Advertisement

Mass Transfer and Equilibrium Parameters on High-Pressure CO2 Extraction of Plant Essential Oils

  • José M. del Valle
  • Juan C. de la Fuente
  • Edgar Uquiche
  • Carsten Zetzl
  • Gerd Brunner
Conference paper
Part of the Food Engineering Series book series (FSES)

Abstract

Supercritical fluids (SCF) in general and supercritical carbon dioxide (CO2) in particular allow convenient and environmentally friendly extraction processes because of their liquid-like solvent properties and gas-like transport properties, that allow efficient and fast extraction processes, and complete elimination of solvent traces from extracts and treated substrates. High-pressure CO2 is an inexpensive gas that offers safe and selective supercritical fluids SCF extraction (SCFE) processes at near-environmental temperatures that can be use to recover high-value compounds in vegetable substrates.

This chapter reviews mass transfer and of phase equilibrium parameters that are required to design industrial SCFE processes for plant essential oils. Relevant mass transfer parameters include an external mass transfer coefficient and an effective diffusivity (D e), among others. Values of D e range from 102 to 105 times the binary diffusion of plant essential oils in CO2 which suggests pronounced limitations to mass transfer within the solid matrix during SCFE of plant essential oils. A relevant phase equilibrium parameter is the “operational” solubility of plant essential oils in high-pressure CO2, which depends markedly on system temperature and CO2 density, the amount of essential oils in the plant material, the interactions between the many constituents of the essential oils, and the interactions between the essential oil components and the solid matrix, all of which decrease solubility of the essential oil components as compared to their thermodynamic solubility in simple CO2-containing binary and ternary systems.

Keywords

Mass Transfer Coefficient Axial Dispersion Secretory Cavity Internal Mass Transfer Axial Dispersion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The present work was funded by the Chilean agency Fondecyt (Regular project 105–0675 and International Cooperation project 703–0033). We are indebted to Verónica Glatzel (PUC) for recalculating from the literature some of the values of external mass transfer coefficient (k f), and effective diffusivities (D e) that we report in Sect. 17.3.2 and 17.3.3, respectively; and to Gustavo Lozano (TUHH) for simulating the solubility isotherms for selected essential oil components included in Figs. 17.7 and 17.8 using the predictive methodology described in Sect. 17.4.1 in PE 2000.

References

  1. Aghel N, Yamini Y, Hadjiakhoondi A, Pourmortazavi SM (2004) Supercritical carbon dioxide extraction of Mentha pulegium L. essential oil. Talanta 62:407–411CrossRefGoogle Scholar
  2. Aguilera JM, Stanley DW (1999) Microstructural principles of food processing and engineering, 2nd edn. Aspen Publishers, Gaithersburg, MDGoogle Scholar
  3. Akgun M, Akgun NA, Dincer S (1999) Phase behaviour of essential oil components in supercritical carbon dioxide. J Supercrit Fluids 15:117–125CrossRefGoogle Scholar
  4. Akgun M, Akgun NA, Dincer S (2000) Extraction and modeling of lavender flower essential oil using supercritical carbon dioxide. Ind Eng Chem Res 39:473–477CrossRefGoogle Scholar
  5. Araus K, Uquiche E, del Valle JM (2009) Matrix effects in supercritical CO2 extraction of essential oils from plant material. J Food Eng 92:438–447CrossRefGoogle Scholar
  6. Bakkali F, Averbeck S, Averbeck D, Zhiri A, Idaomar M (2005) Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae. Mutat Res 585:1–13CrossRefGoogle Scholar
  7. Bensebia O, Barth D, Bensebia B, Dahmani A (2009) Supercritical CO2 extraction of rosemary: Effect of extraction parameters and modelling. J Supercrit Fluids 49:161–166CrossRefGoogle Scholar
  8. Benvenuti F, Gironi F (2001) High-pressure equilibrium data in systems containing supercritical carbon dioxide, limonene, and citral. J Chem Eng Data 46:795–799CrossRefGoogle Scholar
  9. Berna A, Chafer A, Monton JB (2000) Solubilities of essential oil components of orange in supercritical carbon dioxide. J Chem Eng Data 45:724–727CrossRefGoogle Scholar
  10. Brielmann HL, Setzer WN, Kaufman PB, Kirakosyan A, Cseke LJ (2006) Phytochemicals: The chemical components of plants. In: Cseke LJ, Kirakosyan A, Kaufman PB, Warber S, Duke JA, Brielmann HL (eds) Natural products from plants, 2nd edn. CRC Press, Boca Raton, FL, pp 1–49CrossRefGoogle Scholar
  11. Brunner G (1984) Mass transfer from solid material in gas extraction. Ber Bunsen Ges Phys Chem 88:887–891CrossRefGoogle Scholar
  12. Brunner G (1994) Gas extraction: an introduction to fundamentals of supercritical fluids and the application to separation processes. Springer, New YorkGoogle Scholar
  13. Budich M, Brunner G (1999) Vapor–liquid equilibrium data and flooding point measurements of the mixture carbon dioxide + orange peel oil. Fluid Phase Equilib 158–160:759–773CrossRefGoogle Scholar
  14. Budich M, Heilig S, Wesse T, Leibküchler V, Brunner G (1999) Countercurrent deterpenation of citrus oils with supercritical CO2. J Supercrit Fluids 14:105–114CrossRefGoogle Scholar
  15. Campos LMAS, Michielin EMZ, Danielski L, Ferreira SRS (2005) Experimental data and modeling the supercritical fluid extraction of marigold (Calendula officinalis) oleoresin. J Supercrit Fluids 34:163–170CrossRefGoogle Scholar
  16. Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166Google Scholar
  17. Carvalho RN Jr, Corazza ML, Cardozo-Filho L, Meireles MAA (2006) Phase equilibrium for (camphor + CO2), (camphor + propane), and (camphor + CO2 + propane). J Chem Eng Data 51:997–1000CrossRefGoogle Scholar
  18. Catchpole OJ, King MB (1994) Measurement and correlation of binary diffusion coefficients in near critical fluids. Ind Eng Chem Res 33:1828–1837CrossRefGoogle Scholar
  19. Catchpole OJ, Andrews EW, Toikka GN, Wilkinson GT (1994) Mathematical models for the extraction of oils from plant matrices using near-critical solvent. In: Perrut M, Brunner G (eds) Proceedings of the third symposium on supercritical fluids, vol 2. Institut National Polytechnique de Lorraine, Lorraine, France, pp 47–52Google Scholar
  20. Catchpole OJ, Bernig R, Bott MB (1996a) Measurement and correlation of packed-bed axial dispersion coefficients in supercritical carbon dioxide. Ind Eng Chem Res 35:824–828CrossRefGoogle Scholar
  21. Catchpole OJ, Grey JB, Smallfield BM (1996b) Near-critical extraction of sage, celery, and coriander seed. J Supercrit Fluids 9:273–279CrossRefGoogle Scholar
  22. Chafer A, Berna A, Monton JB, Mulet A (2001) High pressure solubility data of the system limonene plus linalool plus CO2. J Chem Eng Data 46:1145–1148CrossRefGoogle Scholar
  23. Chandler K, Pouillot FLL, Eckert CA (1996) Phase equilibria of alkanes in natural gas systems. 3. Alkanes in carbon dioxide. J Chem Eng Data 41:6–10CrossRefGoogle Scholar
  24. Chang CMJ, Chen CC (1999) High-pressure densities and PTxy diagrams for carbon dioxide + linalool and carbon dioxide + limonene. Fluid Phase Equilib 163:119–126CrossRefGoogle Scholar
  25. Cheng K-W, Kuo S-J, Muoi Tang M, Chen Y-P (2000) Vapor–liquid equilibria at elevated pressures of binary mixtures of carbon dioxide with methyl salicylate, eugenol, and diethyl phthalate. J Supercrit Fluids 18:87–99CrossRefGoogle Scholar
  26. Chrastil J (1982) Solubility of solids and liquids in supercritical gases. J Phys Chem 86:3016–3021CrossRefGoogle Scholar
  27. Coelho JAP, Mendes RL, Provost MC, Cabral JMS, Novais JM, Palavra AMF (1997) Supercritical carbon dioxide extraction of volatile compounds from rosemary. In: Abraham MA, Sunol AK (eds) Supercritical fluids. Extraction and pollution prevention. American Chemical Society, Washington, DC, pp 101–109CrossRefGoogle Scholar
  28. Coelho JAP, Pereira AP, Mendes RL, Palavra AMF (2003) Supercritical carbon dioxide extraction of Foeniculum vulgare volatile oil. Flavour Frag J 18:316–319CrossRefGoogle Scholar
  29. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  30. Cygnarowicz-Provost M (1996) Design and economic analysis of supercritical fluid extraction processes. In: King JW, List GR (eds) Supercritical fluid technology in oil and lipid chemistry. AOCS Press, Champaign, IL, pp 155–179Google Scholar
  31. Daghero J, Ruetsch L, Zacchi P, Mattea M (2004) Supercritical CO2 extraction of herbaceous matrices. Pilot plant experiments and modeling. V Encuentro Brasileño sobre Fluidos Supercríticos (EBFS 2004), Florianopolis, BrasilGoogle Scholar
  32. Danielski L, Campos LMAS, Bresciani LFV, Hense H, Yunes RA, Ferreira SRS (2007) Marigold (Calendula officinalis L.) oleoresin: solubility in SC-CO2 and composition profile. Chem Eng Process 46:99–106CrossRefGoogle Scholar
  33. Daubert TE, Danner RP (1989) Physical and thermodynamic properties of pure chemicals: data compilation. Hemisphere Publishers, New YorkGoogle Scholar
  34. del Valle JM, Aguilera JM (1999) Extracción con CO2 a alta presión. Fundamentos y aplicaciones en la industria de alimentos. Food Sci Technol Int 5:1–24CrossRefGoogle Scholar
  35. del Valle JM, Catchpole OJ (2005) Transferencia de masa en lechos empacados operando con fluidos supercríticos. I. Correlación de coeficientes de dispersión axial. XVI Congreso Chileno de Ingeniería Química, Pucón, ChileGoogle Scholar
  36. del Valle JM, de la Fuente JC, Cardarelli DA (2005) Contributions to supercritical extraction of vegetable substrates in Latin America. J Food Eng 67:35–57CrossRefGoogle Scholar
  37. del Valle JM, de la Fuente JC (2006) Supercritical CO2 extraction of oilseeds: Review of kinetic and equilibrium models. CRC Crit Rev Food Sci Nutr 46:131–160CrossRefGoogle Scholar
  38. del Valle JM, Rivera O, Mattea M, Ruetsch L, Daghero J, Flores A (2004) Supercritical CO2 processing of pretreated rosehip seeds: Effect of process scale on oil extraction kinetics. J Supercrit Fluids 31:159–174CrossRefGoogle Scholar
  39. del Valle JM, Mena C, Budinich M (2008) Extraction of garlic with supercritical CO2 and conventional organic solvents. Braz J Chem Eng 25:535–542Google Scholar
  40. Della Porta G, Taddeo R, D’urso E, Reverchon E (1998) Isolation of clove bud and star anise essential oil by supercritical CO2 extraction. Lebensm Wiss Technol 31:454–460Google Scholar
  41. Della Porta G, Porcedda S, Marongiu B, Reverchon E (1999) Isolation of eucalyptus oil by supercritical fluid extraction. Flavour Frag J 14:214–218CrossRefGoogle Scholar
  42. Denny EFK (1991) Field distillation for herbaceous oils, 2nd edn. Denny, McKenzie Associates, Lilydale (Tasmania), AustraliaGoogle Scholar
  43. di Giacomo G, Brandani V, del Re G, Mucciante V (1989) Solubility of essential oil components in compressed supercritical carbon dioxide. Fluid Phase Equilib 52:405–411CrossRefGoogle Scholar
  44. Dullien F (1992) Porous media. Fluid transport and pore structure, 2nd edn. Academic, San Diego, CAGoogle Scholar
  45. Eggers R (1996) Supercritical fluid extraction of oilseeds/lipids in natural products. In: King JW, List GR (eds) Supercritical fluid technology in oil and lipid chemistry. AOCS Press, Champaign, IL, pp 35–64Google Scholar
  46. Eggers R, Ambrogi A, von Schnitzler J (2000) Special features of SFC solid extraction of natural products: Deoling of wheat gluten and extraction of rose hip oil. Braz J Chem Eng 17:329–334CrossRefGoogle Scholar
  47. Espinosa-Díaz MA, Guetachew T, Landy P, Jose J, Voilley A (1999) Experimental and estimated saturated vapor pressure of aroma compounds. Fluid Phase Equilib 157:257–270CrossRefGoogle Scholar
  48. Esquivel MM, de Sousa CL, Ribeiro MA, Bernardo-Gil MG (1996) Mathematical models for supercritical extraction of oregano “Origanum virens L.”. In: von Rohr PR, Trepp C (eds) High pressure chemical engineering. Elsevier, Amsterdam, The Netherlands, pp 525–530Google Scholar
  49. Fahien RW, Smith JM (1955) Mass transfer in packed beds. Am Inst Chem Eng J 1:28–37CrossRefGoogle Scholar
  50. Ferreira SRS, Meireles MAA (2002) Modeling the supercritical fluid extraction of black pepper (Piper nigrum L.) essential oil. J Food Eng 54:263–269CrossRefGoogle Scholar
  51. Ferreira SRS, Nikolov ZL, Doraiswamy LK, Meireles MAA, Petentate A (1999) Supercritical fluid extraction of black pepper (Piper nigrum L.) essential oil. J Supercrit Fluids 14:235–245CrossRefGoogle Scholar
  52. Fonseca J, Simoes PC, Nunes da Ponte M (2003) An apparatus for high-pressure VLE measurements using a static mixer. Results for (CO2 + limonene + citral) and (CO2 + limonene + linalool). J Supercrit Fluids 25:7–17CrossRefGoogle Scholar
  53. Francisco JD, Sivik B (2002) Solubility of three monoterpenes, their mixtures and eucalyptus leaf oils in dense carbon dioxide. J Supercrit Fluids 23:11–19CrossRefGoogle Scholar
  54. Funazukuri T, Kong C, Kagei S (1998) Effective axial dispersion coefficients in packed beds under supercritical conditions. J Supercrit Fluids 13:169–175CrossRefGoogle Scholar
  55. Gamse T, Marr R (2000) High-pressure phase equilibria of the binary systems carvone-carbon dioxide and limonene-carbon dioxide at 303, 313 and 323 K. Fluid Phase Equilib 171:165–174CrossRefGoogle Scholar
  56. Gardner DS (1993) Commercial scale extraction of alpha acids and hop oils with compressed CO2. In: King MB, Bott TR (eds) Extraction of natural products using near-critical solvents. Blackie Academic & Professional, London, UK, pp 84–100CrossRefGoogle Scholar
  57. Gaspar F (2002) Extraction of essential oils and cuticular waxes with compressed CO2: Effect of extraction pressure and temperature. Ind Eng Chem Res 41:2497–2503CrossRefGoogle Scholar
  58. Gaspar F, Santos R, King MB (2001) Disruption of glandular trichomes with compressed CO2: Alternative matrix pre-treatment for CO2 extraction of essential oils. J Supercrit Fluids 21:11–22CrossRefGoogle Scholar
  59. Gaspar F, Lu T, Santos R, Al-Duri B (2003) Modelling the extraction of essential oils with compressed carbon dioxide. J Supercrit Fluids 25:247–260CrossRefGoogle Scholar
  60. Germain JC, del Valle JM, de la Fuente JC (2005) Natural convection retards supercritical CO2 extraction of essential oils and lipids from vegetable substrates. Ind Eng Chem Res 44:2879–2886CrossRefGoogle Scholar
  61. Ghoreishi SM, Akgerman A (2004) Dispersion coefficients of supercritical fluid in fixed beds. Sep Purif Technol 39:39–50CrossRefGoogle Scholar
  62. Gironi F, Maschietti M (2008) Continuous countercurrent deterpenation of lemon essential oil by means of supercritical carbon dioxide: experimental data and process modeling. Chem Eng Sci 63:651–661CrossRefGoogle Scholar
  63. Goodarznia I, Eikani M (1998) Supercritical carbon dioxide extraction of essential oils: Modelling and simulation. Chem Eng Sci 53:1387–1395CrossRefGoogle Scholar
  64. Goto M, Sato M, Hirose T (1993) Extraction of peppermint oil by supercritical carbon dioxide. J Chem Eng Jpn 26:401–407CrossRefGoogle Scholar
  65. Goto M, Roy BC, Hirose T (1996) Shrinking-core leaching model for supercritical-fluid extraction. J Supercrit Fluids 9:128–133CrossRefGoogle Scholar
  66. Goto M, Roy B, Kodama A, Hirose T (1998) Modeling supercritical fluid extraction process involving solute-solid interaction. J Chem Eng Jpn 32:171–177CrossRefGoogle Scholar
  67. Hall HK (ed) (2001) Landolt-Börnstein: Numerical data and functional relationships in science and technology – New Series. Group 4: Physical chemistry, Vol. 20: Vapor pressure of chemicals. Subvolume B: Vapor pressure and antoine constants for oxygen containing organic compounds. Springer, Berlin, GermanyGoogle Scholar
  68. Han N-H, Bhakta J, Carbonell RG (1985) Longitudinal and lateral dispersion in packed beds: effect of column length and particle size distribution. Am Inst Chem Eng J 31:277–288CrossRefGoogle Scholar
  69. Helmig D, Revermann T, Pollmann J, Kaltschmidt O, Jiménez-Hernández A, Bocquet F, David D (2003) Calibration system and analytical considerations for quantitative sesquiterpene measurements in air. J Chromatogr A 1002:193–211CrossRefGoogle Scholar
  70. Hong IK, Rho SW, Lee KS, Lee WH, Yoo KP (1990) Modeling of soybean oil bed extraction with supercritical carbon dioxide. Korean J Chem Eng 7:40–46CrossRefGoogle Scholar
  71. Hubert P, Vitzthum OG (1978) Fluid extraction of hops, spices and tobacco with supercritical gases. Angew Chem Int Ed Engl 17:710–715CrossRefGoogle Scholar
  72. Hybertson BM (2007) Solubility of the sesquiterpene alcohol patchoulol in supercritical carbon dioxide. J Chem Eng Data 52:235–238CrossRefGoogle Scholar
  73. Iwai Y, Hosotani N, Morotomi T, Koga Y, Arai Y (1994) High-pressure vapor-liquid-equilibria for carbon-dioxide plus linalool. J Chem Eng Data 39:900–902CrossRefGoogle Scholar
  74. Iwai Y, Morotomi T, Sakamoto K, Koga Y, Arai Y (1996) High-pressure vapor-liquid equilibria for carbon dioxide plus limonene. J Chem Eng Data 41:951–952CrossRefGoogle Scholar
  75. Jimenez-Carmona MM, Ubera JL, Luque de Castro MD (1999) Comparison of continous subcritical water extraction and hydrodistillation of marjoram essential oil. J Chromatogr A 855:625–632CrossRefGoogle Scholar
  76. Kim KH, Hong J (1999) Equilibrium solubilities of spearmint oil components in supercritical carbon dioxide. Fluid Phase Equilib 164:107–115CrossRefGoogle Scholar
  77. Kim KH, Hong J (2002) A mass transfer model for super- and near-critical CO2 extraction of spearmint leaf oil. Sep Sci Technol 37:2271–2288CrossRefGoogle Scholar
  78. King MB, Catchpole O (1993) Physico-chemical data required for the design of near-critical fluid extraction process. In: King MB, Bott TR (eds) Extraction of natural products using near-critical solvents. Blackie Academic & Professional, London, UK, pp 184–231CrossRefGoogle Scholar
  79. Kotnik P, Skerget M, Knez Z (2007) Supercritical fluid extraction of chamomile flower heads: Comparison with conventional extraction, kinetics and scale-up. J Supercrit Fluids 43:192–198CrossRefGoogle Scholar
  80. Lack E, Seidlitz H (1993) Commercial scale decaffeination of coffee and tea using supercritical CO2. In: King MB, Bott TR (eds) Extraction of natural products using near-critical solvents. Blackie Academic & Professional, London, UK, pp 101–139CrossRefGoogle Scholar
  81. Langa E, Della Porta G, Palavra AMF, Urieta JS, Mainar A (2009) Supercritical fluid extraction of Spanish sage essential oil: Optimization of the process parameters and modelling. J Supercrit Fluids 49:174–181CrossRefGoogle Scholar
  82. Lee CH, Holder GD (1995) Use of supercritical fluid chromatography for obtaining mass transfer coefficients in fluid-solid systems at supercritical conditions. Ind Eng Chem Res 34:906–914CrossRefGoogle Scholar
  83. Leeke GA, Santos R, King M (2001) Vapor-liquid equilibria for the carbon dioxide plus carvacrol system at elevated pressures. J Chem Eng Data 46:541–545CrossRefGoogle Scholar
  84. Louli V, Folas G, Voutsas E, Magoulas K (2004) Extraction of parsley seed oil by supercritical CO2. J Supercrit Fluids 30:163–174CrossRefGoogle Scholar
  85. Ma YH, Evans LB (1968) Transient diffusion from a well-stirred reservoir to a body of arbitrary shape. J Am Inst Chem Eng 14:956–961CrossRefGoogle Scholar
  86. Machmudah S, Sulaswatty A, Sasaki M, Goto M, Hirose T (2006) Supercritical CO2 extraction of nutmeg oil: Experiments and modeling. J Supercrit Fluids 39:30–39CrossRefGoogle Scholar
  87. Marrone C, Poletto M, Reverchon E, Stassi A (1998) Almond oil extraction by supercritical CO2: Experiments and modelling. Chem Eng Sci 53:3711–3718CrossRefGoogle Scholar
  88. Marteau Ph, Obriot J, Tufeu R (1995) Experimental determination of vapor-liquid equilibria of CO2 + limonene and CO2 + citral mixtures. J Supercrit Fluids 8:20–24CrossRefGoogle Scholar
  89. Martin AJP, Synge R (1941) A new form of chromatogram employing two liquid phases. 1. A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem J 35:1358–1368Google Scholar
  90. Martínez J, Monteiro AR, Rosa PTV, Marques MOM, Meireles M (2003) Multicomponent model to describe extraction of ginger oleoresin with supercritical carbon dioxide. Ind Eng Chem Res 42:1057–1063CrossRefGoogle Scholar
  91. Martínez J, Rosa PTV, Meireles MAA (2007) Extraction of clove and vetiver oils with supercritical carbon dioxide: modeling and simulation. Open Chem Eng J 1:1–7Google Scholar
  92. Matos HA, Gomes de Azevedo E, Simoes PC, Carrondo MT, Nunes da Ponte M (1989) Phase equilibria of natural flavours and supercritical solvents. Fluid Phase Equilib 52:357–364CrossRefGoogle Scholar
  93. Michielin EMZ, Rosso SR, Franceschi E, Borges GR, Corazza ML, Oliveira JV, Ferreira SRS (2009) High-pressure phase equilibrium data for systems with carbon dioxide, α-humulene and trans-caryophyllene. J Chem Thermodyn 41:130–137CrossRefGoogle Scholar
  94. Mira B, Blasco M, Subirats S, Berna A (1996) Supercritical CO2 extraction of essential oils from orange peel. J Supercrit Fluids 9:238–243CrossRefGoogle Scholar
  95. Mira B, Blasco M, Berna A, Subirats S (1999) Supercritical CO2 extraction of essential oil from orange peel. Effect of operation conditions on the extract composition. J Supercrit Fluids 14:95–104CrossRefGoogle Scholar
  96. Miraldi E, Ferri S, Franchi GG, Giorgi G (1996) Peumus boldus essential oil: New constituents and comparison of oils from leaves of different origin. Fitoterapia 67:227–230Google Scholar
  97. Mišić D, Zizovic I, Stamenić M, Ašanin R, Ristić M, Petrović SD, Skala D (2008) Antimicrobial activity of celery fruit isolates and SFE process modeling. Biochem Eng J 42:148–152CrossRefGoogle Scholar
  98. Morotomi T, Iwai Y, Yamaguchi H, Arai Y (1999) High-pressure vapor-liquid equilibria for carbon dioxide plus limonene plus linalool. J Chem Eng Data 44:1370–1372CrossRefGoogle Scholar
  99. Moura LS, Corazza ML, Cardozo-Filho L, Meireles MAA (2005) Phase equilibrium measurements for the system fennel (Foeniculum vulgare) extract + CO2. J Chem Eng Data 50:1657–1661CrossRefGoogle Scholar
  100. Moyler DA (1993) Extraction of flavours and fragrances with compressed CO2. In: King MB, Bott TR (eds) Extraction of natural products using near-critical solvents. Blackie Academic & Professional, London, UK, pp 140–183CrossRefGoogle Scholar
  101. Mukhopadhyay M (2000) Natural extracts using supercritical carbon dioxide. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  102. Mukhopadhyay M, De SK (1995) Fluid-phase behavior of close molecular-weight fine chemicals with supercritical carbon dioxide. J Chem Eng Data 40:909–913CrossRefGoogle Scholar
  103. NIST (2000) Fluid Thermodynamic and Transport Properties (version 5.0). http://www.nist.gov/srd/nist23.htm
  104. Núñez GA, del Valle JM, de la Fuente JC (2010) Solubilities in supercritical carbon dioxide of (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol (farnesol) and (2 S)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one (naringenin). J Chem Eng Data 55:3863–3868Google Scholar
  105. Özer EÖ, Platin S, Akman U, Hortaçsu Ö (1996) Supercritical carbon dioxide extraction of spearmint oil from mint-plant leaves. Can J Chem Eng 74:920–928CrossRefGoogle Scholar
  106. Papamichail I, Louli V, Magoulas K (2000) Supercritical fluid extraction of celery seed oil. J Supercrit Fluids 18:213–226CrossRefGoogle Scholar
  107. Pavlicek J, Richter M (1993) High pressure vapour-liquid equilibrium in the carbon dioxide– α-pinene system. Fluid Phase Equilib 90:125–133CrossRefGoogle Scholar
  108. Perakis C, Louli V, Magoulas K (2005) Supercritical fluid extraction of black pepper oil. J Food Eng 71:386–393CrossRefGoogle Scholar
  109. Perrut M, Clavier JY, Poletto M, Reverchon E (1997) Mathematical modeling of sunflower seed extraction by supercritical CO2. Ind Eng Chem Res 36:430–435CrossRefGoogle Scholar
  110. Pfaf-Šovljanski II, Grujić OS, Peruničić MB, Cvetković IM, Zeković Z (2005) Supercritical carbon dioxide hop extraction. APTEFF 36:111–120CrossRefGoogle Scholar
  111. Pfohl O, Petkov S, Brunner G (2000) PE 2000: a powerful tool to correlate phase equilibria. Herbert Utz Verlag, München, GermanyGoogle Scholar
  112. Podlaski S, Chrobak Z, Wyszkowska Z (2003) The effect of parsley seed hydration treatment and pelleting on seed vigour. Plant Soil Environ 49:114–118Google Scholar
  113. Poling BE, Prausnitz JM, O’Connell J (2000) The properties of gases and liquids, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  114. Povh NP, Marques MOM, Meireles MAA (2001) Supercritical CO2 extraction of essential oil and oleoresin from chamomile (Chamomilla recutita L.). J Supercrit Fluids 21:245–256CrossRefGoogle Scholar
  115. Puiggené J, Larrayoz MA, Recasens F (1997) Free liquid-to-supercritical fluid mass transfer in packed beds. Chem Eng Sci 52:195–212CrossRefGoogle Scholar
  116. Quirin K-W, Gerard D (2007) Supercritical fluid extraction (SFE). In: Ziegler H (ed) Flavourings: production, composition, applications, regulations, 2nd edn. Wiley-VCH, Weinheim, Germany, pp 49–65Google Scholar
  117. Raal JD, Mühlbauer AL (1998) Phase equilibria: measurement and computation. Taylor & Francis, Washington, DCGoogle Scholar
  118. Raeissi S, Peters CJ (2005) Experimental determination of high-pressure phase equilibria of the ternary system carbon dioxide + limonene + linalool. J Supercrit Fluids 35:10–17CrossRefGoogle Scholar
  119. Reis-Vasco EMC, Coelho JAP, Palavra AMF, Marrone C, Reverchon E (2000) Mathematical modelling and simulation of pennyroyal essential oil supercritical extraction. Chem Eng Sci 55:2917–2922CrossRefGoogle Scholar
  120. Reverchon E (1996) Mathematical modeling of supercritical extraction of sage oil. J Am Inst Chem Eng 42:1765–1771CrossRefGoogle Scholar
  121. Reverchon E (1997) Supercritical fluid extraction and fractionation of essential oils and related products. J Supercrit Fluids 10:1–37CrossRefGoogle Scholar
  122. Reverchon E, De Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166CrossRefGoogle Scholar
  123. Reverchon E, De Marco I (2008) Essential oils extraction and fractionation using supercritical fluids. In: Martínez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, FL, pp 305–335Google Scholar
  124. Reverchon E, Marrone C (1997) Supercritical extraction of clove bud essential oil: Isolation and mathematical modeling. Chem Eng Sci 52:3421–3428CrossRefGoogle Scholar
  125. Reverchon E, Sesti Osséo L (1994a) Modelling the supercritical extraction of basil oil. In: Perrut M, Brunner G (eds) Proceedings of the third symposium on supercritical fluids, Vol. 2., pp 189–196Google Scholar
  126. Reverchon E, Sesti Osséo L (1994b) Supercritical CO2 extraction of basil oil: Characterization of products and process modeling. J Supercrit Fluids 7:185–190CrossRefGoogle Scholar
  127. Reverchon E, Donsi G, Sesti Osséo L (1993a) Modeling of supercritical fluid extraction from herbaceous matrices. Ind Eng Chem Res 32:2721–2726CrossRefGoogle Scholar
  128. Reverchon E, Russo P, Stassi A (1993b) Solubilities of solid octacosane and triacontane in supercritical carbon dioxide. J Chem Eng Data 38:458–460CrossRefGoogle Scholar
  129. Reverchon E, Della Porta G, Senatore F (1995a) Supercritical CO2 extraction and fractionation of lavender essential oil and waxes. J Agr Food Chem 43:1654–1658CrossRefGoogle Scholar
  130. Reverchon E, Taddeo R, Della Porta G (1995b) Extraction of sage oil by supercritical CO2: Influence of some process parameters. J Supercrit Fluids 8:302–309CrossRefGoogle Scholar
  131. Reverchon E, Daghero J, Marrone C, Mattea M, Poletto M (1999) Supercritical fractional extraction of fennel seed oil and essential oil: Experiments and mathematical modeling. Ind Eng Chem Res 38:3069–3075CrossRefGoogle Scholar
  132. Richter M, Sovová H (1993) The solubility of 2 monoterpenes in supercritical carbon-dioxide. Fluid Phase Equilib 85:285–300CrossRefGoogle Scholar
  133. Rodrigues VM, Rosa PTV, Marques MOM, Petenate AJ, Meireles MAA (2003) Supercritical extraction of essential oil from aniseed (Pimpinella anisum L.) using CO2: Solubility, kinetics, and composition data. J Agric Food Chem 51:1518–1523CrossRefGoogle Scholar
  134. Roy BC, Goto M, Hirose T (1996) Extraction of ginger oil with supercritical carbon dioxide: Experiments and modeling. Ind Eng Chem Res 35:607–612CrossRefGoogle Scholar
  135. Ruetsch L, Daghero J, Mattea M (2003) Supercritical extraction of solid matrices. Model formulation and experiments. Lat Am Appl Res 33:103–107Google Scholar
  136. Salimi A, Fatemi S, Zakizadeh Nei Nei H, Safaralie A (2008) Mathematical modeling of supercritical extraction of valerenic acid from Valeriana officinalis L. Chem Eng Technol 31:1470–1480CrossRefGoogle Scholar
  137. Sanders N (1993) Food legislation and the scope for increased use of near-critical fluid extraction operations in the food, flavouring and pharmaceutical industries. In: King MB, Bott TR (eds) Extraction of natural products using near-critical solvents. Blackie Academic & Professional, London, UK, pp 34–49CrossRefGoogle Scholar
  138. Sefidkon F, Dabiri M, Mirmostafa SA (2004) The composition of Thymus serpyllum L. oil. J Essent Oil Res 16:184–185CrossRefGoogle Scholar
  139. Serrato-Valenti G, Bisio A, Cornara L, Ciarallo G (1997) Structural and histochemical investigation of the glandular trichomes of Salvia aurea L. leaves, and chemical analysis of the essential oil. Ann Bot 79:329–336CrossRefGoogle Scholar
  140. Simandi B, Deák A, Rónyai E, Yanxiang G, Veress T, Lemberkovics E, Then M, Saa-Kiss A, Vámos-Falusi Z (1999) Supercritical carbon dioxide extraction and fractionation of fennel oil. J Agric Food Chem 47:1635–1640CrossRefGoogle Scholar
  141. Simões-Pires CA, Debenedetti S, Spegazzini E, Mentz LA, Matzenbacher NI, Limberger RP, Henriques A (2005) Investigation of the essential oil from eight species of Baccharis belonging to sect. Caulopterae (Asteraceae, Astereae): A taxonomic approach. Plant Syst Evol 253:23–32CrossRefGoogle Scholar
  142. Skerget M, Knez Z (2001) Modelling high pressure extraction processes. Comput Chem Eng 25:879–886CrossRefGoogle Scholar
  143. Sousa EMBD, Chiavone-Filho O, Moreno MT, Silva DN, Marques MOM, Meireles MAA (2002) Experimental results for the extraction of essential oil from Lippia sidoides Cham. using pressurized carbon dioxide. Braz J Chem Eng 19:229–241CrossRefGoogle Scholar
  144. Sousa EMBD, Martínez J, Chiavone-Filho O, Rosa PTV, Domingos T, Meireles MAA (2005) Extraction of volatile oil from Croton zehntneri Pax et Hoff with pressurized CO2: Solubility, composition and kinetics. J Food Eng 69:325–333CrossRefGoogle Scholar
  145. Souza AT, Corazza ML, Cardozo-Filho L, Guirardello R, Meireles MAA (2004) Phase equilibrium measurements for the system clove (Eugenia caryophyllus) oil + CO2. J Chem Eng Data 49:352–356CrossRefGoogle Scholar
  146. Sovová H (1994) Rate of the vegetable oil extraction with supercritical CO2.1. Modeling of extraction curves. Chem Eng Sci 49:409–414CrossRefGoogle Scholar
  147. Sovová H (2005) Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation. J Supercrit Fluids 33:35–52CrossRefGoogle Scholar
  148. Sovová H, Jež J (1994) Solubility of menthol in supercritical carbon-dioxide. J Chem Eng Data 39:840–841CrossRefGoogle Scholar
  149. Sovová H, Komers R, Kucera J, Jež J (1994a) Supercritical carbon dioxide extraction of caraway essential oil. Chem Eng Sci 49:2499–2505CrossRefGoogle Scholar
  150. Sovová H, Kucera J, Jez J (1994b) Rate of vegetable oil extraction with supercritical CO2. 2. Extraction of grape oil. Chem Eng Sci 49:415–420CrossRefGoogle Scholar
  151. Sovová H, Stateva RP, Galushko AA (2001) Essential oils from seeds: Solubility of limonene in supercritical CO2 and how it is affected by fatty oil. J Supercrit Fluids 20:113–129CrossRefGoogle Scholar
  152. Sovová H, Stateva RP, Galushko AA (2007) High-pressure equilibrium of menthol + CO2. J Supercrit Fluids 41:1–9CrossRefGoogle Scholar
  153. Spricigo CB, Pinto LT, Bolzan A, Novais AF (1999) Extraction of essential oil and lipids from nutmeg by liquid carbon dioxide. J Supercrit Fluids 15:253–259CrossRefGoogle Scholar
  154. Spricigo CB, Bolzan A, Pinto LT (2001) Mathematical modeling of nutmeg essential oil extraction by liquid carbon dioxide. Lat Am Appl Res 31:397–401Google Scholar
  155. Stahl E, Quirin K-W, Gerard D (1988) Dense gases for extraction and refining. Springer-Verlag, Berlin, GermanyCrossRefGoogle Scholar
  156. Stamenić M, Zizovic I, Orlović A, Skala D (2008) Mathematical modelling of essential SFE on the micro-scale. Classification of plant material. J Supercrit Fluids 46:285–292CrossRefGoogle Scholar
  157. Stassi A, Schiraldi A (1994) Solubility of vegetable cuticular waxes in supercritical CO2 isothermal calorimetry investigations. Thermochim Acta 246:417–425CrossRefGoogle Scholar
  158. Štastová J, Jež J, Bartlová M, Sovová H (1996) Rate of vegetable oil extraction with supercritical CO2. 3. Extraction from sea buckthorn. Chem Eng Sci 51:4347–4352CrossRefGoogle Scholar
  159. Steffani E, Atti-Santos AC, Atti-Serafini L, Pinto LT (2006) Extraction of ho-sho (Cinnamomum camphora Nees and Eberm var. Linaloolifera fujita) essential oil with supercritical CO2: Experiments and modeling. Braz J Chem Eng 23:259–266CrossRefGoogle Scholar
  160. Stüber F, Vázquez AM, Larrayoz MA, Recasens F (1996) Supercritical fluid extraction of packed beds: External mass transfer in upflow and downflow operation. Ind Eng Chem Res 35:3618–3628CrossRefGoogle Scholar
  161. Stüber F, Julien S, Recasens F (1997) Internal mass transfer in sintered metallic pellets filled with supercritical fluid. Chem Eng Sci 52:3527–3542CrossRefGoogle Scholar
  162. Stull DR (1947) Vapor pressures of pure substances organic compounds. Ind Eng Chem 39:517–540CrossRefGoogle Scholar
  163. Svoboda K, Svoboda T (2000) Secretory structures of aromatic and medicinal plants. A review and atlas of micrographs. Microscopix Publications, Knighton, UKGoogle Scholar
  164. Takeuchi TM, Leal PF, Favareto R, Cardozo-Filho L, Corazza ML, Rosa PTV, Meireles MAA (2008) Study of the phase equilibrium formed inside the flash tank used at the separation step of a supercritical fluid extraction unit. J Supercrit Fluids 43:447–459CrossRefGoogle Scholar
  165. Tan CS, Liou DC (1989) Axial dispersion of supercritical carbon dioxide in packed beds. Ind Eng Chem Res 28:1246–1250CrossRefGoogle Scholar
  166. Tan CS, Liang SK, Liou DC (1988) Fluid-solid mass transfer in a supercritical fluid extractor. Chem Eng J 38:17–22CrossRefGoogle Scholar
  167. Teixeira de Souza A, Benazzia T, Boer Grings M, Cabral V, da Silva E, Cardozo-Filho L, Ceva Antunes O (2008) Supercritical extraction process and phase equilibrium of candeia (Eremanthus erythropappus) oil using supercritical carbon dioxide. J Supercrit Fluids 47:182–187CrossRefGoogle Scholar
  168. Temelli F, O’Connell JP, Chen CS, Braddock RJ (1990) Thermodynamic analysis of supercritical carbon dioxide extraction of terpenes from cold-pressed orange oil. Ind Eng Chem Res 29:618–624CrossRefGoogle Scholar
  169. Tufeu R, Subra P, Plateaux C (1993) Contribution to the experimental determination of the phase diagrams of some (carbon dioxide + a terpene) mixtures. J Chem Thermodyn 25:1219–1228CrossRefGoogle Scholar
  170. Uquiche E, Huerta E, Sandoval A, del Valle JM. Effect of boldo (Peumus boldus M.) pretreatment on the kinetics of supercritical CO2 essential oil extraction. J Food Eng (submitted)Google Scholar
  171. Vargas RMF, Cassel E, Gomes GMF, Longhi LGS, Atti-Serafini L, Atti-Santos AC (2006) Supercritical extraction of carqueja essential oil: Experiments and modeling. Braz J Chem Eng 23:375–382CrossRefGoogle Scholar
  172. Vieira de Melo SAB, Pallado P, Guarise GB, Bertucco A (1999) High-pressure vapor-liquid equilibrium data for binary and ternary systems formed by supercritical CO2, limonene and linalool. Braz J Chem Eng 16:7–17Google Scholar
  173. Villermaux J (1987) Chemical engineering approach to dynamic modelling of linear chromatography: A flexible method for representing complex phenomena from simple concepts. J Chromatogr A 406:11–26CrossRefGoogle Scholar
  174. Wagner Z, Pavlicek J (1993) Vapour-liquid equilibrium in the carbon dioxide: p-cymene system at high pressure. Fluid Phase Equilib 90:135–141CrossRefGoogle Scholar
  175. Wakao N, Kaguei S (1982) Heat and mass transfer in packed beds. Gordon & Breach, New YorkGoogle Scholar
  176. Wakao N, Smith JM (1962) Diffusion in catalyst pellets. Chem Eng Sci 17:825–834CrossRefGoogle Scholar
  177. Xing H, Yang Y, Su B, Huang M, Ren Q (2003) Solubility of artemisinin in supercritical carbon dioxide. J Chem Eng Data 48:330–332CrossRefGoogle Scholar
  178. Yu D (1998) Solute pulse dispersion in soil columns: a comparison of supercritical CO2, gaseous and aqueous systems. Ph.D. thesis, University of California at Los Angeles, CAGoogle Scholar
  179. Zekovic Z, Lepojevic Z, Tolic A (2001) Modeling of the thyme-supercritical carbon dioxide extraction system. I. The influence of carbon dioxide flow rate and grinding degree of thyme. Sep Sci Technol 36:2459–3472CrossRefGoogle Scholar
  180. Zetzl C, Brunner G, Meireles MAA (2003) Standardized low-cost batch SFE-units for university education and comparative research. In: Brunner G, Kikic I, Perrut M (eds) Proceedings of the 6th international symposium on supercritical fluids. Institut National Polytechnique de Lorraine, Lorraine, France, pp 577–585Google Scholar
  181. Zizovic I, Stamenić M, Orlović A, Skala D (2005) Supercritical carbon dioxide essential oil extraction of Lamiaceae family species: Mathematical modelling on the micro-scale and process optimization. Chem Eng Sci 60:6747–6756CrossRefGoogle Scholar
  182. Zizovic I, Stamenić M, Ivanović J, Orlović A, Ristić M, Djordjević S, Petrović SD, Skala D (2007a) Supercritical carbon dioxide extraction of sesquiterpenes from valerian root. J Supercrit Fluids 43:249–258CrossRefGoogle Scholar
  183. Zizovic I, Stamenić M, Orlović A, Skala D (2007b) Supercritical carbon dioxide extraction of essential oils from plants with secretory ducts: Mathematical modelling on the micro-scale. J Supercrit Fluids 39:338–346CrossRefGoogle Scholar
  184. Zizovic IT, Stamenić MD, Orlović AM, Skala DU (2007c) Supercritical carbon-dioxide extraction of essential oils and mathematical modelling on the micro-scale. In: Berton LP (ed) Chemical engineering research trends. Nova Science Publishers, New York, pp 221–249Google Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  • José M. del Valle
    • 1
  • Juan C. de la Fuente
    • 2
  • Edgar Uquiche
    • 3
  • Carsten Zetzl
    • 4
  • Gerd Brunner
    • 4
  1. 1.Departamento de Ingeniería Química y BioprocesosPontificia Universidad Católica (PUC) de ChileSantiagoChile
  2. 2.Departamento de Procesos Químicos, Biotecnológicos y AmbientalesUniversidad Técnica Federico Santa MaríaValparaísoChile
  3. 3.Departamento de Ingeniería QuímicaUniversidad de La FronteraTemucoChile
  4. 4.Thermische VerfahrenstechnikTechnische Universität Hamburg-Harburg (TUHH)HarburgGermany

Personalised recommendations