Aerogels for Foundry Applications

Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)


The casting of metals and alloys is very often performed into molds made of sands bonded by polymers. Resins based on, for instance, phenol–formaldehyde build bonding bridges between the sand grains, establishing a macroporous tight and strong sand form having a shape mirroring the workpiece to be cast. Any cavity in a casting is mapped by so-called cores, which are also made of polymeric-bonded sands. Organic aerogels can replace conventional polymers and offer a variety of advantages due to their nanostructure and composition, especially for cores. The development of these organic aerogels for light-metal and nonferrous heavy metal casting is described, their properties elaborated and compared with conventional ones. Transforming especially resorcinol–formaldehyde aerogels into carbon aerogels allows bonding sand grains by amorphous, nanostructured carbon with special advantages. New developments in the last few years are described, revealing that inorganic and organic aerogels in a granular form can replace a part of any sand used in foundries, leading to improved cast parts. In contrast to polymeric aerogels, silica-based ones have been used for more than a decade in solidification engineering to study fundamental aspects of metal solidification and casting. The final section describes various applications of inorganic aerogels with respect to solidification science.


Silica Aerogel Carbon Aerogel Binder System Mold Filling Binder Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tilch W, Flemming E (1993) Formstoffe und FormverfahrenDeutscher Verlag für Grundstoffindustrie, Leipzig/StuttgartGoogle Scholar
  2. 2.
    Campbell J (2000) Castings. Butterworth-Heinemann, Oxford,Paperback EditionGoogle Scholar
  3. 3.
    Beeley PR (2001) Foundry Technology. Butterworth-Heinemann,Oxford, 2nd EditionGoogle Scholar
  4. 4.
    Brück S, Ratke L (2002) RF – Aerogels: A new binding material for foundry application. J Sol-Gel Sci Tech 26:663–666CrossRefGoogle Scholar
  5. 5.
    Bock V, Emmerling A, Fricke J (1998) Influence of monomer and catalyst concentration on RF and Carbon aerogel structure. J Non-Cryst Solids 225:69–73CrossRefGoogle Scholar
  6. 6.
    Brück S, Ratke L (2004) AeroSande – ein neuer Formstoff für Gießereianwendungen. Giessereiforschung 56:55–65Google Scholar
  7. 7.
    Brück S, Ratke L (2006) Mechanical properties of aerogel composites for casting purposes. J Mat Sci 41:1019–1024CrossRefGoogle Scholar
  8. 8.
    Reuß M, Ratke L (2009) Characterization of Carbon-AeroSands. Int J Foundry Res 61:2–11Google Scholar
  9. 9.
    Milow B, Ratke L (2009) German patent application 102009024013Google Scholar
  10. 10.
    Milow B, Ratke L, Nolte E (2006) German patent application 1020060560936Google Scholar
  11. 11.
    Reuß M, Ratke L (2010) Drying of aerogel bonded sands. J Mat Sci 45:3974–3980CrossRefGoogle Scholar
  12. 12.
    Milow B, Ratke L (2010) BTX free decomposition of polymeric aerogel binders. Int J Foundry Res, submittedGoogle Scholar
  13. 13.
    Reuß M, Ratke L, (2010) On the fraction of sand grains bounded in moulding materials – a new measurement technique. Int J Foundry Res, 62:24–29Google Scholar
  14. 14.
    Voss D, Ratke L (2005) Ein neuer, entgasungsarmer und verbrennbarer anorganischer Formstoff für die Gießereiindustrie – Kohlenstoff-Aerogel-Sandverbunde. Giessereiforschung 57: 18–25Google Scholar
  15. 15.
    Milow B, Ratke L (2008) German patent application 102008056856Google Scholar
  16. 16.
    Milow B, Ratke L (2008) German patent application 102008056842Google Scholar
  17. 17.
    Brück S, Ratke L (2005) German patent application 102006003198Google Scholar
  18. 18.
    Alkemper J, Ratke L, Diefenbach S (1993) Chill Casting into Aerogels. Scripta Metall et Mater 29:1495–1500CrossRefGoogle Scholar
  19. 19.
    Emmerling A, Lenhard W, Fricke J, Van de Vorst GAL Densification behaviour of silica aerogels upon isothermal sintering (1997) J Sol-Gel Sci Tech 8:837–842Google Scholar
  20. 20.
    Brinker J, Scherer GW, Sol-Gel Science. (1990) Academic Press, San DiegoGoogle Scholar
  21. 21.
    Alkemper J, Sous S, Stöcker C, Ratke L (1998) Directional solidification in an aerogel furnace with high resolution optical temperature measurement. J Crystal Growth 191:252–260CrossRefGoogle Scholar
  22. 22.
    Tscheuschner D, Ratke L (1999) Feinguss in Aerogelen. In: Ludwig A (ed) DGM Symposium Erstarrung metallischer Schmelzen in Forschung und Gießereipraxis. Wiley-VCH, Weinheim, p. 257–264Google Scholar
  23. 23.
    Tscheuschner D, Ratke L (2000) Investment Casting in Silica Aerogels. Materials Science Forum 329-330:479–486CrossRefGoogle Scholar
  24. 24.
    Tscheuschner D, Ratke L (2001) Wedge casting of AlSiMg alloys in aerogels. In: Stefanescu DM, Ruxanda R, Tierean M, Serban C (eds), Proc Int Conf The Science of Casting and Solidification, Editura Lux Libris, Bukarest pp. 245–251Google Scholar
  25. 25.
    Viets R, Breuer M, Haferkamp H, Krüssel T, Niemeyer M (1999) Solidification process and infrared image characteristics of permanent mold castings. Thermosense XXI, Int. Conf. on Thermal Sensing and Imaging Diagnostic Applications, OrlandoGoogle Scholar
  26. 26.
    Schaper M, Haferkamp H, Niemeyer M, Pelz C, Viets R (1999) Thermal investigation of compound cast steel tools. Thermosense XXI, Int. Conf. on Thermal Sensing and Imaging Diagnostic Applications, OrlandoGoogle Scholar
  27. 27.
    Haferkamp H, Bach FW, Niemeyer M, Viets R (1999) Merkmale von Wärmebildern zur Prozeßüberwachung beim Taktgießen. Aluminium 75:945–953Google Scholar
  28. 28.
    Haferkamp H, Bach FW, Niemeyer M, Viets R, Weber J, Breuer M, Krüssel T (1999) Tracing Thermal Process of Permanent Mould Casting. ISIE '99, Proceedings of the IEEE, Bled-Slovenia, Vol 3, pp. 1442–1447Google Scholar
  29. 29.
    Herfurth KT (1999) Beitrag zur Entwicklung einer Versuchs-technik für die Beobachtung von Warmrissen und anderen mit der Erstarrung verbundenen Erscheinungen. Shaker Verlag, AachenGoogle Scholar
  30. 30.
    Ratke L, Korekt G (2000) Solidification of Al-Pb base alloys in low gravity. Z Metallkde 91:919–927Google Scholar
  31. 31.
    Steinbach S, Ratke L (2004) In-Situ optical determination of fraction solid. Scripta Materialia 50:1135–1138CrossRefGoogle Scholar
  32. 32.
    Steinbach S, Ratke L (2005) The effect of rotating magnetic fields on the microstructure of directionally solidified Al-Si-Mg Alloys. Mat Sci Eng A413-414:200–204Google Scholar
  33. 33.
    Steinbach S, Ratke L (2007) The Influence of Fluid Flow on the Microstructure of Directionally Solidified AlSi-Base Alloys. Metall. Mater Trans 38A:1388–1394CrossRefGoogle Scholar
  34. 34.
    Steinbach S, Ratke L (2007) Experimental study on interaction of fluid flow and solidification in Al–Si–Cu alloys. Int J Cast Metals Research 20:140–144CrossRefGoogle Scholar
  35. 35.
    Zimmermann G, Weiss A, Mbaya Z (2005) Effect of forced melt flow on microstructure evolution in AlSi7Mg0.6 alloy during directional solidification. Mat Sci Eng A 413-414:236–242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Materials Physics in Space DLR, German Aerospace CenterCologneGermany

Personalised recommendations