Cellulosic and Polyurethane Aerogels

  • Arnaud Rigacci
  • Patrick Achard
Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)


This chapter focuses on isocyanurate and cellulose-based aerogels. First, it presents the global sol–gel synthetic path by polycondensation. Then, it summarizes all the main results on these two families of organic aerogels. Finally, some of the recent advancements concerning their use for hybridization of silica aerogels are shortly presented. Through a brief description of the basics, together with a short overview of the main properties, this article highlights the huge potential of those two classes of urethane-based aerogels.


Cellulose Acetate Silica Aerogel Cellulose Derivative Carbon Aerogel Dibutyltin Dilaurate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Jean-Charles Maréchal (CSTB, Grenoble, France) and Florent Fischer (formerly at MINES ParisTech/CEP, Sophia Antipolis, France and at present with SAFT R&D, Bordeaux, France) are strongly acknowledged for very close collaboration on polyurethane and cellulose acetate aerogels, respectively. René Pirard (LGC, Liège University, Belgium) is also warmly acknowledged for his high-level expertise in structural characterizations of aerogel materials as well as our daily collaborators, Claudia Hildenbrand and Pierre Ilbizian (MINES ParisTech/CEP, Sophia Antipolis, France), for their deep intervention in sol–gel studies and supercritical dryings. We also want to acknowledge Prof. Tatiana Budtova (MINES ParisTech/CEMEF, Sophia Antipolis, France) and Prof. Michel Perrut (SEPAREX, Champigneulles, France) for very fruitful discussions on cellulose and polyurethane, respectively. Finally, the authors are grateful for financial support from the French Energy and Environment Agency (ADEME), the French Research Agency (ANR) and the European Commission for their respective financial supports on related topics.


  1. 1.
    Rivera-Armenta JL, Heinze Th, Mendoza-Martinez AM (2004) New polyurethane foams modified with cellulose derivatives. European Polymer Journal 41: 2803–2812.CrossRefGoogle Scholar
  2. 2.
    Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 63: 52–64.CrossRefGoogle Scholar
  3. 3.
    Tabor R (1995) Microporous isocyanate-based polymer compositions and method of preparation. US Patent 5; 478–867.Google Scholar
  4. 4.
    Biesmans G, Randall D, Francais E, Perrut M (1998) Polyurethane-based organic aerogels’ thermal performance. J Non-Cryst Solids 225: 36–40.CrossRefGoogle Scholar
  5. 5.
    Escudero RR, Robitzer M, Di Renzo, F, Quignard F (2009) Alginate aerogels as adsorbents of polar molecules from liquid hydrocarbons: hexanol as probe molecule. Carbohydrate Polymers 75: 52–57.CrossRefGoogle Scholar
  6. 6.
    Miao Z, Ding K, Wu T, Liu Z, Han B, An G, Miao S, Yang G (2008) Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route. Microporous and Mesoporous Materials 111: 104–109.CrossRefGoogle Scholar
  7. 7.
    Mehling T, Smirnova Guenter U, Neubert RH (2009) Polysaccharide-based 2aerogels as drug carriers. J Non-Cryst Solids 355: 2472–2479.CrossRefGoogle Scholar
  8. 8.
    Scanlon S, Aggeli A, Boden N, Koopmans RJ, Brydson R, Rayner CM (2007) Peptide aerogels comprising self-assembling nanofibrils, Micro & Nano Letters 2: 24–29.CrossRefGoogle Scholar
  9. 9.
    Tsioptsias C, Michailof C, Stauropoulos G, Panayiotou C (2009) Chitin and carbon aerogels from chitin alcogels. Carbohydrate Polymers 76: 535–540.CrossRefGoogle Scholar
  10. 10.
    Singh J, Dutta PK, Dutta J, Hunt, Macquarrie DJ, Clark JH (2009) Preparation and properties of highly soluble chitosan-L-glutamic acid aerogel derivative. Carbohydrate Polymers 76: 188–195.CrossRefGoogle Scholar
  11. 11.
    Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloïds and Surfaces A: Physicochem. Eng. Aspects 240: 63–67.CrossRefGoogle Scholar
  12. 12.
    Innerlohinger J, Weber H, Kraft G (2006) Aerocellulose : aerogels and aerogel-like materials made from cellulose. Macromol. Symp. 244: 126–135.CrossRefGoogle Scholar
  13. 13.
    Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47: 7636–7645.CrossRefGoogle Scholar
  14. 14.
    Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solution. Biomacromolecules 9: 269–277.CrossRefGoogle Scholar
  15. 15.
    Biesmans G, Randall D, Francais E, Perrut M (1998) The development of polyurethane based organic aerogels and their thermal properties. In: Perrut M & Subra P (eds) Proceedings of the 5th meeting on supercritical fluids (Nice, France, 23–25 March 1998) tome 1: 5–12.Google Scholar
  16. 16.
    Tan C, Fung B, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Advanced Materials 13: 644–646.CrossRefGoogle Scholar
  17. 17.
    Luong ND, Lee Y, Nam J-D (2008) Highly-loaded silver nanoparticles in ultrafine cellulose acetate nanofibrillar aerogel. European Polymer Journal 44: 3116–3121.CrossRefGoogle Scholar
  18. 18.
    Biesmans G, Mertens A, Duffours L, Woignier T, Phalippou J (1998) Polyurethane based organic aerogels and their transformation into carbon aerogels. J Non-Cryst Solids 225: 64–68.CrossRefGoogle Scholar
  19. 19.
    Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon-Fabry S, Achard P, Chainet E (2007) Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: electrochemical characterization. Journal of Power Sources 166: 104–111.CrossRefGoogle Scholar
  20. 20.
    Guilminot E, Gavillon R, Chatenet M, Berthon-Fabry S, Rigacci A, Budtova T (2007) New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. Journal of Power Sources 185: 717–726.CrossRefGoogle Scholar
  21. 21.
    Budtova T (2010) MINES ParisTech/CEMEF France, Private Communication.Google Scholar
  22. 22.
    Fischer F (2006) Synthèse et étude de matériaux nanostructurés à base d’acétate de cellulose pour applications énergétiques. PhD dissertation MINES ParisTech.Google Scholar
  23. 23.
    Perrut M, Français E (1999) Process and equipment for drying polymeric aerogel in the presence of a supercritical fluid. US patent 5; 962–539.Google Scholar
  24. 24.
    Woods G (1990) The ICI Polyurethanes book. Wiley.Google Scholar
  25. 25.
    Dieterich D, Uhlig K (2000) Polyurethanes. Ullmann’s Encyclopedia of Industrial Chemistry. WileyGoogle Scholar
  26. 26.
    Marotel Y (2000) Polyuréthannes. Techniques de l’ingénieur AM3425, Paris.Google Scholar
  27. 27.
    Luo SG, Tan HM, Zhang JG, Wu YJ, Pei FK, Meng XH (1997) Catalytic mechanisms of triphenyl bismuth, dibutyltin dilaurate and their combination in polyurethane-forming reaction. Journal of Applied Polymer Science 65: 1217–1225.CrossRefGoogle Scholar
  28. 28.
    Frisch KC, Reegen SL, Floutz WV, Olivier JP (1967) Complex formation between catalysts, alcohols, and isocyanates in the preparation of urethanes. Journal of Applied Polymer Science Part A: Polymer Chemistry 5: 35–42.CrossRefGoogle Scholar
  29. 29.
    Abbate FW, Ulrich H (1969) Urethane: organometallic catalysis of the reaction of alcohols with isocyanates. Journal of Applied Polymer Science 13: 1929–1936.CrossRefGoogle Scholar
  30. 30.
    Reegen SL, Frisch KC (1970) Isocyanate-catalyst and hydroxyl-catalyst complex formation. Journal of Applied Polymer Science Part A: Polymer Chemistry 8: 2883–2891.CrossRefGoogle Scholar
  31. 31.
    Baker WB, Gaunt J (1949) The mechanism of the aryl isocyanates with alcohols and amines. Part III. The base-catalysed reaction of phenyl isocyanate with alcohols. Journal of the Chemical Society 9–18.Google Scholar
  32. 32.
    Baker WB, Davies MM, Gaunt J (1949) The mechanism of the aryl isocyanates with alcohols and amines. Part IV. The evidence of infra red absorption spectra regarding alcohol-amine association in the base-catalysed reaction of phenyl isocyanate with alcohols. Journal of the Chemical Society 24–27.Google Scholar
  33. 33.
    Flynn KG, Nenortas DR (1963) Kinetics and mechanism of the reaction between phenyl isocyanate and alcohols. Strong base catalysis and deuterium effects. Journal of Organic Chemistry 28: 3527–3530.Google Scholar
  34. 34.
    Farkas A, Strohm PF (1965) Mechanism of Amine-Catalyzed Reaction of Isocyanates with Hydroxyl Compounds. Ind. Eng. Chem. Fundam. 4: 32–38.CrossRefGoogle Scholar
  35. 35.
    Borsus JM, Merckaert P, Jérôme R, Teyssier Ph (1982) Catalysis of the reaction between isocyanates and protonic substrates. II Kinetic study of the polyurea foaming process catalysed by a series of amino compounds. Journal of Applied Polymer Science 27: 4029–4042.Google Scholar
  36. 36.
    Tewari PH, Hunt AJ, Lofftus KD (1985) Ambient-temperature supercritical drying of transparent aerogels. Materials Letters 3: 363–367.CrossRefGoogle Scholar
  37. 37.
    Biesmans G (1999) Polyisocyanate based aerogel, US Patent 5990184.Google Scholar
  38. 38.
    Biesmans G (1999) Polyisocyanate based xerogel, US Patent 6063826.Google Scholar
  39. 39.
    Rigacci A, Maréchal JC, Repoux M, Moreno M, Achard P (2004) Elaboration of aerogels and xerogels of polyurethane for thermal insulation. J Non-Cryst Solids 35: 372–378.CrossRefGoogle Scholar
  40. 40.
    Masmoudi Y, Rigacci A, Ilbizian P, Cauneau F, Achard P (2006) Diffusion during the supercritical drying of silica gels. Drying Technology 24: 1–6.CrossRefGoogle Scholar
  41. 41.
    Pirard R, Rigacci A, Maréchal JC, Achard P, Quenard D, Pirard JP (2003) Characterization of porous texture of hyperporous polyurethane based xerogels and aerogels by mercury porosimetry using densification equation. Polymer 44: 4881–4887.CrossRefGoogle Scholar
  42. 42.
    Lee JK, Gould GL, Rhine W (2009) Polyurea based aerogel for a high performance thermal insulation material. J Sol-Gel Sci Technol 49: 209–22.CrossRefGoogle Scholar
  43. 43.
    Zhang G et al (2004) Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. Journal of Non-Crystalline Solids 350: 152–164.CrossRefGoogle Scholar
  44. 44.
    Leventis N et al (2008) Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties. Journal of Non-Crystalline Solids 354:632–644.CrossRefGoogle Scholar
  45. 45.
    Capadona LA, Meador MA, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Flexible, low-density polymer crosslinked silica aerogels. Polymer 47: 5754–5761.CrossRefGoogle Scholar
  46. 46.
    Yim T-J, Kim SY, Yoo K-P (2002) Fabrication and thermophysical characterization of nanoporous silica-polyurethane hybrid aerogel by sol-gel processing and supercritical solvent drying. Korean J. Chem. Eng. 19(1): 159–166.CrossRefGoogle Scholar
  47. 47.
    Jeon HT, Jang MK, Kim BK, Kim KH (2007) Synthesis and characterization of waterborne polyurethane-silica hybrids using sol-gel process. Colloids and Surface A: Physicochem. Eng. Aspects 302: 559–567.CrossRefGoogle Scholar
  48. 48.
    Lee K (2007) Organic aerogels reinforced with inorganic fillers. US Patent 2007/0259979.Google Scholar
  49. 49.
    Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH urea aqueous solution. Macromol. Biosci. 7: 804–809.CrossRefGoogle Scholar
  50. 50.
    Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose-NaOH-water solutions. Cellulose 16: 417–426.CrossRefGoogle Scholar
  51. 51.
    Pinnow M, Fink H-P, Fanter C, Kunze J (2008) Characterization of Highly Porous Materials from Cellulose Carbamate. Macromol. Symp. 262: 129–139.CrossRefGoogle Scholar
  52. 52.
    Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose. Cellulose 15: 121–129.CrossRefGoogle Scholar
  53. 53.
    Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4: 2492–2499.CrossRefGoogle Scholar
  54. 54.
    Nishino T, Matsuda L, Hirao K (2004) All-cellulose composite. Macromolecules 37: 7683–7687.CrossRefGoogle Scholar
  55. 55.
    Duchemin BJC, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. Journal of Applied Polymer Science 115: 216–221.CrossRefGoogle Scholar
  56. 56.
    Weatherwax RC., Caufield DF (1978) The pore structure of papers wet stiffened by formaldehyde crosslinking. Journal of colloid and interface science 67: 498–505.CrossRefGoogle Scholar
  57. 57.
    Yang CQ (1993) Infrared spectroscopic studies of the effects of the catalyst on the ester crosslinking of cellulose by polycarboxylic acids. Journal of applied polymer science 50: 2047–2053.CrossRefGoogle Scholar
  58. 58.
    Bai YX, Li Y-F (2006) Preparation and characterization of crosslinked porous cellulose beads. Carbohydrate polymers 64: 402–407.CrossRefGoogle Scholar
  59. 59.
    Espositio F, Del Nobile MA, Mensitieri G, Nicolais L (1996) Water sorption in cellulose-based hydrogels. Journal of applied polymer science 60: 2403–2407.CrossRefGoogle Scholar
  60. 60.
    Rustmeyer P (2004) Cellulose acetates: properties and applications. Macromolecular symposia 208 Issue 1. Wiley.Google Scholar
  61. 61.
    Goebel KD, Berry GC, Tanner DW (1978) Properties of cellulose acetate. III. Light scattering from concentrated solutions and films. Tensile creep and desalination studies on films. Journal of polymer science: polymer physics edition 17(6): 917–937.CrossRefGoogle Scholar
  62. 62.
    Malm CJ, Nadeau GF (1935) Cellulose acetate carbamate, US Patent 1991107.Google Scholar
  63. 63.
    Mormann W, Michel U (2002) Improved synthesis of cellulose carbamate without by-products. Carbohydrate polymers 50: 201–208.CrossRefGoogle Scholar
  64. 64.
    Tanaka T (1981) Gels. Sci. Am. 244: 124–138.CrossRefGoogle Scholar
  65. 65.
    Pirard R, Blacher S, Brouers F, Pirard JP (1195) Interpretation of mercury porosimetry applied to aerogels. J. Mater. Res. 10: 2114–2119.Google Scholar
  66. 66.
    Rigacci A, Achard P (2008) Aerogels a new family of superinsulating materials for various applications fields. Trends and future of on-board energy in space systems, 24–25 november 2008, Avignon, France (CD-rom).Google Scholar
  67. 67.
    Sequeira S, Evtuguin D, Portugal I, Esculcas A (2007) Synthesis and characterization of cellulose/silica hybrids obtained by heteropoly acid catalysed sol-gel process. Materials Science and Engineering C27: 172–179.Google Scholar
  68. 68.
    Sequeira S, Evtuguin D, Portugal I (2009) Preparation and properties of cellulose / silica hybrid composites. Polymer composites 30: 1275–1282.CrossRefGoogle Scholar
  69. 69.
    Telysheva G, Dishbite T, Evtuguin D, Mironova-Ulmane N, Lebedeva G, Andersone A, Bikovens O, Chirkova J, Belkova L (2009) Design of siliceous lignins. Novel organic/inorganic hybrid sorbent materials. Scripta Materialia 60: 687–690.CrossRefGoogle Scholar
  70. 70.
    Telysheva G (1992) in Lignocellulosics – Science Technology, Development and Use, Kennedy J, Phillips G, Williams P (Eds). Ellis Harwood, London 643–655.Google Scholar
  71. 71.
    Deng M, Zhou Q, Du A, van Kasteren J, Wang Y (2009) Preparation of nanoporous cellulose foams from cellulose-ionic liquid solution. Materials Letters 63: 1851–1854.CrossRefGoogle Scholar
  72. 72.
    Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydrate Polymers 75: 125–129.CrossRefGoogle Scholar
  73. 73.
    Dai S, Ju YH, Gao HJ, Lin JS, Pennycook SJ, Barnes CE (2000) Preparation of silica aerogel using ionic liquids as solvents. Chem Commun 243–244.Google Scholar
  74. 74.
    Karout A, Pierre AC (2007), Silica xerogels and aerogels synthesized with ionic liquids, J. Non-Cryst Solids 353: 2900–2909.CrossRefGoogle Scholar
  75. 75.
    M.V. Migliorini, R.K. Donato, M.A. Benvegnu, R.S. Gonçalves, H.S. Schrekker (2008) Imidazolium ionic liquids as bifunctional materials (morphology controller and pre-catalyst) for the preparation of xerogel silica’s. J. Sol-Gel Sci Technol 48: 272–276.CrossRefGoogle Scholar
  76. 76.
    Karout A, Pierre AC (2009) Influence of ionic liquids on the texture of silica aerogels. J Sol Gel Sci Technol 49: 364–372.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Energy and ProcessesMINES ParisTechSophia Antipolis CedexFrance

Personalised recommendations