Simulation and Modeling of Aerogels Using Atomistic and Mesoscale Methods

  • Lev D. Gelb
Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)


Molecular modeling and simulation are now widely used in many areas of materials science. In this chapter, we consider the application of these techniques to developing a better understanding of the structure and properties of aerogels. Both atomistic simulations and “coarse-grained” models are reviewed, and the challenges and possible solutions facing this field are also discussed. We focus on silica aerogels, as the great majority of simulation work in this area has been directed at understanding these materials.


Fractal Dimension Silicic Acid Silica Aerogel Atomistic Simulation Large Length Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fricke J (1992) Aerogels and their applications. J Non-Cryst Solids 147&148: 356–362.CrossRefGoogle Scholar
  2. 2.
    Fricke J, Emmerling A (1998) Aerogels - recent progress in production techniques and novel applications. J Sol-Gel Sci Tech 13: 299–303.CrossRefGoogle Scholar
  3. 3.
    Gesser HD, Goswami PC (1989) Aerogels and related porous materials. Chem Rev 89: 765–788.CrossRefGoogle Scholar
  4. 4.
    Nicolaon GA, Teichner SJ (1968) Préparation des aérogels de silice à partir d’orthosilicate de méthyle en milieu alcoolique et leurs propriétés. Bull Soc Chim France 5: 1906.Google Scholar
  5. 5.
    Scherer GW (1998) Characterization of aerogels. Adv Coll Int Sci 76-77: 321–339.CrossRefGoogle Scholar
  6. 6.
    Himmel B, Burger H, Gerber T, Olbertz A (1995) Structural characterization of SiO2 aerogels. J Non-Cryst Solids 185: 56–66.CrossRefGoogle Scholar
  7. 7.
    Duffours L, Woignier T, Phalippou J (1995) Plastic behaviour of aerogels under isostatic pressure. J Non-Cryst Solids 186: 321–327.CrossRefGoogle Scholar
  8. 8.
    Scherer GW, Smith DM, Qiu X, Anderson JM (1995) Compression of aerogels. J Non-Cryst Solids 186: 316–320.CrossRefGoogle Scholar
  9. 9.
    Woignier T, Duffours L, Alaoui A, Faivre A, Calas-Etienne S, Phalippou J (2003) Mechanical behaviour of highly porous glasses. J Non-Cryst Solids 316: 160–166.CrossRefGoogle Scholar
  10. 10.
    Parr RG, Yang W (1989) Density-Functional Theory of Atoms and Molecules. Oxford Univ Press, New York.Google Scholar
  11. 11.
    Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge U Press, Cambridge, UK.CrossRefGoogle Scholar
  12. 12.
    Szabo A, Ostlund NS (1996) Modern Quantum Chemistry. Dover.Google Scholar
  13. 13.
    Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids. Clarendon Press, Oxford.Google Scholar
  14. 14.
    Frenkel D, Smit B (1996) Understanding Molecular Simulation. Acad Press, San Diego.Google Scholar
  15. 15.
    Schlick T (2002) Molecular modeling and simulation: an interdisciplinary guide. Springer-Verlag, New York.Google Scholar
  16. 16.
    Cramer CJ (2002) Essentials of Computational Chemistry: Theories and Models. John Wiley & Sons, Chichester, UK.Google Scholar
  17. 17.
    Levitz P (1998) Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport. Adv Coll Int Sci 76–77: 71–106.CrossRefGoogle Scholar
  18. 18.
    Torquato S (2001) Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer-Verlag, New York.Google Scholar
  19. 19.
    Yeong CLY, Torquato S (1998) Reconstructing random media. Phys Rev E 57: 495–506.CrossRefGoogle Scholar
  20. 20.
    Quintanilla J, Reidy RF, Gorman BP, Mueller DW (2003) Gaussian random field models of aerogels. J Appl Phys 93: 4584–4589.CrossRefGoogle Scholar
  21. 21.
    Eschricht N, Hoinkis E, Mädler F, Schubert-Bischoff P, Röhl-Kuhn B (2005) Knowledge-based reconstruction of random porous media. J Colloid Int Sci 291: 201–213.CrossRefGoogle Scholar
  22. 22.
    Steriotis T, Kikkinides E, Kainourgiakis M, Stubos A, Ramsay JDF (2004) Monitoring adsorption by small angle neutron scattering in tandem with digital reconstruction-simulation techniques. Colloids and Surfaces A: Physicochem Eng Aspects 241: 231–237.CrossRefGoogle Scholar
  23. 23.
    Mikeš J, Dušek K (1982) Simulation of polymer network formation by the Monte Carlo method. Macromolecules 15: 93–33.CrossRefGoogle Scholar
  24. 24.
    Kasehagen LJ, Rankin SE, McCormick AV, Macosko CW (1997) Modeling of first shell substitution effects and preferred cyclization in sol-gel polymerization. Macromolecules 30: 3921–3939.CrossRefGoogle Scholar
  25. 25.
    Rankin SE, Kasehagen LJ, McCormick AV, Macosko CW (2000) Dynamic Monte Carlo simulation of gelation with extensive cyclization. Macromolecules 33: 7639–7648.CrossRefGoogle Scholar
  26. 26.
    Šefčík J, Rankin SE (2003) Monte Carlo simulations of size and structure of gel precursors in silica polycondensation. J Phys Chem B 107: 52–60.CrossRefGoogle Scholar
  27. 27.
    Pereira JCG, Catlow CRA, Price GD (1998) Silica condensation reaction: an ab initio study. Chem Commun 13: 1387–1388.CrossRefGoogle Scholar
  28. 28.
    Lasaga AC, Gibbs GV (1990) Ab-initio quantum mechanical calculations of water-rock interactions: adsorption and hydrolysis reactions. Am J Science 290: 263–295.CrossRefGoogle Scholar
  29. 29.
    Okumoto S, Fujita N, Yamabe S (1998) Theoretical study of hydrolysis and condensation of silicon alkoxides. J Phys Chem A 102: 3991–3998.CrossRefGoogle Scholar
  30. 30.
    Mora-Fonz MJ, Catlow CRA, Lewis DW (2007) Modeling aqueous silica chemistry in alkali media. J Phys Chem C 111: 18,155–18,158.Google Scholar
  31. 31.
    Schaffer CL, Thomson KT (2008) Density functional theory investigation into structure and reactivity of prenucleation silica species. J Phys Chem C 112: 12,653–12,662.Google Scholar
  32. 32.
    Trinh TT, Jansen APJ, van Santen RA, Meijer EJ (2009) The role of water in silicate oligomerization reaction. Phys Chem Chem Phys 11: 5092–5099.CrossRefGoogle Scholar
  33. 33.
    Trinh TT, Jansen APJ, van Santen RA, Meijer EJ (2009) Role of water in silica oligomerization. J Phys Chem C 113: 2647–2652.CrossRefGoogle Scholar
  34. 34.
    Trinh TT, Jansen APJ, van Santen RA, VandeVondele J, Meijer EJ (2009) Effect of counter ions on the silica oligomerization reaction. ChemPhysChem 10: 1775–1782.CrossRefGoogle Scholar
  35. 35.
    Lasaga AC, Gibbs GV (1987) Applications of quantum mechanical potential surfaces to mineral physics calculations. Phys Chem Minerals 14: 107–117.CrossRefGoogle Scholar
  36. 36.
    O’Keeffe M, Domenges B, Gibbs GV (1985) Ab initio molecular orbital calculations on phosphates: Comparison with silicates. J Phys Chem 89: 2304–2309.CrossRefGoogle Scholar
  37. 37.
    Pereira JCG, Catlow CRA, Price GD (1999) Ab initio studies of silica-based clusters. part I. Energies and conformations of simple clusters. J Phys Chem A 103: 3252–3267.CrossRefGoogle Scholar
  38. 38.
    Pereira JCG, Catlow CRA, Price GD (1999) Ab initio studies of silica-based clusters. part II. Structures and energies of complex clusters. J Phys Chem A 103: 3268–3284.CrossRefGoogle Scholar
  39. 39.
    Sauer J (1989) Molecular models in ab initio studies of solids and surfaces: From ionic crystals and semiconductors to catalysts. Chem Rev 89: 199–255.CrossRefGoogle Scholar
  40. 40.
    Pereira JCG, Catlow CRA, Price GD (2001) Molecular dynamics simulation of liquid H2O, MeOH, EtOH, Si(OMe)4, and Si(OEt)4, as a function of temperature and pressure. J Phys Chem A 105: 1909–1925.CrossRefGoogle Scholar
  41. 41.
    Pereira JCG, Catlow CRA, Price GD (2002) Molecular dynamics simulation of methanolic and ethanolic silica-based sol-gel solutions at ambient temperature and pressure. J Phys Chem A 106: 130–148.CrossRefGoogle Scholar
  42. 42.
    Garofalini SH, Melman H (1986) Applications of molecular dynamics simulations to sol-gel processing. In: CJ Brinker, DE Clark, DR Ulrich (eds) Better Ceramics Through Chemistry II 497–505. Materials Research Society, Pittsburgh.Google Scholar
  43. 43.
    Stillinger FH, Rahman A (1978) Revised central force potentials for water. J Chem Phys 68: 666–670.CrossRefGoogle Scholar
  44. 44.
    Brinker CJ, Scherer GW (1990) Sol-Gel Science. Acad Press, San Diego.Google Scholar
  45. 45.
    Feuston BP, Garofalini SH (1990) Oligomerization in silica sols. J Phys Chem 94: 5351–5356.CrossRefGoogle Scholar
  46. 46.
    Garofalini SH, Martin G (1994) Molecular simulations of the polymerization of silicic acid molecules and network formation. J Phys Chem 98: 1311–1316.CrossRefGoogle Scholar
  47. 47.
    Kinrade SD, Swaddle TW (1988) 29Si NMR studies of aqueous silicate solutions. 1. Chemical-shifts and equilibria. Inorg Chem 27: 4253–4259.CrossRefGoogle Scholar
  48. 48.
    Martin GE, Garofalini SH (1994) Sol-gel polymerization: analysis of molecular mechanisms and the effect of hydrogen. J Non-Cryst Solids 171: 68–79.CrossRefGoogle Scholar
  49. 49.
    Rao NZ, Gelb LD (2004) Molecular dynamics simulations of the polymerization of aqueous silicic acid and analysis of the effects of concentration on silica polymorph distributions, growth mechanisms, and reaction kinetics. J Phys Chem B 108: 12,418–12,428.Google Scholar
  50. 50.
    Bhattacharya S, Kieffer J (2005) Fractal dimensions of silica gels generated using reactive molecular dynamics simulations. J Chem Phys 122: 094715.CrossRefGoogle Scholar
  51. 51.
    Bhattacharya S, Kieffer J (2008) Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels. J Phys Chem C 112: 1764–1771.CrossRefGoogle Scholar
  52. 52.
    Kieffer J, Angell CA (1988) Generation of fractal structures by negative pressure rupturing of {SiO2} glass. J Non-Cryst Solids 106: 336–342.CrossRefGoogle Scholar
  53. 53.
    Nakano A, Bi L, Kalia RK, Vashishta P (1994) Molecular-dynamics study of the structural correlation of porous silica with use of a parallel computer. Phys Rev B 49: 9441–9452.CrossRefGoogle Scholar
  54. 54.
    Nakano A, Lingsong B, Kalia RK, Vashishta P (1993) Structural correlations in porous silica: Molecular dynamics simulation on a parallel computer. Phys Rev Lett 71: 85–88.CrossRefGoogle Scholar
  55. 55.
    Pohl PI, Faulon JL, Smith DM (1995) Molecular dynamics computer simulations of silica aerogels. J Non-Cryst Solids 186: 349–355.CrossRefGoogle Scholar
  56. 56.
    Meakin P (1988) Models for colloidal aggregation. Ann Rev Phys Chem 39: 237–267.CrossRefGoogle Scholar
  57. 57.
    Meakin P (1999) A historical introduction to computer models for fractal aggregates. J Sol-Gel Sci Tech 15: 97–117.CrossRefGoogle Scholar
  58. 58.
    Poon WCK, Haw MD (1997) Mesoscopic structure formation in colloidal aggregation and gelation. Adv Coll Int Sci 73: 71–126.CrossRefGoogle Scholar
  59. 59.
    Meakin P (1983) Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys Rev Lett 51: 1119–1122.CrossRefGoogle Scholar
  60. 60.
    Witten TA, Jr, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47: 1400–1403.CrossRefGoogle Scholar
  61. 61.
    Hasmy A, Anglaret E, Foret M, Pelous J, Jullien R (1994) Small-angle neutron-scattering investigation of long-range correlations in silica aerogels - simulations and experiments. Phys Rev B 50: 6006–6016.CrossRefGoogle Scholar
  62. 62.
    Hasmy A, Foret M, Pelous J, Jullien R (1993) Small-angle neutron-scattering investigation of short-range correlations in fractal aerogels - simulations and experiments. Phys Rev B 48: 9345–9353.CrossRefGoogle Scholar
  63. 63.
    Hasmy A, Foret M, Anglaret E, Pelous J, Jullien R (1995) Small-angle neutron scattering of aerogels: simulations and experiments. J Non-Cryst Solids 186: 118–130.CrossRefGoogle Scholar
  64. 64.
    Jullien R, Hasmy A, Anglaret É (1997) Effect of cluster deformations in the DLCA modeling of the sol-gel process. J Sol-Gel Sci Tech 8: 819–824.Google Scholar
  65. 65.
    Olivi-Tran N, Lenormand P, Lecomte A, Dauger A (2005) Molecular dynamics approach of sol-gel transition: Comparison with experiments. Physica A 354: 10–18.CrossRefGoogle Scholar
  66. 66.
    Pierce F, Sorensen CM, Chakrabarti A (2006) Computer simulation of diffusion-limited cluster-cluster aggregation with an epstein drag force. Phys Rev E 74: 021411.CrossRefGoogle Scholar
  67. 67.
    Ma HS, Prévost JH, Jullien R, Scherer GW (2001) Computer simulation of mechanical structure-property relationship of aerogels. J Non-Cryst Solids 285: 216–221.CrossRefGoogle Scholar
  68. 68.
    Lu H, Fu B, Daphalapurkar N, Hanan J, Soritrou-Leventis C, Leventis N (2008) Simulation of the evolution of the nanostructure of crosslinked silica-aerogels under compression. Polymer Preprints 49: 564–565.Google Scholar
  69. 69.
    Bijsterbosch BH, Bos MTA, Dickinson E, van Opheusden JHJ, Walstra P (1996) Brownian dynamics simulation of particle gel formation: From argon to yoghurt. Faraday Discuss 101: 51–64.CrossRefGoogle Scholar
  70. 70.
    Whittle M, Dickinson E (1997) Brownian dynamics simulation of gelation in soft sphere systems with irreversible bond formation. Mol Phys 90: 739–757.CrossRefGoogle Scholar
  71. 71.
    Whittle M, Dickinson E (1997) Stress overshoot in a model particle gel. J Chem Phys 107: 10,191–10,200.Google Scholar
  72. 72.
    d’Arjuzon RJM, Frith W, Melrose JR (2003) Brownian dynamics simulations of aging colloidal gels. Phys Rev E 67: 061404.CrossRefGoogle Scholar
  73. 73.
    Rzepiela AA, van Opheusden JHJ, van Vliet T (2001) Brownian dynamics simulation of aggregation kinetics of hard spheres with flexible bonds. J Colloid Int Sci 244: 43–50.CrossRefGoogle Scholar
  74. 74.
    Rzepiela AA, van Opheusden JHJ, van Vliet T (2002) Large shear deformation of particle gels studied by Brownian Dynamics simulations. Comp Phys Comm 147: 303–306.CrossRefGoogle Scholar
  75. 75.
    Rzepiela AA, van Opheusden JHJ, van Vliet T (2004) Large shear deformation of particle gels studied by Brownian Dynamics simulations. J Rheol 48: 863–880.CrossRefGoogle Scholar
  76. 76.
    Gelb LD (2007) Simulating silica aerogels with a coarse-grained flexible model and Langevin dynamics. J Phys Chem C 111: 15,792–15,802.Google Scholar
  77. 77.
    Leventis N (2007) Three-dimensional core-shell superstructures: Mechanically strong aerogels. Acc Chem Res 40: 874–884.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Texas at DallasRichardsonUSA

Personalised recommendations