Skip to main content

Contribution of Berry Anthocyanins to Their Chemopreventive Properties

Abstract

Interest in berry fruits has intensified worldwide because of the multiple health-promoting phytochemicals present. Anthocyanins represent a major class of phytochemicals present in most colorful berries, and are of interest to nutritionists because of their postulated health benefits, as well as to food processors because of their colorful character and their use as natural colorants. This chapter presents an overview of the role of anthocyanins in the chemoprotective effects of berries. We will review incidence of anthocyanins in berries, their chemistry and concentration, as well as the reported literature regarding in vitro and in vivo chemoprotective studies, structure/chemoprotection relationship, bioavailability, and the interaction of berry anthocyanins with other phytochemicals. The data presented suggests that anthocyanins play a major role in the chemoprotective effects of many berry fruits.

Keywords

  • Berry
  • Anthocyanin
  • Concentration
  • Structure
  • Chemoprevention
  • Bioavailability
  • Interaction effect
  • Structure-bioactivity relationship

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-7554-6_1
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4419-7554-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.1

References

  • Afaq F, Syed DN, Malik A et al (2006) Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human hacat keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J Invest Dermatol 127:222–232

    PubMed  CrossRef  CAS  Google Scholar 

  • Andersen ØM (1985) Chromatographic separation of anthocyanins in cowberry (lingonberry) Vaccinium vites-idaea L. J Food Sci 50:1230–1232

    CAS  CrossRef  Google Scholar 

  • Andersen ØM (1987) Anthocyanins in fruits of Vaccinium uliginosum L. (bog whortleberry). J Food Sci 52:665–666, 680

    CrossRef  Google Scholar 

  • Andersen ØM (1989) Anthocyanins in fruits of Vaccinium oxycoccus L. (small cranberry). J Food Sci 54:383–384, 387

    CrossRef  Google Scholar 

  • Andersen ØM, Fossen T, Torskangerpoll K et al (2004) Anthocyanin from strawberry (Fragaria x ananassa) with the novel aglycone, 5-carboxypyranopelargonidin. Phytochemistry 65:405–410

    CAS  PubMed  CrossRef  Google Scholar 

  • Andersen ØM, Jordheim M (2005) The anthocyanins. In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications, 1st edn. CRC press, Boca Raton, FL

    Google Scholar 

  • Angel P, Karin M (1991) The role of Jun, fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157

    CAS  PubMed  Google Scholar 

  • Aziz RM, Nines R, Rodrigo K et al (2002) The effect of freeze-dried blueberries on N-nitrosomethylbenzylamine tumorigenesis in the rat esophagus. Pharm Biol 40(Suppl):43–49

    CAS  CrossRef  Google Scholar 

  • Bakowska-Barczak AM, Kolodziejczyk P (2008) Evaluation of Saskatoon berry (Amelanchier alnifolia Nutt.) cultivars for their polyphenol content, antioxidant properties, and storage stability. J Agric Food Chem 56:9933–9940

    CAS  PubMed  CrossRef  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    CAS  PubMed  CrossRef  Google Scholar 

  • Benvenuti S, Pellati F, Melegari M et al (2004) Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J Food Sci 69:FCT164–FCT169

    CAS  CrossRef  Google Scholar 

  • Boateng J, Verghese M, Shackelford L et al (2007) Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Fisher 344 male rats. Food Chem Toxicol 45:725–732

    CAS  PubMed  CrossRef  Google Scholar 

  • Bomser J, Madhavi DL, Singletary K et al (1996) In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Med 62:212–216

    CAS  PubMed  CrossRef  Google Scholar 

  • Bovin D, Blanchette M, Barrette S et al (2007) Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NFκB by edible berry juice. Anticancer Res 27:937–948

    Google Scholar 

  • Bub A, Watzl B, Heeb D et al (2001) Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur J Nutr 40:113–120

    CAS  PubMed  CrossRef  Google Scholar 

  • Burrows C, Moore PP (2002) Genotype x environment effects on raspberry fruit quality. Acta Hortic 585:467–473

    CAS  Google Scholar 

  • Cao G, Muccitelli HU, Sanchez-Moreno C et al (2001) Anthocyanins are absorbed in glycated forms in elderly women: a pharmacokinetic study. Am J Clin Nutr 73:920–926

    CAS  PubMed  Google Scholar 

  • Carlton PS, Kresty LA, Siglin JC et al (2001) Inhibition of N-nitrosomethylbenzylamine-induced tumorigenesis in the rat esophagus by dietary freeze-dried strawberries. Carcinogenesis 22:441–446

    CAS  PubMed  CrossRef  Google Scholar 

  • Casto BC, Kresty LA, Kraly CL et al (2002) Chemoprevention of oral cancer by black raspberries. Anticancer Res 22:4005–4015

    CAS  PubMed  Google Scholar 

  • Chen PN, Chu SC, Chiou HL et al (2005) Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr Cancer 53:232–243

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen PN, Chu SC, Chiou HL et al (2006a) Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett 235:248–259

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen PN, Kuo WH, Chiang CL et al (2006b) Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chem Biol Interact 163:218–229

    CAS  PubMed  CrossRef  Google Scholar 

  • Cho MJ, Howard LR, Prior RL et al (2004) Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric 84:1771–1782

    CrossRef  CAS  Google Scholar 

  • Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    CAS  PubMed  CrossRef  Google Scholar 

  • Clark JR, Howard L, Talcott S (2002) Antioxidant activity of blackberry genotypes. Acta Hortic 585:475–480

    CAS  Google Scholar 

  • Clifford MN (2000) Anthocyanins – nature, occurrence and dietary burden. J Sci Food Agric 80:1063–1072

    CAS  CrossRef  Google Scholar 

  • Coates E, Popa G, Gill C et al (2007) Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer. J Carcinog 6:4

    PubMed  CrossRef  CAS  Google Scholar 

  • Connor AM, Luby JJ, Hancock JF et al (2002) Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. J Agric Food Chem 50:893–898

    CAS  PubMed  CrossRef  Google Scholar 

  • Cooke D, Schwarz M, Boocock D et al (2006) Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis-relationship with tissue anthocyanin levels. Int J Cancer 119:2213–2220

    CAS  PubMed  CrossRef  Google Scholar 

  • Cordenunsi BR, Oliveira do Nascimento JR, Genovese MI et al (2002) Influence of cultivar on quality parameters and chemical composition of strawberry fruits grown in Brazil. J Agric Food Chem 50:2581–2586

    CAS  PubMed  CrossRef  Google Scholar 

  • Dai J, Gupte A, Gates L et al (2009) A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms. Food Chem Toxicol 47:837–847

    CAS  PubMed  CrossRef  Google Scholar 

  • Deighton N, Brennan R, Finn C et al (2000) Antioxidant properties of domesticated and wild Rubus species. J Sci Food Agric 80:1307–1313

    CAS  CrossRef  Google Scholar 

  • Ding M, Feng R, Wang SY et al (2006) Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J Biol Chem 281:17359–17368

    CAS  PubMed  CrossRef  Google Scholar 

  • Doris M, Nicole P, Zeina T et al (2004) The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation. Mol Nutr Food Res 48:318–325

    CrossRef  CAS  Google Scholar 

  • Dreiseitel A, Oosterhuis B, Vukman KV, et al (2009) Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1. Br J Clin Pharmacol 158:1942–1950

    Google Scholar 

  • Dreiseitel A, Schreier P, Oehme A et al (2008) Inhibition of proteasome activity by anthocyanins and anthocyanidins. Biochem Biophys Res Commun 372:57–61

    CAS  PubMed  CrossRef  Google Scholar 

  • Dugo P, Mondello L, Errante G et al (2001) Identification of anthocyanins in berries by narrow-bore high-performance liquid chromatography with electrospray ionization detection. J Agric Food Chem 49:3987–3992

    CAS  PubMed  CrossRef  Google Scholar 

  • Elisia I, Hu C, Popovich DG et al (2007) Antioxidant assessment of an anthocyanin-enriched blackberry extract. Food Chem 101:1052–1058

    CAS  CrossRef  Google Scholar 

  • Escribano-Bailón MT, Alcalde-Eon C, Muñoz O et al (2006) Anthocyanins in berries of Maqui (Aristotelia chilensis (Mol.) Stuntz). Phytochem Anal 17:8–14

    PubMed  CrossRef  CAS  Google Scholar 

  • Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    CAS  PubMed  CrossRef  Google Scholar 

  • Felgines C, Talavera S, Gonthier MP et al (2003) Strawberry anthocyanins are recovered in urine as glucuro- and sulfoconjugates in humans. J Nutr 133:1296–1301

    CAS  PubMed  Google Scholar 

  • Felgines C, Talavera S, Texier O et al (2005) Blackberry anthocyanins are mainly recovered from urine as methylated and gucuronidated conjugates in humans. J Agric Food Chem 53:7721–7727

    CAS  PubMed  CrossRef  Google Scholar 

  • Felgines C, Texier O, Garcin P et al (2009) Tissue distribution of anthocyanins in rats fed a blackberry anthocyanin-enriched diet. Mol Nutr Food Res 53:1098

    CAS  PubMed  CrossRef  Google Scholar 

  • Feng R, Ni H-M, Wang SY et al (2007) Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J Biol Chem 282:13468–13476

    CAS  PubMed  CrossRef  Google Scholar 

  • Fimognari C, Berti F, Nüsse M et al (2004) Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanidin-3-O-[beta]-glucopyranoside. Biochem Pharmacol 67:2047–2056

    CAS  PubMed  CrossRef  Google Scholar 

  • Fiorini M (1995) Preparative high-performance liquid chromatography for the purification of natural anthocyanins. J Chromatogr A 692:213–219

    CAS  CrossRef  Google Scholar 

  • Fleschhut J, Kratzer F, Rechkemmer G et al (2006) Stability and biotransformation of various dietary anthocyanins in vitro. Eur J Nutr 45:7–18

    CAS  PubMed  CrossRef  Google Scholar 

  • Fox SB (2006) Quantitative angiogenesis in breast cancer. Methods Mol Med 120:161–187

    CAS  PubMed  Google Scholar 

  • Garzón GA, Riedl KM, Schwartz SJ (2009) Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes berry (Rubus glaucus Benth). J Food Sci 74:C227–C232

    PubMed  CrossRef  CAS  Google Scholar 

  • Giusti MM, Jing P (2007) Natural pigments of berry fruits: functionality and application. In: Zhao Y (ed) Berry fruit: value-added products for health promotion, 1st edn. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Giusti MM, Wrolstad RE (2003) Acylated anthocyanins from edible sources and their applications in food systems. Biochem Eng J 14:217–225

    CAS  CrossRef  Google Scholar 

  • Goiffon JP, Brun M, Bourrier MJ (1991) High-performance liquid chromatography of red fruit anthocyanins. J Chromatogr 537:101–121

    CAS  CrossRef  Google Scholar 

  • Hafeez BB, Siddiqui IA, Asim M, Malik A et al (2008) A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor-{kappa}B signaling. Cancer Res 68:8564–8572

    PubMed  CrossRef  CAS  Google Scholar 

  • Haffner K, Rosenfeld HJ, Skrede G et al (2002) Quality of red raspberry Rubus idaeus L cultivars after storage in controlled and normal atmospheres. Postharvest Biol Technol 24:279–289

    CAS  CrossRef  Google Scholar 

  • Hakimuddin F, Paliyath G, Meckling K (2004) Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells. Breast Cancer Res Treat 85:65–79

    CAS  PubMed  CrossRef  Google Scholar 

  • Han C, Ding H, Casto B et al (2005) Inhibition of the growth of premalignant and malignant human oral cell lines by extracts and components of black raspberries. Nutr Cancer 51:207–217

    CAS  PubMed  CrossRef  Google Scholar 

  • Harborne JB (1979) Correlations between flavonoid chemistry, anatomy and geography in the restionaceae from Australasia and South Africa. Phytochemistry 18:1323–1327

    CAS  CrossRef  Google Scholar 

  • Harris GK, Gupta A, Nines RG et al (2001) Effects of lyophilized black raspberries on azoxymethane-induced colon cancer and 8-hydroxy-2'-deoxyguanosine levels in the Fischer 344 rat. Nutr Cancer 40:125–133

    CAS  PubMed  CrossRef  Google Scholar 

  • Hassimotto NMA, Genovese MI, Lajolo FM (2008) Absorption and metabolism of cyanidin-3-glucoside and cyanidin-3-rutinoside extracted from wild mulberry (Morus nigra L.) in rats. Nutr Res 28:198–207

    CAS  PubMed  CrossRef  Google Scholar 

  • He J, Magnuson BA, Giusti MM (2005) Analysis of anthocyanins in rat intestinal contents – impact of anthocyanin chemical structure on fecal excretion. J Agric Food Chem 53:2859–2866

    CAS  PubMed  CrossRef  Google Scholar 

  • Hogan S, Chung H, Zhang L et al (2010) Antiproliferative and antioxidant properties of anthocyanin-rich extract from açai. Food Chem 118:208–214

    CAS  CrossRef  Google Scholar 

  • Hosseinian FS, Beta T (2007) Saskatoon and wild blueberries have higher anthocyanin contents than other Manitoba berries. J Agric Food Chem 55:10832–10838

    CAS  PubMed  CrossRef  Google Scholar 

  • Hou DX, Fujii M, Terahara N et al (2004a) Molecular mechanisms behind the chemopreventive effects of anthocyanidins. J Biomed Biotechnol 5:321–325

    CrossRef  Google Scholar 

  • Hou DX, Kai K, Li JJ et al (2004b) Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms. Carcinogenesis 25:29–36

    CAS  PubMed  CrossRef  Google Scholar 

  • Hou DX, Ose T, Lin S et al (2003) Anthocyanidins induce apoptosis in human promyelocytic leukemia cells: structure-activity relationship and mechanisms involved. Int J Oncol 23:705–712

    CAS  PubMed  Google Scholar 

  • Hou DX, Tong X, Terahara N et al (2005a) Delphinidin 3-sambubioside, a Hibiscus anthocyanin, induces apoptosis in human leukemia cells through reactive oxygen species-mediated mitochondrial pathway. Arch Biochem Biophys 440:101–109

    CAS  PubMed  CrossRef  Google Scholar 

  • Hou DX, Yanagita T, Uto T et al (2005b) Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure-activity relationship and molecular mechanisms involved. Biochem Pharmacol 70:417–425

    CAS  PubMed  CrossRef  Google Scholar 

  • Huang C, Huang Y, Li J et al (2002) Inhibition of Benzo(a)Pyrene diol-epoxide-induced transactivation of activated protein 1 and nuclear factor B by black raspberry extracts. Cancer Res 62:6857–6863

    CAS  PubMed  Google Scholar 

  • Huang C, Li J, Song L et al (2006) Black raspberry extracts inhibit Benzo(a)Pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway. Cancer Res 66:581–587

    CAS  PubMed  CrossRef  Google Scholar 

  • Huopalahti R, Järvenpää E, Katina K (2000) A novel solid-phase extraction-HPLC method for the analysis of anthocyanin and organic acid composition of Finnish cranberry. J Liq Chromatogr Relat Technol 23:2695–2701

    CAS  CrossRef  Google Scholar 

  • Ichiyanagi T, Rahman MM, Hatano Y et al (2007) Protocatechuic acid is not the major metabolite in rat blood plasma after oral administration of cyanidin 3-O-β-d-glucopyranoside. Food Chem 105:1032–1039

    CAS  CrossRef  Google Scholar 

  • Ichiyanagi T, Rahman MM, Kashiwada Y et al (2004) Absorption and metabolism of delphinidin 3-O-β-d-glucopyranoside in rats. Free Radic Biol Med 36:930–937

    CAS  PubMed  CrossRef  Google Scholar 

  • Inami O, Tamura I, Kikuzaki H et al (1996) Stability of anthocyanins of Sambucus canadensis and Sambucus nigra. J Agric Food Chem 44:3090–3096

    CAS  CrossRef  Google Scholar 

  • Jing P, Bomser JA, Schwartz SJ et al (2008) Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J Agric Food Chem 56:9391–9398

    CAS  PubMed  CrossRef  Google Scholar 

  • Jung KJ, Wallig MA, Singletary KW (2006) Purple grape juice inhibits 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett 233:279–288

    CAS  PubMed  CrossRef  Google Scholar 

  • Kaack K, Kuhn BF (1992) Black chokeberry (Aronia melanocarpa) for manufacture of a food colorant. Tidsskrift Planteavl 96:183–196

    CAS  Google Scholar 

  • Kähkönen MP, Heinamaki J, Ollilainen V et al (2003) Berry anthocyanins: isolation, identification and antioxidant properties. J Sci Food Agric 83:1403–1411

    CrossRef  CAS  Google Scholar 

  • Kalt W, Forney CF, Martin A et al (1999) Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agric Food Chem 47:4638–4644

    CAS  PubMed  CrossRef  Google Scholar 

  • Kamei H, Hashimoto Y, Koide T et al (1998) Antitumor effect of methanol extracts from red and white wines. Cancer Biother Radiopharm 13:447–452

    CAS  PubMed  CrossRef  Google Scholar 

  • Kampuse S, Kampuss K, Pizika L (2002) Stability of anthocyanins and ascorbic acid in raspberry and blackcurrant cultivars during frozen storage. Acta Hortic 585:507–510

    CAS  Google Scholar 

  • Katsube N, Iwashita K, Tsushida T et al (2003) Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51:68–75

    CAS  PubMed  CrossRef  Google Scholar 

  • Kay CD, Mazza G, Holub BJ et al (2004) Anthocyanin metabolites in human urine and serum. Br J Nutr 91:933–942

    CAS  PubMed  CrossRef  Google Scholar 

  • Klopotek Y, Otto K, Bohm V (2005) Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity. J Agric Food Chem 53:5640–5646

    CAS  PubMed  CrossRef  Google Scholar 

  • Koide T, Hashimoto Y, Kamei H et al (1997) Antitumor effect of anthocyanin fractions extracted from red soybeans and red beans in vitro and in vivo. Cancer Biother Radiopharm 12:277–280

    CAS  PubMed  Google Scholar 

  • Kong JM, Chia LS, Goh NK et al (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933

    CAS  PubMed  CrossRef  Google Scholar 

  • Kresty LA, Frankel WL, Hammond CD et al (2006) Transitioning from preclinical to clinical chemopreventive assessments of lyophilized black raspberries: interim results show berries modulate markers of oxidative stress in Barrett’s esophagus patients. Nutr Cancer 54(1):148–156

    CAS  PubMed  CrossRef  Google Scholar 

  • Kresty LA, Morse MA, Morgan C et al (2001) Chemoprevention of esophageal tumorigenesis by dietary administration of lyophilized black raspberries. Cancer Res 61:6112–6119

    CAS  PubMed  Google Scholar 

  • Kuskoski EM, Vega JM, Rios JJ et al (2003) Characterization of anthocyanins from the fruits of baguaçu (Eugenia umbelliflora Berg). J Agric Food Chem 51:5450–5454

    CAS  PubMed  CrossRef  Google Scholar 

  • Lala G, Malik M, Zhao C et al (2006) Anthocyanin-rich extracts inhibit multiple biomarkers of colonic cancer in rats. Nutr Cancer 54:84–93

    CAS  PubMed  CrossRef  Google Scholar 

  • Lazze MC, Savio M, Pizzala R et al (2004) Anthocyanins induce cell cycle perturbations and apoptosis in different human cell lines. Carcinogenesis 25:1427–1433

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee J, Finn CE, Wrolstad RE (2004) Comparison of anthocyanin pigment and other phenolic compounds of Vaccinium membranaceum and Vaccinium ovatum native to the Pacific Northwest of North America. J Agric Food Chem 52:7039–7044

    CAS  PubMed  CrossRef  Google Scholar 

  • Lister CE, Wilson PE, Sutton KH et al (2002) Understanding the health benefits of blackcurrants. Acta Hortic 585:443–449

    CAS  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485S

    CAS  PubMed  Google Scholar 

  • Liu M, Li XQ, Weber C et al (2002) Antioxidant and antiproliferative activities of raspberries. J Agric Food Chem 50:2926–2930

    CAS  PubMed  CrossRef  Google Scholar 

  • Longo L, Vasapollo G (2005) Anthocyanins from Bay (Laurus nobilis L.) berries. J Agric Food Chem 53:8063–8067

    CAS  PubMed  CrossRef  Google Scholar 

  • Longo L, Vasapollo G, Rescio L (2005) Identification of anthocyanins in Rhamnus alaternus L. Berries. J Agric Food Chem 53:1723–1727

    CAS  PubMed  CrossRef  Google Scholar 

  • Lopes-da-Silva F, de Pascual-Teresa S, Rivas-Gonzalo J et al (2002) Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection. Eur Food Res Technol 214:248–253

    CAS  CrossRef  Google Scholar 

  • Maatta KR, Kamal-Eldin A, Torronen AR (2003) High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS) detection: ribes species. J Agric Food Chem 51:6736–6744

    PubMed  CrossRef  CAS  Google Scholar 

  • Maatta-Riihinen KR, Kamal-Eldin A, Mattila PH et al (2004) Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J Agric Food Chem 52:4477–4486

    PubMed  CrossRef  CAS  Google Scholar 

  • Malik M, Zhao C, Schoene N et al (2003) Anthocyanin-rich extract from Aronia meloncarpa E induces a cell cycle block in colon cancer but not normal colonic cells. Nutr Cancer 46:186–196

    CAS  PubMed  CrossRef  Google Scholar 

  • Mallery SR, Stoner GD, Larsen PE et al (2007) Formulation and in-vitro and in-vivo evaluation of a mucoadhesive gel containing freeze dried black raspberries: implications for oral cancer chemoprevention. Pharm Res 24:728

    CAS  PubMed  CrossRef  Google Scholar 

  • Martin S, Favot L, Matz R et al (2003) Delphinidin inhibits endothelial cell proliferation and cell cycle progression through a transient activation of ERK-1/-2. Biochem Pharmacol 65:669–675

    CAS  PubMed  CrossRef  Google Scholar 

  • Matsumoto H, Nakamura Y, Iida H et al (2006) Comparative assessment of distribution of blackcurrant anthocyanins in rabbit and rat ocular tissues. Exp Eye Res 83:348–356

    CAS  PubMed  CrossRef  Google Scholar 

  • McGhie TK, Ainge GD, Barnett LE et al (2003) Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. J Agric Food Chem 51:4539–4548

    CAS  PubMed  CrossRef  Google Scholar 

  • McGhie TK, Hall HK, Ainge GD et al (2002) Breeding Rubus cultivars for high anthocyanin content and high antioxidant capacity. Acta Hortic 585:495–500

    CAS  Google Scholar 

  • Meiers S, Kemeny M, Weyand U et al (2001) The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J Agric Food Chem 49:958–962

    CAS  PubMed  CrossRef  Google Scholar 

  • Meyers KJ, Watkins CB, Pritts MP et al (2003) Antioxidant and antiproliferative activities of strawberries. J Agric Food Chem 51:6887–6892

    CAS  PubMed  CrossRef  Google Scholar 

  • Moyer RA, Hummer KE, Finn CE et al (2002) Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J Agric Food Chem 50:519–525

    CAS  PubMed  CrossRef  Google Scholar 

  • Mullen W, Lean ME, Crozier A (2002) Rapid characterization of anthocyanins in red raspberry fruit by high-performance liquid chromatography coupled to single quadrupole mass spectrometry. J Chromatogr A 966:63–70

    CAS  PubMed  CrossRef  Google Scholar 

  • Nemeth K, Plumb GW, Berrin JG et al (2003) Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr 42:29–42

    CAS  PubMed  CrossRef  Google Scholar 

  • Nickavar B, Amin G (2004) Anthocyanins from Vaccinium arctostaphylos berries. Pharm Biol 42:289–291

    CAS  CrossRef  Google Scholar 

  • Nielsen IL, Dragsted LO, Ravn-Haren G et al (2003) Absorption and excretion of black currant anthocyanins in humans and watanabe heritable hyperlipidemic rabbits. J Agric Food Chem 51:2813–2820

    CAS  PubMed  CrossRef  Google Scholar 

  • Olsson ME, Gustavsson KE, Andersson S et al (2004) Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J Agric Food Chem 52:7264–7271

    CAS  PubMed  CrossRef  Google Scholar 

  • Oszmianski J, Sapis JC (1988) Anthocyanins in fruits of Aronia melanocarpa (chokeberry). J Food Sci 53:1241–1242

    CAS  CrossRef  Google Scholar 

  • Padhani AR, Harvey CJ, Cosgrove DO (2005) Angiogenesis imaging in the management of prostate cancer. Nat Clin Pract Urol 2:596–607

    PubMed  CrossRef  Google Scholar 

  • Perkins-Veazie P, Kalt W (2002) Postharvest storage of blackberry fruit does not increase antioxidant levels. Acta Hortic 585:521–524

    CAS  Google Scholar 

  • Poulsen HE, Prieme H, Loft S (1998) Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev 7:9–16

    CAS  PubMed  Google Scholar 

  • Prior RL, Cao G, Martin A et al (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem 46:2686–2693

    CAS  CrossRef  Google Scholar 

  • Prior RL, Lazarus SA, Cao G et al (2001) Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium Spp.) Using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 49:1270–1276

    CAS  PubMed  CrossRef  Google Scholar 

  • Rechner AR, Kuhnle G, Hu H et al (2002) The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Radic Res 36:1229–1241

    CAS  PubMed  CrossRef  Google Scholar 

  • Reddy MK, Alexander-Lindo RL, Nair MG (2005) Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. J Agric Food Chem 53:9268–9273

    CAS  PubMed  CrossRef  Google Scholar 

  • Renis M, Calandra L, Scifo C et al (2008) Response of cell cycle/stress-related protein expression and DNA damage upon treatment of CaCo2 cells with anthocyanins. Br J Nutr 100:27–35

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodrigo KA, Rawal Y, Renner RJ et al (2006) Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries. Nutr Cancer 54:58–68

    CAS  PubMed  CrossRef  Google Scholar 

  • Roy S, Khanna S, Alessio HM et al (2002) Anti-angiogenic property of edible berries. Free Radic Res 36:1023–1031

    CAS  PubMed  CrossRef  Google Scholar 

  • Saario M (2000) Fresh lingonberry quality as affected by storage conditions and packaging. J Food Qual 23:453–463

    CAS  CrossRef  Google Scholar 

  • Sandler AB (2005) Targeting angiogenesis in lung cancer. Semin Oncol 32:S16–S22

    CAS  PubMed  CrossRef  Google Scholar 

  • Sarma AD, Sharma R (1999) Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry 52:1313–1318

    CAS  CrossRef  Google Scholar 

  • Seeram NP, Adams LS, Hardy ML et al (2004) Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J Agric Food Chem 52:2512–2517

    CAS  PubMed  CrossRef  Google Scholar 

  • Seeram NP, Adams LS, Zhang Y et al (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54:9329–9339

    CAS  PubMed  CrossRef  Google Scholar 

  • Seeram NP, Momin RA, Nair MG et al (2001) Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8:362–369

    CAS  PubMed  CrossRef  Google Scholar 

  • Shih PH, Yeh CT, Yen GC (2005) Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food Chem Toxicol 43:1557–1566

    CAS  PubMed  CrossRef  Google Scholar 

  • Shih P-H, Yeh C-T, Yen G-C (2007) Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J Agric Food Chem 55:9427

    CAS  PubMed  CrossRef  Google Scholar 

  • Singletary KW, Jung KJ, Giusti MM (2007) Anthocyanin-rich grape extract blocks breast cell DNA damage. J Med Food 10:244–251

    CAS  PubMed  CrossRef  Google Scholar 

  • Slimestad R, Torskangerpoll K, Nateland HS et al (2005) Flavonoids from black chokeberries, Aronia melanocarpa. J Food Compost Anal 18:61–68

    CAS  CrossRef  Google Scholar 

  • Stoner GD, Wang L-S, Casto BC (2008) Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis 29:1665–1674

    CAS  PubMed  CrossRef  Google Scholar 

  • Stoner GD, Wang L-S, Zikri N et al (2007) Cancer prevention with freeze-dried berries and berry components. Semin Cancer Biol 17:403–410

    CAS  PubMed  CrossRef  Google Scholar 

  • Strigl AW, Leitner E, Pfannhauser W (1995) Chokeberries as natural food colorant source. Dtsch Lebensmitt Rundsch 91:177–180

    CAS  Google Scholar 

  • Strik BC (2007) Berry crops: worldwide area and production systems. In: Zhao Y (ed) Berry fruit: value-added products for health promotion, 1st edn. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Strik BC, Finn C, Wrolstad R (2003) Performance of chokeberry (Aronia melanocarpa) in Oregon, USA. Paper presented at the Berry Crop Breeding, Production and Utilization for a New Century (ISHS), 626, pp 439–443

    Google Scholar 

  • Sun J, Chu YF, Wu X et al (2002) Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 50:7449–7454

    CAS  PubMed  CrossRef  Google Scholar 

  • Thomasset S, Berry DP, Cai H et al (2009) Pilot study of oral anthocyanins for colorectal cancer chemoprevention. Cancer Prev Res 2:625–633

    CAS  CrossRef  Google Scholar 

  • Tian Q, Giusti MM, Stoner GD et al (2006) Characterization of a new anthocyanin in black raspberries (Rubus occidentalis) by liquid chromatography electrospray ionization tandem mass spectrometry. Food Chem 94:465–468

    CAS  CrossRef  Google Scholar 

  • Wada L, Ou B (2002) Antioxidant activity and phenolic content of oregon caneberries. J Agric Food Chem 50:3495–3500

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang SY, Feng R, Bowman L et al (2005) Antioxidant activity in lingonberries (Vaccinium vitis-idaea L.) And its inhibitory effect on activator protein-1, nuclear factor-kappab, and mitogen-activated protein kinases activation. J Agric Food Chem 53:3156–3166

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang SY, Lin HS (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48:140–146

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang SY, Stretch AW (2001) Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J Agric Food Chem 49:969–974

    CAS  PubMed  CrossRef  Google Scholar 

  • Weisel T, Baum M, Eisenbrand G et al (2006) An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnol J 1:388–397

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu X, Gu L, Prior RL et al (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu X, Pittman HE, McKay S et al (2005) Aglycones and sugar moieties alter anthocyanin absorption and metabolism after berry consumption in weanling pigs. J Nutr 135:2417–2424

    CAS  PubMed  Google Scholar 

  • Wu X, Prior RL (2005) Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem 53:2589–2599

    CAS  PubMed  CrossRef  Google Scholar 

  • Yance DR Jr, Sagar SM (2006) Targeting angiogenesis with integrative cancer therapies. Integr Cancer Ther 5:9–29

    CAS  PubMed  CrossRef  Google Scholar 

  • Yi W, Akoh CC, Fischer J et al (2006) Effects of phenolic compounds in blueberries and muscadine grapes on HepG2 cell viability and apoptosis. Food Res Int 39:628–638

    CAS  CrossRef  Google Scholar 

  • Yi W, Fischer J, Krewer G et al (2005) Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J Agric Food Chem 53:7320–7329

    CAS  PubMed  CrossRef  Google Scholar 

  • Yoshimoto M, Okuno S, Yamaguchi M et al (2001) Antimutagenicity of deacylated anthocyanins in purple-fleshed sweetpotato. Biosci Biotechnol Biochem 65:1652–1655

    CAS  PubMed  CrossRef  Google Scholar 

  • Youdim KA, Martin A, Joseph JA (2000) Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic Biol Med 29:51–60

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang Y, Vareed SK, Nair MG (2005) Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci 76:1465–1472

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhao C, Giusti MM, Malik M et al (2004) Effects of commercial anthocyanin-rich extracts on colonic cancer and nontumorigenic colonic cell growth. J Agric Food Chem 52:6122–6128

    CAS  PubMed  CrossRef  Google Scholar 

  • Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51:502–509

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monica Giusti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Jing, P., Giusti, M.M. (2011). Contribution of Berry Anthocyanins to Their Chemopreventive Properties. In: Seeram, N., Stoner, G. (eds) Berries and Cancer Prevention. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7554-6_1

Download citation