Spontaneous Emission Control in a Plasmonic Structure

  • Hideo Iwase
  • Yiyang Gong
  • Dirk Englund
  • Jelena Vučković
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 9)


Surface plasmon polaritons (SPPs) are electromagnetic waves at optical frequencies that propagate at the surface of a conductor [1]. SPPs can trap optical photons far below their diffraction limit. The field confinement of SPP provides the environment for controlling the interaction between light and matter. In this chapter, we discuss the quantum electrodynamics (QED) of SPP coupling of excitons near a metal-layer surface, and an exciton embedded in a metal microcavity. We analyze the enhanced spontaneous emission (SE) rate of the exciton coupled to a large number of SPP modes near a uniform or periodically patterned metal layer traveling with extremely slow group velocities. Combining the effects of quality factor (Q) and ohmic losses for each SPP mode, we explain how various loss mechanisms affect the SE rate of excitons in such structures. Similarly, we consider the Q-factor and mode volume of a cavity mode formed by a defect in a grating structure and again investigate the enhancement of SE for excitons lying in a metal cavity. Because defect cavity designs confine modes in all three dimensions, we observe that such a structure of extremely small mode volume could reach various regimes of cavity quantum electro-dynamics (cavity QED). Controlling the SE properties of emitters through the exciton–SPP coupling is great promise for new types of opto-electronic devices overcoming the diffraction limit.


Purcell effect Plasmonics QED 


  1. 1.
    Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)CrossRefGoogle Scholar
  2. 2.
    Westphalen, M., Kreibig, U., Rostalski, J., Luth, H., Meissner, D.: Metal cluster enhanced organic solar cells. Sol. Energy Mat. Sol. Cells 61, 97–105 (2000)CrossRefGoogle Scholar
  3. 3.
    Derkacs, D., Lim, S.H., Matheu, P., Mar, W., Yu, E.T.: Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89, 093103 (2006)CrossRefGoogle Scholar
  4. 4.
    Maier, S.A.: Plasmonic field enhancement and SERS in the effective mode volume picture. Opt. Express 14, 1957–1964 (2006)CrossRefGoogle Scholar
  5. 5.
    Nie, S., Emory, S.R.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102 (1997)CrossRefGoogle Scholar
  6. 6.
    Vučković, J., Loncar, M., Scherer, A.: Surface plasmon enhanced light-emitting diode. IEEE J. Quantum Electron 36, 1131–1144 (2000)CrossRefGoogle Scholar
  7. 7.
    Kumar, S., Williams, B.S., Qin, Q., Lee, A.W.M., Hu, Q., Reno, J.L.: Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. Opt. Express 15, 113–123 (2007)CrossRefGoogle Scholar
  8. 8.
    Kim, S., Jin, J., Kim, Y.-J., Park, I.-Y., Kim, Y., Kim, S.-W.: High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008)CrossRefGoogle Scholar
  9. 9.
    Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  10. 10.
    Barnes, W.L.: Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998)CrossRefGoogle Scholar
  11. 11.
    Chance, R.R., Prock, A., Silbey, R.: Lifetime of an emitting molecule near partially reflecting surface. J. Chem. Phys. 60, 2744–2748 (1974)CrossRefGoogle Scholar
  12. 12.
    Chance, R.R., Prock, A., Silbey, R.: Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978)CrossRefGoogle Scholar
  13. 13.
    Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics (review). Nature 424, 824–830 (2003)CrossRefGoogle Scholar
  14. 14.
    Iwase, H., Englund, D., Vučković, J.: Spontaneous emission control in high-extraction efficiency plasmonic crystals. Opt. Express 16, 426–434 (2008)CrossRefGoogle Scholar
  15. 15.
    Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Par, H., Lukin, M.D.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nat. Phys. 450, 402–406 (2007)Google Scholar
  16. 16.
    Sirtori, C., Gmachl, C., Capasso, F., Faist, J., Sivco, D.L., Hutchinson, A.L., Cho, A.Y.: Long-wavelength (λ ~ 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons. Opt. Lett. 23, 1366–1368 (1998)CrossRefGoogle Scholar
  17. 17.
    Okamoto, T., H’Dhili, F., Kawata, S.: Towards plasmonic band gap laser. Appl. Phys. Lett. 85, 3968 (2004)CrossRefGoogle Scholar
  18. 18.
    Barnes, W.L., Preist, T.W., Kitson, S.C., Sambles, J.R.: Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B 54, 6227–6244 (1996)CrossRefGoogle Scholar
  19. 19.
    Chang, D.E., Sorensen, A.S., Hemmer, P.R., Lukin, M.D.: Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007)CrossRefGoogle Scholar
  20. 20.
    Gong, Y., Vučković, J.: Design of plasmon cavities for solid-state cavity quantum electrodynamics applications. Appl. Phys. Lett. 90, 033113 (2007)CrossRefGoogle Scholar
  21. 21.
    Kimble, H.J.: Structure and dynamics in cavity quantum electronics. In: Berman, P. (ed.) Cavity Quantum Electrodynamics, pp. 213–219. Academic, San Diego, CA (1994)Google Scholar
  22. 22.
    Englund, D., Faraon, A., Fushman, I., Stoltz, N., Petroff, P., Vučković, J.: Nature 450, 857 (2007)CrossRefGoogle Scholar
  23. 23.
    Iwase, H., Englund, D., Vučković, J.: Analysis of the Purcell effect in photonic and plasmonic crystals with losses. Opt. Express 18, 16546–16560 (2010)CrossRefGoogle Scholar
  24. 24.
    Okamonto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T., Scherer, A.: Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mat. 3, 601–605 (2004)CrossRefGoogle Scholar
  25. 25.
    Gontijo, I., Boroditsky, M., Yablonovitch, E., Keller, S., Mishra, U.K., DenBaars, S.P.: Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Phys. Rev. B 60, 11564 (1999)CrossRefGoogle Scholar
  26. 26.
    Neogi, A., Lee, C., Everitt, H.O., Kuroda, T., Tackeuchi, A., Yablonovitch, E.: Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 66, 153305 (2002)CrossRefGoogle Scholar
  27. 27.
    Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)Google Scholar
  28. 28.
    Jackson, J.D.: Classical Electrodynamics. Wiley, New York, NY (1998)Google Scholar
  29. 29.
    Scully, M.O., Zubairy, M.S.: Chap. 9. Quantum Optics. Cambridge University Press, London (1997)Google Scholar
  30. 30.
    Manga Rao, V.S.C., Hughes, S.: Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide. Phys. Rev. B 75, 205437 (2007)CrossRefGoogle Scholar
  31. 31.
    Landau, L.D.: Electrodynamics of Continuous Media. Pergamon, New York, NY (1984)Google Scholar
  32. 32.
    Economou, E.N.: Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969)CrossRefGoogle Scholar
  33. 33.
    Lee, R.K., Xu, Y., Yariv, A.: Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab. J. Opt. Soc. Am. B 17, 1438 (2000)CrossRefGoogle Scholar
  34. 34.
    Vučković, J., Pelton, M., Scherer, A., and Yamamoto, Y.: Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics. Phys. Rev. A 66, 023808 (2002)CrossRefGoogle Scholar
  35. 35.
    Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals. Princeton University Press, Princeton, NJ (1995)Google Scholar
  36. 36.
    Boroditsky, M., Vrijen, R., Krauss, T.F., Coccioli, R., Bhat, R., Yablonovitch, E.: Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals. J. Lightwave Technol. 17, 2096–2112 (1999)CrossRefGoogle Scholar
  37. 37.
    Plihal, M., Maradudin, A.A.: Photonic band structure of two-dimensional systems: the triangular lattice. Phys. Rev. B 44, 8565 (1991)CrossRefGoogle Scholar
  38. 38.
    Chutinan, A., Ishihara, K., Asano, T., Fujita, M., Noda, S.: Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods. Org. Electron. 6, 3–9 (2005)CrossRefGoogle Scholar
  39. 39.
    Altug, H., Vučković, J.: Two-dimensional coupled photonic crystal resonator arrays. Appl. Phys. Lett. 84, 161–163 (2004)CrossRefGoogle Scholar
  40. 40.
    Hinds, E.A.: Perturbative cavity quantum electrodynamics. In: Berman, P.R. (eds) Cavity Quantum Electrodynamics. Academic, New York, NY (1994)Google Scholar
  41. 41.
    Coldren, L.A., Corzine, S.W.: Diode Lasers and Photonic Integrated Circuits. Wiley, New York, NY (1995)Google Scholar
  42. 42.
    Kitson, S.C., Barnes, W.L., Sambles, J.R.: Full photonic band gap for surface modes in the visible. Phys. Rev. Lett. 77, 2670–2673 (1996)CrossRefGoogle Scholar
  43. 43.
    Adachi, S.: Physical Properties of III-V Semiconductor Compounds. Wiley, New York, NY (1992)CrossRefGoogle Scholar
  44. 44.
    Chang, D.E., Sørenson, A.S., Hemmer, P.R., Lukin. M.D.: Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)CrossRefGoogle Scholar
  45. 45.
    Weeber, J.-C., Lacroute, Y., Dereux, A., Devaux, E., Ebbesen, T., Girard, C., González, M.U., Baudrion, A.-L.: Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides. Phys. Rev. B 70, 235406 (2004)CrossRefGoogle Scholar
  46. 46.
    Bozhevolnyi, S., Boltasseva, A., Søndergaard, T., Nikolajsen, T., Leosson, K.: Photonic band gap structures for long-range surface plasmon polaritons. Opt. Comm. 250, 328–333 (2005)CrossRefGoogle Scholar
  47. 47.
    Liu, Z.-W., Wei, Q.-H., Zhang, X.: Surface plasmon interference nanolithography. Nano Lett. 5, 957–961 (2005)CrossRefGoogle Scholar
  48. 48.
    Wang, B., Wang, G.P.: Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl. Phys. Lett. 87, 013107 (2005)CrossRefGoogle Scholar
  49. 49.
    Eliseev, P.G., Li, H., Stintz, A., Liu, G.T., Newell, T.C., Malloy, K.J., Lester, L.F.: Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes. Appl. Phys. Lett. 77, 262 (2000)CrossRefGoogle Scholar
  50. 50.
    Waks, E., Vučković, J.: Dispersive properties and large Kerr nonlinearities using dipole-induced transparency in a single-sided cavity. Phys. Rev. A 73, 041803 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hideo Iwase
    • 1
  • Yiyang Gong
    • 2
  • Dirk Englund
    • 2
  • Jelena Vučković
    • 2
  1. 1.Production Engineering Research LaboratoryCanon Inc.KanagawaJapan
  2. 2.Ginzton LaboratoryStanford UniversityStanfordUSA

Personalised recommendations