3345–3351.

    Article  CAS  Google Scholar 

  40. Chervin CN, Clapsaddle BJ, Chiu HW, Gash AE, Satcher JH, Kauzlarich SM (2006) Role of cyclic ether and solvent in a non-alkoxide sol-gel synthesis of yttria-stabilized zirconia nanoparticles. Chem Mater 18:4865–4874.

    Article  CAS  Google Scholar 

  41. Chervin CN, Clapsaddle BJ, Chiu HW, Gash AE, Satcher JH, Kauzlarich SM (2006) A non-alkoxide sol-gel method for the preparation of homogeneous nanocrystalline powders of La0.85Sr0.15MnO3. Chem Mater 18:1928–1937.

    Article  CAS  Google Scholar 

  42. Brown P, Hope-Weeks LJ (2009) The synthesis and characterization of zinc ferrite aerogels prepared by epoxide addition. J Sol-Gel Sci Technol 51:238–243.

    Article  CAS  Google Scholar 

  43. Cui H, Zayat M, Levy D (2005) Sol-gel synthesis of nanoscaled spinels using propylene oxide as a gelation agent. J Sol-Gel Sci Technol 35:175–181.

    Article  CAS  Google Scholar 

  44. Guo Y, Meyer-Zaika W, Muhler M, Vukojevic S, Epple M (2006) Cu/Zn/Al xerogels and aerogels prepared by a sol-gel reaction as catalysts for methanol synthesis. Eur. J Inorg Chem 23:4774–4781.

    Article  Google Scholar 

  45. Clapsaddle BJ, Gash AE, Satcher JH, Simpson RL (2003) Silicon oxide in an iron(III) oxide matrix: The sol-gel synthesis and characterization of Fe-Si mixed oxide nanocomposites that contain iron oxide as a major phase. J Non-Cryst Solids 331:190–201.

    Article  CAS  Google Scholar 

  46. Clapsaddle BJ, Sprehn DW, Gash AE, Satcher JH, Simpson RL (2004) A versatile sol-gel synthesis route to metal-silicon mixed oxide nanocomposites that contain metal oxides as the major phase. J Non-Cryst Solids 350:173–181.

    Article  CAS  Google Scholar 

  47. Zhao L, Clapsaddle BJ, Satcher JH, Schaefer DW, Shea KJ (2005) Integrated chemical systems: The simultaneous formation of hybrid nanocomposites of iron oxide and organo silsesquioxane. Chem Mater 17:1358–1366.

    Article  CAS  Google Scholar 

  48. Leventis N, Chandrasekaran N, Sotiriou-Leventis C., Mumtaz A (2009) Smelting in the age of nano: Iron aerogels. J Mater Chem 19:63–65.

    Article  CAS  Google Scholar 

  49. Du A, Zhou B, Shen J, Xiao S, Zhang Z, Liu C, Zhang M (2009) Monolithic copper oxide aerogel via dispersed inorganic sol-gel method. J Non-Cryst Solids 355:175–181.

    Article  CAS  Google Scholar 

  50. Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR (1999) Silica Sol as a nanoglue: Flexible synthesis of composite aerogels. Science 284:622.

    Article  CAS  Google Scholar 

  51. Plantier KB, Pantoya ML, Gash AE (2005) Combustion wave speeds of nanocomposite Al/Fe2O3: The effects of Fe2O3 particle synthesis techniques. Combustion and Flame 140:299.

    Article  CAS  Google Scholar 

  52. Prentice D, Pantoya ML, Gash AE (2006) Combustion wave speeds of sol-gel-synthesized tungsten trioxide and nano-aluminum: The effect of impurities on flame propagation. Energy & Fuels 20:2370.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander E. Gash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baumann, T.F., Gash, A.E., Satcher, J.H. (2011). A Robust Approach to Inorganic Aerogels: The Use of Epoxides in Sol–Gel Synthesis. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics