Skip to main content

Structural Characterization of Aerogels

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Determining reliable structural parameters for an aerogel by applying suitable characterization techniques is a key factor in terms of understanding the different synthesis steps and their impact on the resulting aerogel. Combining structural parameters with the physical properties of the material allows optimization for specific applications. It is only the profound knowledge of the structure–properties relationships that provides access to the full potential of this type of material. This chapter presents different characterization methods commonly used and discusses their potential and limitations. Furthermore, more recent developments and new approaches are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the intensity per detector area decreases with the sample-detector distance squared.

  2. 2.

    The volume specific differential cross-section translates into the mass specific differential cross-section by multiplying with one over the bulk density of the sample: \( \frac{{{\text{d}}\Sigma }}{{{\hbox{d}}\Omega }}\frac{1}{\rho } = \frac{{{\text{d}}\sigma }}{{{\hbox{d}}\Omega }}. \)

  3. 3.

    Equations (21.2) and (21.3) reveal that dΣ/dΩcoh(q), i.e. the scattering pattern, is the Fourier transform of the autocorrelation function.

  4. 4.

    Micropores: pores <2 nm, mesopores: pores between 2 and 50 nm, macropores: pores >50 nm (IUPAC definition), see [34].

  5. 5.

    In case of carbon aerogels the pairs are: K, density of the interconnected backbone particles ⇨ particle surface, K′, ρ carbon ⇨ surface of particles and micropores.

  6. 6.

    It has to be emphasized that due to the large uncertainties of the background contribution at high q values, the accuracy is on the order of 10–20% only.

  7. 7.

    STP stands for standard temperature and pressure; cm3 STP gives the equivalent volume of a gas at standard temperature (273.15 K) and pressure (101,325.02 Pa).

  8. 8.

    β = 0.33 for CO2 at 273 K and 0.35 for N2 at 77 K.

  9. 9.

    The relationship was established for pore width d derived from SAXS data.

  10. 10.

    Other equations are provided by Frenkel, Halsey, and Hill (FHH) as well as Broekhoff and de Boer.

  11. 11.

    For example, S N2=0.162 nm2, S CO2=0.170 nm2.

  12. 12.

    BET stands for Brunauer, Emmett, and Teller who developed the method.

  13. 13.

    When the adsorbate is only partially wetting a factor of cos (θ C), with θ C the contact angle, has to be included on the right side of the equation.

  14. 14.

    For liquid nitrogen at 77 K, the values for the surface tension and the molar volume are 0.00885 J/m2 and 34 cm3/mol.

  15. 15.

    For adsorption in cylindrical pores therefore \( d = 2 \cdot (\left| {{r_{\rm{M}}}} \right|/2 + {t_{\rm{L}}}) \) holds.

  16. 16.

    Values for water: γ SL= 40 × 10−3 N/m, γ S/V S = (S LS S)/V S=334 × 103 J/m3, T m = 0°C. A 10 nm spherical pore radius causes a shift in melting temperature by about 22°C.

References

  1. Schüth F, Sing K S W, Weitkamp J (eds.) (2002) Handbook of Porous Solids (Band 1). Weinheim

    Google Scholar 

  2. Bourret A (1988) Low-Density Silica Aerogels Observed by High-Resolution Electron-Microscopy. Europhysics Letters 6: 731–737

    Article  CAS  Google Scholar 

  3. Job N, Pirard R, Vertruyen B et al (2007) Synthesis of transition metal-doped carbon xerogels by cogelation. Journal of Non-Crystalline Solids 353: 2333–2345

    Article  CAS  Google Scholar 

  4. Job J, Heinrichs B, Lambert S et al (2006) Carbon Xerogels as Catalyst Supports: Study of Mass Transfer. American Institute of Chemical Engineers: Fluid Mechanics and Transport Phenomena 52: 2663–2676

    Article  CAS  Google Scholar 

  5. Job N, Heinrichs B, Ferauche F et al (2005) Hydrodechlorination of 1,2-dichloroethane on Pd-Ag catalysts supported on tailored texture carbon xerogels. Catalysis Today 102: 234–241

    Article  Google Scholar 

  6. Job N, Pereira M F R, Lambert S et al (2006) Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels. Journal of Catalysis 240: 160–171

    Article  CAS  Google Scholar 

  7. Padilla-Serrano M N, Maldonado-Hodar F, Moreno-Castilla C (2005) Influence of Pt particle size on catalytic combustion of xylenes on carbon aerogel-supported Pt catalysts. Applied Catalysis B-Environmental 61: 253–258

    Article  CAS  Google Scholar 

  8. Hara H S, Smirnova A (2005) Method of Preparing Membrane Electrode Assemblies with Aerogel Supported Catalyst. WO/2005/086914

    Google Scholar 

  9. Sanchez-Polo M, Rivera-Utrilla J, von Gunten U (2006) Metal-doped carbon aerogels as catalysts during ozonation processes in aqueous solutions. Water Res 40: 3375–3384

    Article  CAS  Google Scholar 

  10. Guilminot E (2007) Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: Electrochemical characterization. Journal of Power Sources 166: 104–111

    Article  CAS  Google Scholar 

  11. Soler R, Cacchi S, Fabrizi Get al (2007) Sonogashira Cross-Coupling Using Carbon Aerogel Doped with Palladium Nanoparticles; A Recoverable and Reusable Catalyst. Synthesis 19: 3068–3072

    Google Scholar 

  12. Du H, Li B, Kang Fet al (2007) Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 45: 429–435

    Article  CAS  Google Scholar 

  13. Moreno-Castilla C, Maldonado-Hodar F J, Perez-Cadenas A F (2003) Physicochemical surface properties of Fe, Co, Ni, and Cu-doped monolithic organic aerogels. Langmuir 19: 5650–5655

    Article  CAS  Google Scholar 

  14. Moreno-Castilla C, Maldonado-Hodar F J (2005) Carbon aerogels for catalysis applications: An overview. Carbon 43: 455–465

    Article  CAS  Google Scholar 

  15. Maldonado-Hodar F J, Moreno-Castilla C, Perez-Cadenas A F (2004) Catalytic combustion of toluene on platinum-containing monolithic carbon aerogels. Applied Catalysis B-Environmental 54: 217–224

    Article  CAS  Google Scholar 

  16. Maldonado-Hodar F J, Perez-Cadenas A F, Moreno-Castilla C (2003) Morphology of heat-treated tungsten doped monolithic carbon aerogels. Carbon 41: 1291–1299

    Article  CAS  Google Scholar 

  17. Maldonado-Hodar F J, Ferro-Garcia M A, Rivera-Utrilla J et al (1999) Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon 37: 1199–1205

    Article  CAS  Google Scholar 

  18. Maldonado-Hodar F J, Moreno-Castilla C, Perez-Cadenas A F (2004) Surface morphology, metal dispersion, and pore texture of transition metal-doped monolithic carbon aerogels and steam-activated derivatives. Microporous and Mesoporous Materials 69: 119–125

    Article  CAS  Google Scholar 

  19. Stroud R M, Long J W, Pietron J J et al (2004) A practical guide to transmission electron microscopy of aerogels. Journal of Non-Crystalline Solids 350: 277–284

    Article  CAS  Google Scholar 

  20. Marliere C, Despetis F, Etienne P et al (2001) Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments. Journal of Non-Crystalline Solids 285: 148–153

    Article  CAS  Google Scholar 

  21. Beck A (1988) Optische Streuuntersuchungen an porösen SiO2-Systemen. Diploma Thesis, Physikalisches Institut, EP II Würzburg

    Google Scholar 

  22. Reichenauer G, Fricke J, Manara J et al (2004) Switching silica aerogels from transparent to opaque. Journal of Non-Crystalline Solids 350: 364–371

    Article  CAS  Google Scholar 

  23. Glatter O, Kratky O (1982) Small Angle X-ray scattering, London

    Google Scholar 

  24. Emmerling A, Petricevic R, Beck A et al (1995) Relationship between Optical Transparency and Nanostructural Features of Silica Aerogels. Journal of Non-Crystalline Solids 185: 240–248

    Article  CAS  Google Scholar 

  25. Posselt D, Pedersen J S, Mortensen K (1992) A Sans Investigation on Absolute Scale of a Homologous Series of Base-Catalyzed Silica Aerogels. Journal of Non-Crystalline Solids 145: 128–132

    Article  CAS  Google Scholar 

  26. Emmerling A, Fricke J (1992) Small-Angle Scattering and the Structure of Aerogels. Journal of Non-Crystalline Solids 145: 113–120

    Article  CAS  Google Scholar 

  27. Kjems J K, Freltoft T, Richter D et al (1986) Neutron-Scattering from Fractals. Physica B & C 136: 285-290

    CAS  Google Scholar 

  28. Aristov Y I, Lisitsa N, Zaikovski V I et al (1996) Fractal structure in base-catalyzed silica aerogels examined by TEM, SAXS and porosimetry. Reaction Kinetics and Catalysis Letters 58: 367–375

    Article  CAS  Google Scholar 

  29. Pahl R, Bonse U, Pekala R W et al (1991) Saxs Investigations on Organic Aerogels. Journal of Applied Crystallography 24: 771–776

    Article  CAS  Google Scholar 

  30. Bock V, Emmerling A, Fricke J (1998) Influence of monomer and catalyst concentration on RF and carbon aerogel structure. Journal of Non-Crystalline Solids 225: 69–73

    Article  CAS  Google Scholar 

  31. Barbieri O, Ehrburger-Dolle F, Rieker T P et al (2001) Small-angle X-ray scattering of a new series of organic aerogels. Journal of Non-Crystalline Solids 285: 109–115

    Article  CAS  Google Scholar 

  32. Schaefer D W, Pekala R, Beaucage G (1995) Origin of Porosity in Resorcinol Formaldehyde Aerogels. Journal of Non-Crystalline Solids 186: 159–167

    Article  CAS  Google Scholar 

  33. Gommes C J, Roberts A P (2008) Structure development of resorcinol-formaldehyde gels: Microphase separation or colloid aggregation. Physical Review E 77: 041409-041421

    Article  Google Scholar 

  34. Sing K S W, Everett D H, Haul R A W et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem 57: 603–619

    Article  CAS  Google Scholar 

  35. Cohaut N, Thery A, Guet J M et al (2007) The porous network in carbon aerogels investigated by small angle neutron scattering. Carbon 45: 1185–1192

    Article  CAS  Google Scholar 

  36. Kainourgiakis M E, Steriotis T A, Kikkinides E S et al (2005) Combination of small angle neutron scattering data and mesoscopic simulation techniques as a tool for the structural characterization and prediction of properties of bi-phasic media. Chemical Physics 317: 298–311

    Article  CAS  Google Scholar 

  37. Eschricht N, Hoinkis E, Madler F et al (2005) Knowledge-based reconstruction of random porous media. Journal of Colloid and Interface Science 291: 201–213

    Article  CAS  Google Scholar 

  38. Ehrburger-Dolle F, Fairen-Jimenez D, Berthon-Fabry S et al (2005) Nanoporous carbon materials: Comparison between information obtained by SAXS and WAXS and by gas adsorption. Carbon 43: 3009–3012

    Article  CAS  Google Scholar 

  39. Fairen-Jimenez D, Carrasco-Marin F, Djurado D et al (2006) Surface area and microporosity of carbon aerogels from gas adsorption and small- and wide-angle x-ray scattering measurements. Journal of Physical Chemistry B 110: 8681–8688

    Article  CAS  Google Scholar 

  40. Reim M, Reichenauer G, Körner W et al (2004) Silica-aerogel granulate – Structural, optical and thermal properties. Journal of Non-Crystalline Solids 350: 358–363

    Article  CAS  Google Scholar 

  41. Berthon-Fabry S, Langohr D, Achard P et al (2004) Anisotropic high-surface-area carbon aerogels. Journal of Non-Crystalline Solids 350: 136–144

    Article  CAS  Google Scholar 

  42. Gommes C, Blacher S, Goderis B et al (2004) In situ SAXS analysis of silica gel formation with an additive. Journal of Physical Chemistry B 108: 8983–991

    Article  CAS  Google Scholar 

  43. Tamon H, Ishizaka E (1998) SAXS study on gelation process in preparation of resorcinol-formaldehyde aerogel. Journal of Colloid and Interface Science 206: 577–582

    Article  CAS  Google Scholar 

  44. Gommes C J, Job N, Pirard J Pet al (2008) Critical opalescence points to thermodynamic instability: relevance to small-angle X-ray scattering of resorcinol-formaldehyde gel formation at low pH. Journal of Applied Crystallography 41: 663–668

    Article  CAS  Google Scholar 

  45. Reichenauer G, Wiener M, Brandt A et al (2009) In-situ monitoring of the deformation of nanopores due to capillary forces upon vapor sorption. HMI Annual Report

    Google Scholar 

  46. Calas S, Levelut C, Woignier T et al (1998) Brillouin scattering study of sintered and compressed aerogels. Journal of Non-Crystalline Solids 225: 244–247

    Article  CAS  Google Scholar 

  47. Caponi S, Fontana A, Mattarelli M et al (2004) Influence of thermal treatment in high and low frequency dynamics of silica porous systems. Journal of Non-Crystalline Solids 345-46: 61–65

    Article  Google Scholar 

  48. Buchenau U, Monkenbusch M, Reichenauer G et al (1992) Inelastic Neutron-Scattering from Virgin and Densified Aerogels. Journal of Non-Crystalline Solids 145: 121–127

    Article  CAS  Google Scholar 

  49. Conrad H, Buchenau U, Schatzler R et al (1990) Crossover in the Vibrational Density of States of Silica Aerogels Studied by High-Resolution Neutron Spectroscopy. Physical Review B 41: 2573–2576

    Article  Google Scholar 

  50. Conrad H, Fricke J, Reichenauer G (1989) High-Resolution Neutron Spectroscopy of the Crossover in the Vibrational Density of States of Silica Aerogels. Journal De Physique 50: C4157-C4162

    Google Scholar 

  51. Vacher R, Courtens E, Coddens G et al (1990) Crossovers in the density of states of fractal silica aerogels. Physical Review Letters 65: 1008–1011

    Article  CAS  Google Scholar 

  52. Courtens E, Lartigue C, Mezei F et al (1990) Measurement of the phonon-fracton crossover in the density of states of silica aerogels Condensed Matter – Zeitschrift für Physik B 79: 1–2

    Article  CAS  Google Scholar 

  53. Reichenauer G (2008) Aerogels. In: Kirk-Othmer Encyclopedia of Chemical Technology

    Google Scholar 

  54. Reichenauer G, Scherer G W (2000) Nitrogen adsorption in compliant materials. Journal of Non-Crystalline Solids 277: 162–172

    Article  CAS  Google Scholar 

  55. Reichenauer G, Scherer G W (2001) Nitrogen sorption in aerogels. Journal of Non-Crystalline Solids 285: 167–174

    Article  CAS  Google Scholar 

  56. Reichenauer G, Scherer G W (2001) Effects upon nitrogen sorption analysis in aerogels. Journal of Colloid and Interface Science 236: 385–386

    Article  CAS  Google Scholar 

  57. Reichenauer G, Stumpf C, Fricke J (1995) Characterization of SiO2, RF and Carbon Aerogels by Dynamic Gas-Expansion. Journal of Non-Crystalline Solids 186: 334–341

    Article  CAS  Google Scholar 

  58. Dubinin M M, Zaverina E D, Radushkevich L V (1947) Sorbtsiya I Struktura Aktivnykh Uglei.1. Issledovanie Adsorbtsii Organicheskikh Parov. Zhurnal Fizicheskoi Khimii 21: 1351–1362

    CAS  Google Scholar 

  59. Stoeckli H F, Rebstein P, Ballerini L (1990) On the Assessment of Microporosity in Active Carbons, a Comparison of Theoretical and Experimental-Data. Carbon 28: 907–909

    Article  CAS  Google Scholar 

  60. Wood G O (1996) Estimating the micropore volume of activated carbonaceous adsorbents for organic chemical vapors. Proceedings of the European Carbon Conference “Carbon 1996”, Newcastle (UK) 606–607

    Google Scholar 

  61. Noville F, Gommes C, Doneux C et al (2002) Is it possible to obtain a coherent image of the texture of a porous material? Characterization of Porous Solids VI 144: 419–426

    CAS  Google Scholar 

  62. Scherdel C, Reichenauer G, Wiener M (2010) Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by DR-, BET- and t-plot, Journal of Micro- and Mesoporous Materials 132: 572–575

    Google Scholar 

  63. Chmiel G, Lajtar L, Sokolowski S et al (1994) Adsorption in Energetically Heterogeneous Slit-Like Pores – Comparison of Density-Functional Theory and Computer-Simulations. Journal of the Chemical Society-Faraday Transactions 90: 1153–1156

    Article  CAS  Google Scholar 

  64. Olivier J P, Conklin W B, Vonszombathely M (1994) Determination of Pore-Size Distribution from Density-Functional Theory – a Comparison of Nitrogen and Argon Results. Characterization of Porous Solids III 87: 81–89

    Article  CAS  Google Scholar 

  65. Jagiello J, Olivier J P (2009) A Simple Two-Dimensional NLDFT Model of Gas Adsorption in Finite Carbon Pores. Application to Pore Structure Analysis. Journal of Physical Chemistry C 113: 19382–19385

    CAS  Google Scholar 

  66. Ravikovitch P I, Neimark A V (2001) Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method. Journal of Physical Chemistry B 105: 6817–6823

    Article  CAS  Google Scholar 

  67. Harkins W D, Jura G (1944) Surfaces of Solids. XII. An Absolute Method for the Determination of the Area of a Finely Divided Crystalline Solid. J. Am. Chem. Soc. 66: 1362–1366

    Article  CAS  Google Scholar 

  68. Magee R W (1994) Evaluation of the external surface area of carbon black by nitrogen adsorption. 68: 590–600

    Google Scholar 

  69. Mikhail R S, Brunauer S, Bodor E E (1968) Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method. Journal of Colloid and Interface Science 26: 45–53

    Article  CAS  Google Scholar 

  70. Iler R K (1979) The chemistry of silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry

    Google Scholar 

  71. Barrett E P, Joyner L G, Halenda P P (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. 1. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 73: 373–380

    Article  CAS  Google Scholar 

  72. Reichenauer G, Scherer G W (2001) Extracting the pore size distribution of compliant materials from nitrogen adsorption. Colloids and Surfaces a-Physicochemical and Engineering Aspects 187: 41–50

    Article  Google Scholar 

  73. Scherer G W, Smith D M, Stein D (1995) Deformation of Aerogels during Characterization. Journal of Non-Crystalline Solids 186: 309–315

    Article  CAS  Google Scholar 

  74. Gommes C J, Noville F, Pirard J P (2007) Characterization of gels via solvent desorption measurements. Adsorption-Journal of the International Adsorption Society 13: 533–540

    Article  CAS  Google Scholar 

  75. Reichenauer G, Pfrang T, Hofmann M (2007) Drying of meso- and macroporous gels – Length change and drying dynamics. Colloids and Surfaces A: Physicochem. Eng. Aspects 300: 211–215

    Article  CAS  Google Scholar 

  76. Giesche H (2006) Mercury porosimetry: A general (practical) overview. Particle & Particle Systems Characterization 23: 9–19

    Article  Google Scholar 

  77. Broecker F J, Heckmann W, Fischer F et al (1985) Structural Analysis of Granular Silica Aerogels. In: Fricke J (ed) International Symposium on Aerogels 6, Springer, Heidelberg

    Google Scholar 

  78. Brown S M, Lard E W (1974) Comparison of Nitrogen and Mercury Pore-Size Distributions of Silicas of Varying Pore Volume. Powder Technology 9: 187–190

    Article  Google Scholar 

  79. Pirard R, Heinrichs B, Van Cantfort O et al (1998) Mercury porosimetry applied to low density xerogels; relation between structure and mechanical properties. J. Sol-Gel Sci. Tech. 13: 335–339

    Article  CAS  Google Scholar 

  80. Pirard R, Pirard J P (2000) Mercury porosimetry applied to precipitated silica. Stud. Surf. Sci. Catal. 128: 603–611

    Article  CAS  Google Scholar 

  81. Pirard R, Alie C, Pirard J P (2002) Characterization of porous texture of hyperporous materials by mercury porosimetry using densification equation. Powder Technology 128: 242–247

    Article  CAS  Google Scholar 

  82. Job N, Pirard R, Pirard J P et al (2006) Non intrusive mercury porosimetry: Pyrolysis of resorcinol-formaldehyde xerogels. Particle & Particle Systems Characterization 23: 72–81

    Article  CAS  Google Scholar 

  83. Scherer G W, Smith D M, Qiu X et al (1995) Compression of aerogels. Journal of Non-Crystalline Solids 186: 316–320

    Article  CAS  Google Scholar 

  84. Vollet D R, Scalari J P, Donatti D A et al (2008) A thermoporometry and small-angle x-ray scattering study of wet silica sonogels as the pore volume fraction is varied. Journal of Physics-Condensed Matter 20: 1–7

    Google Scholar 

  85. Phalippou J, Ayral A, Woignier T et al (1991) Fractal Geometry of Silica Alcogels from Thermoporometry Experiments. Europhysics Letters 14: 249–254

    Article  CAS  Google Scholar 

  86. Scherer G W (1993) Freezing Gels. Journal of Non-Crystalline Solids 155: 1–25

    Article  CAS  Google Scholar 

  87. Beurroies I, Bourret D, Sempere R et al (1995) Gas-Permeability of Partially Densified Aerogels. Journal of Non-Crystalline Solids 186: 328–333

    Article  CAS  Google Scholar 

  88. Hasmy A, Beurroies I, Bourret D et al (1995) Gas-Transport in Porous-Media – Simulations and Experiments on Partially Densified Aerogels. Europhysics Letters 29: 567–572

    Article  CAS  Google Scholar 

  89. Calas S, Sempere R (1998) Textural properties of densified aerogels. Journal of Non-Crystalline Solids 225: 215–219

    Article  CAS  Google Scholar 

  90. Kong F M, Lemay J D, Hulsey S S et al (1993) Gas-Permeability of Carbon Aerogels. Journal of Materials Research 8: 3100–3105

    Article  CAS  Google Scholar 

  91. Reichenauer G, Fella H J, Fricke J (2002) Monitoring fast pressure changes in gas transport and sorption analysis. Characterization of Porous Solids VI 144: 443–449

    CAS  Google Scholar 

  92. Reichenauer G, Fricke J (1996) Gas Transport in Sol-Gel Derived Porous Carbon Aerogels. Fall Meeting of the Material Research Society, Boston (USA) 345–350

    Google Scholar 

  93. Gross J, Scherer G W (2003) Dynamic pressurization: novel method for measuring fluid permeability. Journal of Non-Crystalline Solids 325: 34–47

    Article  CAS  Google Scholar 

  94. Scherer G W (1996) Bending of gel beams: Effect of deflection rate and Hertzian indentation. Journal of Non-Crystalline Solids 201: 1–25

    Article  CAS  Google Scholar 

  95. Gross J, Scherer G W, Alviso C T et al (1997) Elastic properties of crosslinked Resorcinol-Formaldehyde gels and aerogels. Journal of Non-Crystalline Solids 211: 132–142

    Article  CAS  Google Scholar 

  96. Behr W, Haase A, Reichenauer G et al (1998) Self and transport diffusion of fluids in SiO2 alcogels studied by NMR pulsed gradient spin echo and NMR imaging. Journal of Non-Crystalline Solids 225: 91–95

    Article  CAS  Google Scholar 

  97. Behr W (1999) NMR-Bildgebung an Silica Alkogelen bei Drücken bis zu 10 MPa. PhD Thesis, Physikalisches Institut der Universität Würzburg

    Google Scholar 

  98. Behr W, Haase A, Reichenauer G et al (1999) High-pressure autoclave for multipurpose nuclear magnetic resonance measurements up to 10 MPa. Review of Scientific Instruments 70: 2448–2453

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Reichenauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reichenauer, G. (2011). Structural Characterization of Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics