Skip to main content

Search for Negative Refraction in the Visible Region of Light by Fluorescent Microscopy of Quantum Dots Infiltrated into Regular and Inverse Synthetic Opals

  • Chapter
  • First Online:
Nanoscale Photonics and Optoelectronics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 9))

  • 1657 Accesses

Abstract

In this chapter, regular and inverse synthetic opals are examined experimentally by infiltrating them with CdSe quantum dots (QDs). Confocal microscopy measurements in which we track the infiltration of QDs inside the regular and inverse opals show indications of focusing of light emitted by QDs, which can be due to negative refraction occurring at the opal–glass interface. The formation of a focus can be an indication of the left-handed behavior of these synthetic opals in the [111] direction in its higher photonic band, above the photonic band gap (PBG). This result can be very promising because, until now, left-handed behavior has not been demonstrated in 3D photonic crystals in the visible region of light. This result was made possible due to the use of infiltrated QDs as internal light sources inside the porous photonic crystal, which appears to be a very useful technique for the study of other negative-index materials (NIM) effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shelby R.A, Smith, D.R., Schultz S.: Experimental verification of a negative index of refraction. Science 292, 77 (2001)

    Article  CAS  Google Scholar 

  2. Foteinopoulou, S., Economu, E.N., Soukoulis, C.M.: Refraction in media with a negative refractive index. Phys. Rev. Lett. 90, 107402 (2003)

    Article  CAS  Google Scholar 

  3. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  CAS  Google Scholar 

  4. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 10(4), 509–514 (1968)

    Article  Google Scholar 

  5. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  CAS  Google Scholar 

  6. Agranovich, V., Shen, Y.R., Baughman, R., Zakhidov, A.: Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B 69, 165112 (2004)

    Article  Google Scholar 

  7. Luo, C., Johnson, S.G., Joannopoulos, J.D., Pendry, J.B.: All-angle negative refraction without negative effective index. Phys. Rev. B 65, 201104® (2002)

    Article  Google Scholar 

  8. Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M.: Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 91, 207401 (2003)

    Article  CAS  Google Scholar 

  9. Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M.: Electromagnetic waves negative refraction by photonic crystals. Nature 423, 604 (2003)

    Article  CAS  Google Scholar 

  10. Parimi, P.V., Lu, W.T., Vodo, P., Sridhar, S.: Imaging by flat lens using negative refraction. Nature 426, 404 (2003)

    Article  CAS  Google Scholar 

  11. Schuster, R., Barth, M., Gruber, A., Cichos, F.: Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots. Chem. Phys. Lett. 413, 280 (2005)

    Article  CAS  Google Scholar 

  12. Vinogradov, A.P., Dorofeenko, A.V., Erokhin, S.G., Inoue, M., Lisyansky, A.A., Merzlikin, A.M., Granovsky, A.B.: Surface state peculiarities in one-dimensional photonic crystal interfaces. Phys. Rev. B 74, 045128 (2006)

    Article  Google Scholar 

  13. Moussa, R., Foteinopoulou, S., Soukoulis, C.M.: Delay-time investigation of electromagnetic waves through homogeneous medium and photonic crystal left-handed materials. Appl. Phys. Lett. 85, 1125 (2004)

    Article  CAS  Google Scholar 

  14. Sigalas, M., Soukoulis, C.M., Economou, E.N., Chan, C.T., Ho, K.M.: Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient. Phys. Rev. B 48, 14121, (1993)

    Article  CAS  Google Scholar 

  15. Ao, X., He, S.: Adaptive-optics ultrahigh-resolution optical coherence tomography. Optic. Lett. 29, 2542 (2004)

    Article  Google Scholar 

  16. Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S., Marti, J., Ralchenko, V.: Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282, 897 (1998)

    Article  CAS  Google Scholar 

  17. Aliev, A.E., Zakhidov, A.A., Baughman, R.H.: Chalcogenide inverted opal photonic crystal as infrared pigments. Int. J. Nanosci. 5(1), 157–172 (2006)

    Article  CAS  Google Scholar 

  18. Shkunov, M.N., Vardeny, Z.V., DeLong, M.C., Polson, R.C., Zakhidov, A.A., Baughman, R.H.: Tunable, gap-state lasing in switchable directions for opal photonic crystals. Adv. Funct. Mater. 12, 21 (2002)

    Article  CAS  Google Scholar 

  19. Berrier, A., Mulot, M., Swillo, M., Qiu, M., Thylén, L., Talneau, A., Anand, S.: Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys. Rev. Lett. 93, 073902 (2004)

    Article  CAS  Google Scholar 

  20. Barth, M., Schuster, R., Gruber, A., Cichos, F.: Imaging single quantum dots in three-dimensional photonic crystals. Phys. Rev. Lett. 96, 243902 (2006)

    Article  Google Scholar 

  21. Strauf, S.: Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006)

    Article  CAS  Google Scholar 

  22. Moussa, R., Kuznetsov, A., Neiser, E., Roberson, A.L., Zakhidov, A.A.: Negative refraction in the visible spectrum in photonic crystals: search for focusing by fluorescent quantum dots inside synthetic opals J. Nanophoton., 4, 043503 (2010)

    Article  Google Scholar 

  23. Lopez, C., Vazquez, L., Meseguer, F., Mayoral, R., Ocana, M.: Photonic crystal made by close packing SiO2 submicron spheres. Superlattice. Microst. 22(3), 399 (1997)

    Article  CAS  Google Scholar 

  24. Ren, K., Li, Z.Y., Ren, X., Feng, S., Cheng, B., Zhang, D.: Three-dimensional light focusing in inverse opal photonic crystals, Phys. Rev. B 75, 115108 (2007)

    Article  Google Scholar 

  25. Notomi, M.: Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B 62, 10696 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Moussa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moussa, R., Kuznetsov, A., Neiser, E., Zakhidov, A. (2010). Search for Negative Refraction in the Visible Region of Light by Fluorescent Microscopy of Quantum Dots Infiltrated into Regular and Inverse Synthetic Opals. In: Wang, Z., Neogi, A. (eds) Nanoscale Photonics and Optoelectronics. Lecture Notes in Nanoscale Science and Technology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7587-4_4

Download citation

Publish with us

Policies and ethics