Superhydrophobic and Flexible Aerogels

  • A. Venkateswara Rao
  • G. M. Pajonk
  • Digambar Y. Nadargi
  • Matthias M. Koebel
Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)


Aerogels with reduced fragility and increased hydrophobicity have significant potential to expand their use as lightweight structural, insulating or shock absorbing materials especially in aeronautics, microelectronics, and sensing applications. In addition, there is a potential for extremely hydrophobic aerogels in oil-spill clean-up applications. This chapter describes synthesis, physico-chemical properties, and applications of flexible superhydrophobic silica aerogels that is to say silica aerogels with typical water contact angles >150° and high mechanical flexibility. Such materials are accessible via a two-step sol–gel process from methyl-trialkoxysilane precursors. Extreme hydrophobicity has been obtained with measured water contact angles as high as 175°. The criticality of the water droplet size on a superhydrophobic aerogel was determined to be 2.7 mm. The velocity of the water droplet on such a superhydrophobic surface has been observed to be 1.44 m/s for 55° inclination, which is close to the free fall velocity (~1.5 m/s). Elastic and rheological properties of as-prepared aerogels are also described in this chapter. Young’s modulus of the aerogels is determined by uniaxial compression test measurements. Apart from synthesis and characterization, emphasis is placed on their potential use as shock absorbing materials and efficient absorbents of oil and organic compounds in general.


Contact Angle Light Emit Diode Water Droplet Water Contact Angle Uptake Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Buzykaev A. et al (1996) Project of aerogel cherenkov counters for KEDR, J. Nucl. Instr. and Meth. Phys. Res. A 379: 453–456CrossRefGoogle Scholar
  2. 2.
    Carlson P.J., Johansson K.E., Norrloy J.K., Pingot O., Tacernier S., Bogert F., Luncker L. (1979) Increased photoelectron collection efficiency of a photomultiplier in an aerogel cherenkov counter, J. Nucl. Instr. and Meth. Phys. Res. A 160: 407–410CrossRefGoogle Scholar
  3. 3.
    Cunha P., Neves F., Lopes M. (2000) On the reconstruction of Cherenkov rings from aerogel radiators, J Nucl. Instr. and Meth. Phys. Res. A 452: 401–421CrossRefGoogle Scholar
  4. 4.
    Jang K. Y., Kim K., Uphadye R. S.: Hollow silica spheres of controlled size and porosity by sol-gel processing, J. Am. Ceram. Soc. 74, 1987–1992 (1991)CrossRefGoogle Scholar
  5. 5.
    Nguyen B. N., Meador M. A. B., Tousley M. E., Shonkwiler B., McCorkle L., Scheiman D. A., Palczer A.: Tailoring elastic properties of silica aerogels cross-linked with polystyrene, ACS Appl. Mater. Interfaces 1, 621–630 (2009)CrossRefGoogle Scholar
  6. 6.
    Mulik S., Sotiriou-Leventis C., Churu G., Lu H, Leventis N.: Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization, Chem. Mater. 20, 5035–5046 (2008)Google Scholar
  7. 7.
    Meador M. A. B., Weber A. S., Hindi A., Naumenko M., McCorkle L., Quade D., Vivod S. L., Gould G. L., White S., Deshpande K.: Structure-property relationships in porous 3D nanostructures: epoxy-cross-linked silica aerogels produced using ethanol as the solvent, ACS Appl. Mater. Interfaces 1, 894–906 (2009)CrossRefGoogle Scholar
  8. 8.
    Meador M. A., Vivod S. L., McCorkle L., Quade D., Sullivan R. M., L. Ghson J., Clark N., Capaclona L. A.: Reinforcing polymer cross-linked aerogels with carbon nanofibers, J. Mater. Chem 18, 1843–1852 (2008)Google Scholar
  9. 9.
    Capadona, L. A.; Meador M. A. B., Alunni A., Fabrizio E. F., Vassilaras P., Leventis N.: Flexible, low-density polymer crosslinked silica aerogels, Polymer 47, 5754–5761 (2006)CrossRefGoogle Scholar
  10. 10.
    Kramer S. J., Rubio-Alonso F., Mackenzie J. D.: Organically modified silicate aerogels, aeromosils, Mater. Res. Soc. Symp. Proc. 435, 295–299 (1996)CrossRefGoogle Scholar
  11. 11.
    Kanamori K., Aizawa M., Nakanishi K, Hanada T.: New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties, Adv. Mater. 19, 1589–1593 (2007)Google Scholar
  12. 12.
    Loy D. A., K. J. Shea: Bridged polysilsesquioxanes: highly porous hybrid organic-inorganic materials, Chem. Rev. 95, 1431–1442 (1995)Google Scholar
  13. 13.
    Loy D. A., Jamison G. M., Baugher B. M., S Myers. A., Assink R. A., Shea K. J.: Sol-gel synthesis of hybrid organic-inorganic materials. hexylene- and phenylene-bridged polysiloxanes, Chem. Mater. 8, 656–663 (1996)Google Scholar
  14. 14.
    Shea K. J., Loy D. A.: Bridged polysilsesquioxanes: molecular-engineered hybrid organic-inorganic materials, Chem. Mater. 13, 306–331 (2001)CrossRefGoogle Scholar
  15. 15.
    Reynolds J. G., Coronado P. R., Hrubesh L. W.: Hydrophobic aerogels for oil-spill clean up - synthesis and characterization, J. Non-Cryst. Solids 292, 127–137 (2001)CrossRefGoogle Scholar
  16. 16.
    Hrubesh L. W., Coronado P. R., Satcher Jr. J. H.: Solvent removal from water with hydrophobic aerogels, J. Non-Cryst. Solids 285, 328–332 (2001)CrossRefGoogle Scholar
  17. 17.
    Suzana S., Zoran N., Zeljko Kenz: Adsorption of toxic organic compounds from water with hydrophobic silica aerogels, J. Colloid and Interface Science 310, 362–368 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Venkateswara Rao, Hegde N. D. Hirashima H.: Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels, J. Colloid and Interface Science 305, 124–132 (2007)Google Scholar
  19. 19.
    Gurav J. L., A. Venkateswara Rao, Nadargi D. Y., Park H. H.: Ambient pressure dried TEOS-based silica aerogels: good absorbents of organic liquids, J. Mater Sci 45, 503–510 (2010)Google Scholar
  20. 20.
    Hering N., Schriber K., Riedel R., Lichtenberger O., Woltersodorf J.: Synthesis of polymeric precursors for the formation of nanocrystalline Ti-C-N/amorphous Si-C-N composites, J. Appl. Organometal. Chem. 15, 879–886 (2001)CrossRefGoogle Scholar
  21. 21.
    Laczka M., Cholwa-Kowalska K., Kogut M.: Organic-inorganic hybrid glasses of selective optical transmission, J.Non-Cryst. Solids 287, 10–14 (2001)CrossRefGoogle Scholar
  22. 22.
    Arthur B.: The Mainstream of Physics. Wesley Publishing Company Inc., Second Edition (1962)Google Scholar
  23. 23.
    A. Venkateswara Rao, Kulkarni M. M., Bhagat S. D.: Transport of liquids using superhydrophobic aerogels, J. Colloid and Interface Science, 285, 413–418 (2005)Google Scholar
  24. 24.
    Isenberg, C.: The science of soap films and soap bubbles. In: general introduction, pp. 1–26 General publishing company, Canada (1992)Google Scholar
  25. 25.
    Fridrikhsberg D. A. (1986) A Course in Colloid Chemistry. Mir Publishers, MoscowGoogle Scholar
  26. 26.
    Resnick R., Halliday D., Walker J.: Fundamentals of Physics, 6th Edition, John Wiley & Sons (2001)Google Scholar
  27. 27.
    Nadargi D. Y., Latthe S. S., Hirashima H., A. Venkateswara Rao,: Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels, J. Microporous and Mesoporous Mat. 117, 617–626 (2009)Google Scholar
  28. 28.
    A. Venkateswara Rao, Bhagat S. D., Hiroshima H., Pajonk G. M.: Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor, J. Colloid and Interface Sci., 300 279–285 (2006)Google Scholar
  29. 29.
    Wald, M. L., Clarifying Questions of Liability, Cleanup and Consequences, NY Times, 2010, May 6th issueGoogle Scholar
  30. 30.
    Fingus, M. Oil spills and their cleanup. Chemistry Industry 1005–1008 (1995)Google Scholar
  31. 31.
    Arthur B (1962) The mainstream of physics. Addison Wesley Publishing Company Inc., Second EditionGoogle Scholar
  32. 32.
    Delaune R.D., Lindau C.W., Jugsujinda A.: Effectiveness of “Nochar” solidifier polymer in removing oil from open water in coastal wetlands, Spill Science & Technology Bulletin 5, 357–359 (1999)CrossRefGoogle Scholar
  33. 33.
    Teas Ch., Kalligeros S, Zanikos F., Stournas S., Lois E., Anastopoulos G.: Investigation of the effectiveness of absorbent materials in oil spills clean up, Desalination 140, 259–264 (2001)Google Scholar
  34. 34.
    Doerffer J.W. (1992) Oil spill response in the marine environment. Pergamon Press, OxfordGoogle Scholar
  35. 35.
    Lessard RR, Demarco G: The significance of oil spill dispersants, Spill Sci Technol Bull 6, 59–68 (2000)CrossRefGoogle Scholar
  36. 36.
    Newman F.H., Searle V.H.L.: The general properties of matter. Orient Longmans, Fifth Edition (1957)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Venkateswara Rao
    • 1
  • G. M. Pajonk
    • 2
  • Digambar Y. Nadargi
    • 3
  • Matthias M. Koebel
    • 3
  1. 1.Air Glass Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Laboratoire des Matériaux et Procédés CatalytiquesUniversité Claude Bernard Lyon 1VilleurbanneFrance
  3. 3.Laboratory for Building TechnologiesEmpa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland

Personalised recommendations