Skip to main content

Weak Topologies and Banach Spaces

  • Chapter
  • First Online:
Banach Space Theory

Part of the book series: CMS Books in Mathematics ((CMSBM))

  • 4495 Accesses

Abstract

An indispensable tool in the study of deeper structural properties of a Banach space X is its weak topology, i.e., the topology on X of the pointwise convergence on elements of the dual space X *, or the weak * topology on X *, i.e., the topology on X * of the pointwise convergence on elements of X. The topology on X * of the uniform convergence on the family of all convex balanced and weakly compact subsets of X plays also an important role. All those topologies can be efficiently studied in the general framework of topological vector spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Albiac and N.J. Kalton, Topics in Banach space theory, Graduate Text in Mathematics 233, Springer, 2006.

    Google Scholar 

  2. J. Bourgain and M. Talagrand, Compacité extrémale, Proc. Amer. Math. Soc. 80 (1980), 68–70.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Bourgin, Geometric aspects of convex sets with the Radon–Nikodým property, Lecture Notes in Mathematics 93, Springer, 1983.

    Google Scholar 

  4. B. Cascales and G. Godefroy, Angelicity and the boundary problem, Mathematika 45(1) (1998), 105–112.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Cascales and G. Vera, Norming sets and compactness, Rocky Mountain J. Math. 25(3) (1995), 919–925.

    Article  MATH  MathSciNet  Google Scholar 

  6. W.J. Davis and W.B. Johnson, Renorming of nonreflexive Banach spaces, Proc. Amer. Math. Soc. 37 (1973), 486–488.

    Article  MATH  MathSciNet  Google Scholar 

  7. W.J. Davis and J. Lindenstrauss, On total non-norming subspaces, Proc. Amer. Math. Soc. 31 (1972), 109–111.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Diestel, Sequences and series in Banach spaces, Graduate text in Mathematics 92, Springer, 1984.

    Google Scholar 

  9. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.

    MATH  Google Scholar 

  10. R. Engelking, General Topology, PWN Warszawa, 1977.

    Google Scholar 

  11. M. Fabian, A. González, and V. Montesinos, A note on Markushevich bases in weakly compactly generated Banach spaces. Ann. Acad. Sci. Fenn. 34 (2009), 555–564.

    MATH  Google Scholar 

  12. K. Floret, Weakly compact sets, Lecture Notes in Mathematics 801, Springer, 1980.

    Google Scholar 

  13. V.P. Fonf, J. Lindenstrauss, and R.R. Phelps, Infinite-dimensional convexity, Handbook of Banach Spaces I, Editors W.B. Johnson and J.Lindenstrauss, Elsevier, 2001, 599–670.

    Google Scholar 

  14. G. Godefroy, Boundaries of convex sets and interpolation sets, Math. Ann. 277 (1987), 173–184.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Godefroy, Five lectures in geometry of Banach spaces, Notas de Matemática, Vol. 1, Seminar on Functional Analysis, 1987, Universidad de Murcia, 1988, 9–67.

    Google Scholar 

  16. A. Grothendieck, Sur les applications lineaires faiblement compactes d’espace du type \(C(K)\), Canad. J. Math. 5, (1953), 129–173.

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Hájek, V. Montesinos, J. Vanderwerff, and V. Zizler, Biorthogonal systems in Banach spaces, CMS Books in Mathematics, Canadian Mathematical Society, Springer, 2007.

    Google Scholar 

  18. R.C. James, Bases and reflexivity of Banach spaces, Ann. Math. 52 (1950), 518–527.

    Article  Google Scholar 

  19. R.C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101–119.

    Article  MATH  MathSciNet  Google Scholar 

  20. R.C. James, A counterexample for a sup theorem in normed spaces, Israel J. Math. 9 (1971), 511–512.

    Article  MATH  MathSciNet  Google Scholar 

  21. R.C. James, Reflexivity and the sup of linear functionals, Israel J. Math. 13 (1972), 289–300.

    Article  MathSciNet  Google Scholar 

  22. W.B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated Banach spaces, Israel J. Math. 17 (1974), 219–230.

    Article  MATH  MathSciNet  Google Scholar 

  23. J.L. Kelley, General topology, D. van Nostrand, Princeton, 1957.

    Google Scholar 

  24. G. Köthe, Topological vector spaces I, Springer, 1969.

    Google Scholar 

  25. M. López-Pellicer and V. Montesinos, Cantor sets in the dual of a separable Banach space: Applications, General Topology in Banach Spaces, Editor T. Banakh (QA322.2 .G45 2001), Nova Science Publishers.

    Google Scholar 

  26. R.E. Megginson, An introduction to Banach space theory, GTM 183, Springer, 1998.

    Google Scholar 

  27. E.W. Odell and T. Schlumprecht, On asymptotic properties of Banach spaces under renormings, J. Amer. Math. Soc. 11 (1998), 175–188.

    Article  MATH  MathSciNet  Google Scholar 

  28. E. Oja, A proof of the Simons inequality, Acta Comment. Univ. Tartu. Math. 2 (1998), 27–28.

    MATH  MathSciNet  Google Scholar 

  29. E. Oja, A short proof of a characterization of reflexivity of James, Proc. Amer. Math. Soc. 126 (1998), 2507–2508.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Pe≪czyński, A proof of Eberlein–Šmulyan theorem by an application of basic sequences, Bull. Acad. Pol. Sci. Ser. Math. Astron. Phys. 12 (1964), 543–548.

    Google Scholar 

  31. A. Pe≪czyński and M. Wojciechowski, Sobolev spaces, Handbook of Banach Spaces II, Editors W.B. Johnson and J.Lindenstrauss, Elsevier, 2003, 1361–1423.

    Google Scholar 

  32. R.R. Phelps, Lectures on Choquet’s theorem, Van Nostrand, Princeton, 1966.

    MATH  Google Scholar 

  33. H. Pfitzner, Boundaries for Banach spaces determine weak compactness, to appear, electronic http://hal.archives-ouvertes.fr/hal-00300244/en/.

  34. V. Pták, Biorthogonal systems and reflexivity of Banach spaces, Czechoslovak Math. J. 9(84) (1959), 319–326.

    MathSciNet  Google Scholar 

  35. J. Rainwater, Weak convergence of bounded sequences, Proc. Amer. Math. Soc. 14 (1963), 999.

    MATH  MathSciNet  Google Scholar 

  36. J.W. Roberts, A compact convex set with no extreme points, Studia Math. 60 (1977), 255–266.

    MATH  MathSciNet  Google Scholar 

  37. J.W. Roberts, Pathological compact convex sets in \(L_p[0,1]\), \(0\le p <1\), The Altgeld Book, University of Illinois Functional Analysis Seminar, 1975, 1976.

    Google Scholar 

  38. H.P. Rosenthal, The Banach spaces \(C(K)\), Handbook of Banach Spaces II, Editors W.B. Johnson and J.Lindenstrauss, Elsevier, 2003, 1549–1602.

    Google Scholar 

  39. W. Rudin, Functional analysis, McGraw Hill, 1973.

    Google Scholar 

  40. S. Simons, A convergence theorem with boundary, Pacific J. Math. 40 (1972), 703–708.

    MATH  MathSciNet  Google Scholar 

  41. V.L. Šmulyan, On the principle of inclusion in the space of type (B), Mat. Sbornik (N. S.), 5 (1939), 317–328 (in Russian).

    Google Scholar 

  42. S. Todorcevic, Topics in topology, Lecture Notes in Mathematics 1652, Springer, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marián Fabian .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V. (2011). Weak Topologies and Banach Spaces. In: Banach Space Theory. CMS Books in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7515-7_3

Download citation

Publish with us

Policies and ethics