Abstract
Until recently, traditional high-intensity and fixed-frequency ultrasound has been applied in fields such as cleaning, plastic welding, mixing, and homogenization. However, new industrial ultrasound-related applications, such as sonochemistry, extractions, and waste water treatment, among others, are becoming increasingly important, where traditional fixed-frequency ultrasonic systems are showing certain limitations.
Keywords
- Cavitation Bubble
- Ultrasonic Generator
- Acoustic Activity
- Ultrasonic System
- High Frequency Harmonic
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options










References
Feng, R., Zhao, Y., Zhu, C., and Mason, T. J. (2002). Enhancement of ultrasonic cavitation yield by multi-frequency sonication. Ultrasonics Sonochemistry, 9, 231–236.
Iernettia, G., Ciutia, P., Dezhkunovb, N. V., Realic, M., Francescuttod, A., and Johrie, G. K. (1997). Enhancement of high-frequency acoustic cavitation effects by a low-frequency stimulation. Ultrasonics Sonochemistry, 4, 263–268.
Moholkar, S., Rekveld, S., and Warmoeskerken, G. (2000). Modeling of acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor. Ultrasonics, 38, 666–670.
Prokic, M. (2001). Multifrequency ultrasonic structural actuators. European Patent Application EP1238715. 2001.
Prokic, M., and Sandoz, J. P. (2005). Innovative MMM technology for implementing power ultrasonic technique in food-processing industry. New Orleans, LA, Institute of Food Technologists Annual Meeting, July 2005.
Servant, G., Laborde, J. L., Hita, A., Caltagirone, J. P., and Gerad, A. (2003). On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors. Ultrasonics Sonochemistry, 10, 347–355.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Prokic, M. (2011). Wideband Multi-Frequency, Multimode, and Modulated (MMM) Ultrasonic Technology. In: Feng, H., Barbosa-Canovas, G., Weiss, J. (eds) Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7472-3_5
Download citation
DOI: https://doi.org/10.1007/978-1-4419-7472-3_5
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-7471-6
Online ISBN: 978-1-4419-7472-3
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)