Acoustic Cavitation

Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

The benefit of acoustic cavitation owes to its ability to concentrate acoustic energy in small volumes. This results in temperatures of thousands of kelvin, pressures of GPa, local accelerations 12 orders of magnitude higher than gravity, shockwaves, and photon emission. In a few words, it converts acoustics into extreme physics.

Keywords

Surfactant Crystallization Anisotropy Convection Depression 

References

  1. Akhatov, I., Gumerov, N., Ohl, C. D., Parlitz, U., and Lauterborn, W. (1997a). The role of surface tension in stable single bubble sonoluminescence. Physics Review Letters, 78(2), 227–230.CrossRefGoogle Scholar
  2. Akhatov, I., Mettin, R., Ohl, C. D., Parlitz, U., and Lauterborn, W. (1997b). Bjerknes force threshold for stable single bubble sonoluminescence. Physical Review E, 55(3), 3747–3750.CrossRefGoogle Scholar
  3. Akhatov, I., Parlitz, U., and Lauterborn, W. (1994). Pattern formation in acoustic cavitation. Journal of the Acoustical Society of America, 96(6), 3627–3635.CrossRefGoogle Scholar
  4. Akhatov, I., Parlitz, U., and Lauterborn, W. (1996). Towards a theory of self-organization phenomena in bubble-liquid mixtures. Physical Review E, 54(5), 4990–5003.CrossRefGoogle Scholar
  5. Alekseev, V. N., and Yushin, V. P. (1986). Distribution of bubbles in acoustic cavitation. Soviet Physics Acoustics, 32(6), 469–472.Google Scholar
  6. Apfel, R. E. (1984). Acoustic cavitation inception. Ultrasonics, 22, 167–173.CrossRefGoogle Scholar
  7. Ashokkumar, M., Crum, L. A., Frensley, C. A., Grieser, F., Matula, T. J., McNamara, W. B., and Suslick, K. (2000). Effects of solutes on single-bubble sonoluminescence. Journal of Physical Chemistry A, 104, 8462–8465.CrossRefGoogle Scholar
  8. Ashokkumar, M., Guan, J., Tronson, R., Matula, T. J., Nuske, J. W., and Grieser, F. (2002). Effects of surfactants, polymers, and alcohols on single bubble dynamics and sonoluminescence. Physical Review E, 65, 046310–1–046310–4.CrossRefGoogle Scholar
  9. Augsdorfer, U. H., Evans, A. K., and Oxley, D. P. (2000). Thermal noise and the stability of single sonoluminescing bubbles. Physical Review E, 61(5), 5278–5285.CrossRefGoogle Scholar
  10. Barber, B. P., Hiller, R. A., Löfstedt, R., Putterman, S. J., and Weninger, K. R. (1997). Defining the unknowns of sonoluminescence. Physics Report, 281, 65–143.CrossRefGoogle Scholar
  11. Barber, B. P., Weninger, K. R., Putterman, S. J., and Löfstedt, R. (1995). Observation of a new phase of sonoluminescence at low partial pressures. Physics Review Letters, 74, 5276–5279.CrossRefGoogle Scholar
  12. Barber, B. P., Wu, C. C., Löfstedt, R., Roberts, P. H., and Putterman, S. J. (1994). Sensitivity of sonoluminescence to experimental parameters. Physics Review Letters, 72(9), 1380–1383.CrossRefGoogle Scholar
  13. Benjamin, T. B. (1958). Pressure waves from collapsing cavities. 2nd Symposium on Naval Hydrodynamics, pp. 207–229, Washington.Google Scholar
  14. Benjamin, T. B., and Ellis, A. T. (1966). The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philosophical Transactions of the Royal Society London A, 260(110), 221–240.CrossRefGoogle Scholar
  15. Benjamin, T. B., and Ellis, A. T. (1990). Self-propulsion of asymmetrically vibrating bubbles. Journal of Fluid Mechanics, 212(2), 65–80.CrossRefGoogle Scholar
  16. Blake, F. G. (1949). The onset of cavitation in liquids; Technical memo 12. Acoustic Research Laboratory, Cambridge, MA, Harvard University.Google Scholar
  17. Blake, J. R., and Gibson, D. C. (1987). Cavitation bubbles near boundaries. Annual Review of Fluid Mechanics, 19, 99–123.CrossRefGoogle Scholar
  18. Brennen, C. E. (1995). Cavitation and bubble dynamics. Oxford Engineering Science Series, no. 44. New York, Oxford, Oxford University Press.Google Scholar
  19. Brenner, M. P., Hilgenfeldt, S., and Lohse, D. (2002). Single-bubble sonoluminescence. Reviews of Modern Physics, 74(2), 425–483.CrossRefGoogle Scholar
  20. Brenner, M. P., Lohse, D., and Dupont, T. F. (1995). Bubble shape oscillations and the onset of sonoluminescence. Physics Review Letters, 75(5), 954–957.CrossRefGoogle Scholar
  21. Briggs, L. J. (1950). Limiting negative pressure of water. Journal of Applied Physics, 21, 721–722.CrossRefGoogle Scholar
  22. Burdin, F., Tsochatzidis, N. A., Guiraud, P., Wilhelm, A. M., and Delmas, H. (1999). Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrasonics Sonochemistry, 6, 43–51.CrossRefGoogle Scholar
  23. Caflish, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. (1985). Effective equations for wave propagation in bubbly liquids. Journal of Fluid Mechanics, 153, 259–273.CrossRefGoogle Scholar
  24. Carstensen, E. L., and Foldy, L. L. (1947). Propagation of sound through a liquid containing bubbles. Journal of the Acoustical Society of America, 19(3), 481–501.CrossRefGoogle Scholar
  25. Chen, H., Li, X., and Wan, M. (2006). Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field. Ultrasonics Sonochemistry, 13, 480–486.CrossRefGoogle Scholar
  26. Chen, H., Li, X., Wan, M., and Wang, S. (2007). High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer. Ultrasonics Sonochemistry, 14, 291–297.CrossRefGoogle Scholar
  27. Church, C. C. (1988). Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. Journal of the Acoustical Society of America, 83(6), 2210–2217.CrossRefGoogle Scholar
  28. Commander, K. W., and Prosperetti, A. (1989). Linear pressure waves in bubbly liquids: comparison between theory and experiments. Journal of the Acoustical Society of America, 85(2), 732–746.CrossRefGoogle Scholar
  29. Crum, L. A. (1975). Bjerknes forces on bubbles in a stationary sound field. Journal of the Acoustical Society of America, 57(6), 1363–1370.CrossRefGoogle Scholar
  30. Crum, L. A. (1980). Measurements of the growth of air bubbles by rectified diffusion. Journal of the Acoustical Society of America, 68(1), 203–211.CrossRefGoogle Scholar
  31. Crum, L. A. (1982). Nucleation and stabilization of microbubbles in liquids. Applied Science Research, 38(3), 101–115.CrossRefGoogle Scholar
  32. Crum, L. A. (1983). The polytropic exponent of gas contained within air bubbles pulsating in a liquid. Journal of the Acoustical Society of America, 73(1), 116–120.CrossRefGoogle Scholar
  33. Crum, L. A., and Eller, A. I. (1970). Motion of bubbles in a stationary sound field. Journal of the Acoustical Society of America, 48(1), 181–189.CrossRefGoogle Scholar
  34. Crum, L. A., and Hansen, G. M. (1982). Generalized equations for rectified diffusion. Journal of the Acoustical Society of America, 72(5), 1586–1592.CrossRefGoogle Scholar
  35. Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.). (1999). Sonochemistry and Sonoluminescence. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.Google Scholar
  36. Crum, L. A., and Prosperetti, A. (1983). Nonlinear oscillations of gas bubbles in liquids: an interpretation of some experimental results. Journal of the Acoustical Society of America, 73(1), 121–127.CrossRefGoogle Scholar
  37. Crum, L. A., and Prosperetti, A. (1984). Erratum and comments on “Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results”. Journal of the Acoustical Society of America – Letters to the Editor, 75(6), 1910–1912.CrossRefGoogle Scholar
  38. Dähnke, S., Swamy, K. M., and Keil, F. J. (1999). Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles. Comparison of theoretical and experimental results. Ultrasonics Sonochemistry, 6, 31–41.CrossRefGoogle Scholar
  39. Devin, C. Jr. (1959). Survey of thermal, radiation and viscous damping of pulsating air bubbles in water. Journal of the Acoustical Society of America, 31(12), 1654–1667.CrossRefGoogle Scholar
  40. Didenko, Y. T., McNamara, W. B., and Suslick, K. S. (2000). Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Physics Review Letters, 84(4), 777–780.CrossRefGoogle Scholar
  41. Doinikov, A. A. (2004). Translational motion of a bubble undergoing shape oscillations. Journal of Fluid Mechanics, 501, 1–24.CrossRefGoogle Scholar
  42. Eller, A. I. (1972). Bubble growth by rectified diffusion in an 11-kHz sound field. Journal of the Acoustical Society of America, 52, 1447–1449.CrossRefGoogle Scholar
  43. Eller, A. I., and Crum, L. A. (1970). Instability of the motion of a pulsating bubble in a sound field. Journal of the Acoustical Society of America, 47(3), 762–767.CrossRefGoogle Scholar
  44. Eller, A.I, and Flynn, H. G. (1965). Rectified diffusion during nonlinear pulsations of cavitation bubbles. Journal of the Acoustical Society of America, 37, 493–503.CrossRefGoogle Scholar
  45. Epstein, P. S., and Plesset, M. S. (1950). On the stability of gas bubbles in liquid-gas solutions. Journal of Chemical Physics, 18, 1505–1509.CrossRefGoogle Scholar
  46. Flannigan, D. J., and Suslick, K. S. (2005). Plasma formation and temperature measurement during single-bubble cavitation. Nature, 434, 52–55.CrossRefGoogle Scholar
  47. Flint, E. B., and Suslick, K. S. (1991). The temperature of cavitation. Science, 253, 1397–1399.CrossRefGoogle Scholar
  48. Flynn, H. G. (1964). Physics of acoustic cavitation in liquids. In: Mason, W. P. (ed.), Physical Acoustics, vol. 1B, pp. 57–172. New York, NY, Academic.Google Scholar
  49. Foldy, L. L. (1944). The multiple scattering of waves. Physical Review, 67(3–4), 107–119.Google Scholar
  50. Fox, F. E., Curley, S. R., and Larson, G. S. (1955). Phase velocity and absorption measurements in water containing air bubbles. Journal of the Acoustical Society of America, 27(3), 534–539.CrossRefGoogle Scholar
  51. Fujikawa, S., and Akamatsu, T. (1980). Effects of the nonequilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. Journal of Fluid Mechanics, 97, 481–512.CrossRefGoogle Scholar
  52. Fyrillas, M. M., and Szeri, A. J. (1994). Dissolution or growth of soluble spherical oscillating bubbles. Journal of Fluid Mechanics, 277, 381–407.CrossRefGoogle Scholar
  53. Fyrillas, M. M., and Szeri, A. J. (1995). Dissolution or growth of soluble spherical oscillating bubbles: the effect of surfactants. Journal of Fluid Mechanics, 289, 295–314.CrossRefGoogle Scholar
  54. Fyrillas, M. M., and Szeri, A. J. (1996). Surfactant dynamics and rectified diffusion of microbubbles. Journal of Fluid Mechanics, 311, 361–378.CrossRefGoogle Scholar
  55. Gaete-Garreton, L., Vargas-Hernandez, Y., Vargas-Herrera, R., Gallego-Juarez, J. A., and Montoya-Vitini, F. (1997). On the onset of cavitation in gassy liquids. Journal of the Acoustical Society of America, 101(5), 2536–2540.CrossRefGoogle Scholar
  56. Gaitan, D. F., and Holt, R. G. (1999). Experimental observations of bubble response and light intensity near the threshold for single bubble sonoluminescence in an air-water system. Physical Review E, 59, 5495–5502.CrossRefGoogle Scholar
  57. Gaitan, D. F., Crum, L. A., Church, C. C., and Roy, R. A. (1992). Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. Journal of the Acoustical Society of America, 91(6), 3166–3183.CrossRefGoogle Scholar
  58. Gallego-Juarez, J. A. (1999). High power ultrasonic transducers. In Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence. Dordrecht, Kluwer, pp. 259–270. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.Google Scholar
  59. Goldman, D. E., and Ringo, G. R. (1949). Determination of pressure nodes in liquids. Journal of the Acoustical Society of America, 21, 270.CrossRefGoogle Scholar
  60. Gould, R. K. (1974). Rectified diffusion in the presence of, and absence of, acoustic streaming. Journal of the Acoustical Society of America, 56, 1740–1746.CrossRefGoogle Scholar
  61. Hammer, D., and Frommhold, L. (2000). Spectra of sonoluminescent rare-gas bubbles. Physics Review Letters, 85(6), 1326–1329.CrossRefGoogle Scholar
  62. Hammer, D., and Frommhold, L. (2001). Sonoluminescence: how bubbles glow. Journal of Modern Optics, 48, 239–277.Google Scholar
  63. Hilgenfeldt, S., Brenner, M. P., Grossman, S., and Lohse, D. (1998). Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. Journal of Fluid Mechanics, 365, 171–204.CrossRefGoogle Scholar
  64. Hilgenfeldt, S., Grossmann, S., and Lohse, D. (1999a). A simple explanation of light emission in sonoluminescence. Nature, 398, 402–405.CrossRefGoogle Scholar
  65. Hilgenfeldt, S., Grossmann, S., and Lohse, D. (1999b). Sonoluminescence light emission. Physics of Fluids, 11, 1318–1330.CrossRefGoogle Scholar
  66. Hilgenfeldt, S., Lohse, D., and Brenner, M. P. (1996). Phase diagrams for sonoluminescing bubbles. Physics of Fluids, 8(11), 2808–2826.CrossRefGoogle Scholar
  67. Hiller, R. A., Putterman, S. J., and Barber, B. P. (1992). Spectrum of synchronous picosecond sonoluminescence. Physics Review Letters, 69(8), 1182–1184.CrossRefGoogle Scholar
  68. Hopkins, S. D., Putterman, S. J., Kappus, B. A., Suslick, K. S., and Camara, C. G. (2005). Dynamics of a sonoluminescing bubble in sulfuric acid. Physics Review Letters, 95(254301), 1–4.Google Scholar
  69. Hsieh, D. Y., and Plesset, M. S. (1961). Theory of rectified diffusion of mass into gas bubbles. Journal of the Acoustical Society of America, 33, 206–215.CrossRefGoogle Scholar
  70. Iordansky, S. (1960). On the equations of motion for liquids containing gas bubbles. Journal of Applied Mechancis and Technical Physics, 3, 102–110.Google Scholar
  71. Kamath, V., Oguz, H. N., and Prosperetti, A. (1992). Bubble oscillations in the nearly adiabatic limit. Journal of the Acoustical Society of America, 92(4), 2016–2023.CrossRefGoogle Scholar
  72. Kamath, V., and Prosperetti, A. (1989). Numerical integration methods in gas-bubble dynamics. Journal of the Acoustical Society of America, 85(4), 1538–1548.CrossRefGoogle Scholar
  73. Kamath, V., Prosperetti, A., and Egolfopoulos, F. N. (1993). A theoretical study of sonoluminescence. Journal of the Acoustical Society of America, 94(1), 248–260.CrossRefGoogle Scholar
  74. Kapustina, O. A. (1973). Degassing of liquids. In: Rozenberg, L. D. (ed.), Physical principles of ultrasonic TECHNOLOGY. New York, NY, Plenum Press.Google Scholar
  75. Keller, J. B., and Miksis, M. (1980). Bubble oscillations of large amplitude. Journal of the Acoustical Society of America, 68, 628–633.CrossRefGoogle Scholar
  76. Ketterling, J. A., and Apfel, R. E. (1998). Experimental validation of the dissociation hypothesis for single bubble sonoluminescence. Physics Review Letters, 81, 4991–4994.CrossRefGoogle Scholar
  77. Ketterling, J. A., and Apfel, R. E. (2000). Extensive experimental mapping of sonoluminescence parameter space. Physical Review E, 61(4), 3832–3837.CrossRefGoogle Scholar
  78. Kobelev, Yu. A., and Ostrovskii, L. A. (1983). Collective self-effect of sound in a liquid with gas bubbles. Journal of Experimental and Theoretical Physics Letters, 37(1), 4–7.Google Scholar
  79. Kobelev, Yu. A., and Ostrovskii, L. A. (1989). Nonlinear acoustic phenomena due to bubble drift in a gas-liquid mixture. Journal of the Acoustical Society of America, 85(2), 621–629.CrossRefGoogle Scholar
  80. Kobelev, Yu. A., Ostrovskii, L. A., and Sutin, A. M. (1979). Self-illumination effect for acoustic waves in a liquid with gas bubbles. JETP Letters, 30(7), 395–398.Google Scholar
  81. Koch, P., Krefting, D., Tervo, T., Mettin, R., and Lauterborn, W. (2004a). Bubble path simulations in standing and traveling acoustic waves. Proceedings of ICA 2004, Kyoto (Japan), vol. Fr3.A.2, pp. V3571–V3572.Google Scholar
  82. Koch, P., Mettin, R., and Lauterborn, W. (2004b). Simulation of cavitation bubbles in travelling acoustic waves. In: Casseraeu, D. (ed.), Proceedings CFA/DAGA´04 Strasbourg, DEGA Oldenburg, pp. 919–920.Google Scholar
  83. Kornfeld, M., and Suvorov, L. (1944). On the destructive action of cavitation. Journal of Applied Physics, 15, 495–506.CrossRefGoogle Scholar
  84. Krefting, D., Mettin, R., and Lauterborn, W. (2004). High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrasonics Sonochemistry, 11, 119–123.CrossRefGoogle Scholar
  85. Labouret, S., Frohly, J., and Rivart, F. (2006). Evolution of an 1 MHz ultrasonic cavitation bubble field in a chopped irradiation mode. Ultrasonics Sonochemistry, 13(4), 287–294.CrossRefGoogle Scholar
  86. Lauterborn, W. (1976). Numerical investigation of nonlinear oscillations of gas bubbles in liquids. Journal of the Acoustical Society of America, 59(2), 283–296.CrossRefGoogle Scholar
  87. Lauterborn, W., and Bolle, H. (1975). Experimental investigations of cavitation-bubble collapse in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 72, 391–399.CrossRefGoogle Scholar
  88. Lauterborn, W., and Cramer, E. (1981a). On the dynamics of acoustic cavitation noise spectra. Acustica, 49, 280–287.Google Scholar
  89. Lauterborn, W., and Cramer, E. (1981b). Subharmonic route to chaos observed in acoustics. Physics Review Letters, 47(20), 1445–1448.CrossRefGoogle Scholar
  90. Lauterborn, W., Kurz, T., Mettin, R., and Ohl, C. D. (1999). Experimental and theoretical bubble dynamics. Advanced in Chemical Physics, 110, 295–380.CrossRefGoogle Scholar
  91. Lauterborn, W., and Mettin, R. (1999). Nonlinear bubble dynamics: response curves and more. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and Sonoluminescence, pp. 63–72. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.Google Scholar
  92. Leighton, T. G. (1994). The acoustic bubble. London, Academic.Google Scholar
  93. Leighton, T. G. (1995). Bubble population phenomena in acoustic cavitation. Ultrasonics Sonochemistry, 2(2), S123–S136.CrossRefGoogle Scholar
  94. Lezzi, A., and Prosperetti, A. (1987). Bubble dynamics in a compressible liquid. Part 2. Second-order theory. Journal of Fluid Mechanics, 185, 289–321.CrossRefGoogle Scholar
  95. Li, M. K., and Fogler, H. S. (2004). Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. Journal of Fluid Mechanics, 88, 513–528.CrossRefGoogle Scholar
  96. Lin, H., Storey, B. D., and Szeri, A. J. (2002a). Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh-Plesset equation. Journal of Fluid Mechanics, 452(10), 145–162.Google Scholar
  97. Lin, H., Storey, B. D., and Szeri, A. J. (2002b). Rayleigh-Taylor instability of violently collapsing bubbles. Physics of Fluids, 14(8), 2925–2928.CrossRefGoogle Scholar
  98. Lindau, O., and Lauterborn, W. (2003). Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. Journal of Fluid Mechanics, 479, 327–348.CrossRefGoogle Scholar
  99. Löfstedt, R., Barber, B. P., and Putterman, S. J. (1993). Toward a hydrodynamic theory of sonoluminescence. Physics of Fluids, A5(11), 2911–2928.Google Scholar
  100. Löfstedt, R., Weninger, K., Putterman, S., and Barber, B. P. (1995). Sonoluminescing bubbles and mass diffusion. Physical Review E, 51(5), 4400–4410.CrossRefGoogle Scholar
  101. Lohse, D., and Hilgenfeldt, S. (1997). Inert gas accumulation in sonoluminescing bubbles. Journal of Chemical Physics, 107(17), 6986–6997.CrossRefGoogle Scholar
  102. Lohse, D., Brenner, M. P., Dupont, T. F., Hilgenfeldt, S., and Johnston, B. (1997). Sonoluminescing air bubbles rectify argon. Physics Review Letters, 78(7), 1359–1362.CrossRefGoogle Scholar
  103. Louisnard, O., and Gomez, F. (2003). Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Physical Review E, 67(036610), 1–12.Google Scholar
  104. Magnaudet, J. (1997). The forces acting on bubbles and rigid particles. In: ASME Fluids Engineering Division Summer Meeting, Vancouver, Canada, paper 97–3522.Google Scholar
  105. Magnaudet, J., and Legendre, D. (1998). The viscous drag force on a spherical bubble with a time-dependent radius. Physics of Fluids, 10, 550–554.CrossRefGoogle Scholar
  106. Mason, T. J. (1999). Laboratory equipment and usage considerations. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 245–258. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.Google Scholar
  107. Matula, T. J. (2000). Single-bubble sonoluminescence in microgravity. Ultrasonics, 357, 203–223.Google Scholar
  108. Matula, T. J., and Crum, L. A. (1998). Evidence of gas exchange in single-bubble sonoluminescence. Physics Review Letters, 80(4), 865–868.CrossRefGoogle Scholar
  109. Matula, T. J., Roy, R. A., Mourad, P. D., McNamara, W. B., and Suslick, K. S. (1995). Comparison of multibubble and single-bubble sonoluminescence spectra. Physics Review Letters, 75(13), 2602–2605.CrossRefGoogle Scholar
  110. McNamara, W. B., Didenko, Y. T., and Suslick, K. S. (1999). Sonoluminescence temperatures during multi-bubble cavitation. Nature, 401, 772–775.CrossRefGoogle Scholar
  111. Mettin, R. (2005). Bubble structures in acoustic cavitation. In: Doinikov, A. A. (ed.), Bubble and particle dynamics in acoustic fields: Modern trends and applications, pp. 1–36. Kerala (India), Research Signpost.Google Scholar
  112. Mettin, R., Akhatov, I., Parlitz, U., Ohl, C. D., and Lauterborn, W. (1997). Bjerknes force between small cavitation bubbles in a strong acoustic field. Physical Review E, 56(3), 2924–2931.CrossRefGoogle Scholar
  113. Mettin, R., Koch, P., Lauterborn, W., and Krefting, D. (11-15 September 2006). Modeling acoustic cavitation with bubble redistribution. Sixth International Symposium on Cavitation – CAV2006 (Paper 75), Wageningen (The Netherlands), pp. 125–129.Google Scholar
  114. Mettin, R., Luther, S., and Lauterborn, W. (1999a). Bubble size distribution and structures in acoustic cavitation. Proceedings of 2nd conference on Applications of Power Ultrasound in Physical and Chemical Processing, Toulouse, France, pp. 125–129.Google Scholar
  115. Mettin, R., Luther, S., Ohl, C. D., and Lauterborn, W. (1999b). Acoustic cavitation structures and simulations by a particle model. Ultrasonics Sonochemistry, 6, 25–29.CrossRefGoogle Scholar
  116. Miksis, M. J., and Ting, L. (1984). Nonlinear radial oscillations of a gas bubble including thermal effects. Journal of the Acoustical Society of America, 76(3), 897–905.CrossRefGoogle Scholar
  117. Moussatov, A., Granger, C., and Dubus, B. (2003a). Cone-like bubble formation in ultrasonic cavitation field. Ultrasonics Sonochemistry, 10, 191–195.CrossRefGoogle Scholar
  118. Moussatov, A., Mettin, R., Granger, C., Tervo, T., Dubus, B., and Lauterborn, W. (2003b, 7-10 September). Evolution of acoustic cavitation structures near larger emitting surface. Proceedings of the World Congress on Ultrasonics, Paris (France), pp. 955–958.Google Scholar
  119. Neppiras, E. A. (1969). Subharmonic and other low-frequency emission from bubbles in sound-irradiated liquids. Journal of the Acoustical Society of America, 46, 587–601.CrossRefGoogle Scholar
  120. Neppiras, E. A. (1980). Acoustic cavitation. Physics Report, 61, 159–251.CrossRefGoogle Scholar
  121. Noltingk, B. E., and Neppiras, E. A. (1950). Cavitation produced by ultrasonics. Proceedings of the Physical Society, B63, 674–685.Google Scholar
  122. Nyborg, W. L., and Hughes, D. E. (1967). Bubble annihilation in cavitation streamers. Journal of the Acoustical Society of America, 42(4), 891–894.Google Scholar
  123. Oguz, H. N., and Prosperetti, A. (1990). A generalization of the impulse and virial theorems with an application to bubble oscillations. Journal of Fluid Mechanics, 218, 143–162.CrossRefGoogle Scholar
  124. Ohl, C. D., Lindau, O., and Lauterborn, W. (1998). Luminescence from spherically and aspherically collapsing laser bubbles. Physics Review Letters, 80, 393–396.CrossRefGoogle Scholar
  125. Parlitz, U., Mettin, R., Luther, S., Akhatov, I., Voss, M., and Lauterborn, W. (1999). Spatio temporal dynamics of acoustic cavitation bubble clouds. Philosophical Transactions of the Royal Society London A, 357, 313–334.CrossRefGoogle Scholar
  126. Pecha, R., and Gompf, B. (2000). Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Physics Review Letters, 84(6), 1328–1330.CrossRefGoogle Scholar
  127. Pelekasis, N. A., and Tsamopoulos, J. A. (1993). Bjerknes forces between two bubbles. Part 2. Response to an oscillatory pressure field. Journal of Fluid Mechanics, 254, 501–527.CrossRefGoogle Scholar
  128. Pétrier, C., and Francony, A. (1997). Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrasonics Sonochemistry, 4, 295–300.CrossRefGoogle Scholar
  129. Philipp, A., and Lauterborn, W. (1998). Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 361, 75–116.CrossRefGoogle Scholar
  130. Plesset, M. S. (1949). The dynamics of cavitation bubbles. Journal of Applied Mechanics, 16, 277–282.Google Scholar
  131. Plesset, M. S., and Mitchell, T. P. (1956). On the stability of the spherical shape of a vapor cavity in a liquid. Quarterly of Applied Mathematics, 13(4), 419–430.Google Scholar
  132. Plesset, M. S., and Prosperetti, A. (1977). Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 9, 145–185.CrossRefGoogle Scholar
  133. Prosperetti, A. (1977a). Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. Journal of the Acoustical Society of America, 61(1), 17–27.CrossRefGoogle Scholar
  134. Prosperetti, A. (1977b). Viscous effects on perturbed spherical flows. Quarterly of Applied Mathematics, 34, 339–352.Google Scholar
  135. Prosperetti, A. (1991). The thermal behaviour of oscillating gas bubbles. Journal of Fluid Mechanics, 222, 587–616.CrossRefGoogle Scholar
  136. Prosperetti, A. (1997). A new mechanism for sonoluminescence. Journal of the Acoustical Society of America, 101(4), 2003–2007.CrossRefGoogle Scholar
  137. Prosperetti, A. (1999). Old-fashioned bubble dynamics. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 39–62. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.Google Scholar
  138. Prosperetti, A., and Hao, Y. (1999). Modelling of spherical gas bubble oscillations and sonoluminescence. Philosophical Transactions of the Royal Society London A, 357, 203–223.CrossRefGoogle Scholar
  139. Prosperetti, A., and Lezzi, A. (1986). Bubble dynamics in a compressible liquid. Part 1. First-order theory. Journal of Fluid Mechanics, 168, 457–478.CrossRefGoogle Scholar
  140. Prosperetti, A., and Seminara, G. (1978). Linear stability of a growing or collapsing bubble in a slightly viscous liquid. Physics of Fluids, 21(9), 1465–1470.CrossRefGoogle Scholar
  141. Prosperetti, A., Crum, L. A., and Commander, K. W. (1988). Nonlinear bubble dynamics. Journal of the Acoustical Society of America, 83, 502–514.CrossRefGoogle Scholar
  142. Putterman, S. J., and Weninger, K. R. (2000). Sonoluminescence: How bubbles turn into light. Annual Review of Fluid Mechanics, 32, 445–476.CrossRefGoogle Scholar
  143. Ratoarinoro, Contamine, F., Wilhelm, A. M., Berlan, J., and Delmas, H. (1995). Power measurement in sonochemistry. Ultrasonics Sonochemistry, 2(1), S43–S47.CrossRefGoogle Scholar
  144. Rayleigh, Lord. (1917). On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine, 34, 94–98.Google Scholar
  145. Reddy, A. J., and Szeri, A. J. (2002). Shape stability of unsteadily translating bubbles. Physics of Fluids, 14(7), 2216–2224.CrossRefGoogle Scholar
  146. Rozenberg, L. D. (ed.). (1971a). High-intensity ultrasonic fields. New York, NY, Plenum Press.Google Scholar
  147. Rozenberg, L. D. (1971b). The cavitation zone. In: Rozenberg, L. D. (ed.), High-intensity ultrasonic fields. New-York, NY, Plenum Press.Google Scholar
  148. Rozenberg, L. D. (ed.). (1973). Physical principles of ultrasonic technology. New York, NY, Plenum Press.Google Scholar
  149. Servant, G., Caltagirone, J. P., Girard, A., Laborde, J. L., and Hita, A. (2000). Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor. Ultrasonics Sonochemistry, 7, 217–227.CrossRefGoogle Scholar
  150. Servant, G., Laborde, J. L., Hita, A., Caltagirone, J. P., and Girard, A. (2003). On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors. Ultrasonics Sonochemistry, 10(6), 347–355.CrossRefGoogle Scholar
  151. Silberman, E. (1957). Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes. Journal of the Acoustical Society of America, 29(8), 925–933.CrossRefGoogle Scholar
  152. Sirotyuk, M. G. (1971). Experimental investigations of ultrasonic cavitation. In: Rozenberg, L. D. (ed.), High-intensity ultrasonic fields. New-York, NY, Plenum Press.Google Scholar
  153. Storey, B. D., and Szeri, A.J. (2000). Water vapour, sonoluminescence and sonochemistry. Proceedings of the Royal Society of London, Series A, 456, 1685–1709.CrossRefGoogle Scholar
  154. Storey, B. D., and Szeri, A.J. (2001). A reduced model of cavitation physics for use in sonochemistry. Proceedings of the Royal Society of London, Series A, 457, 1685–1700.CrossRefGoogle Scholar
  155. Storey, B. D., and Szeri, A. J. (2002). Argon rectification and the cause of light emission in single-bubble sonoluminescence. Physics Review Letters, 88(7), 074301-1–074301-3.CrossRefGoogle Scholar
  156. Storey, B. D., Lin, H., and Szeri, A. J. (2001). Physically realistic models of catastrophic bubble collapses. In: Fourth International Symposium on Cavitation. California Institute of Technology, Pasadena, CA, June 20–23.Google Scholar
  157. Strasberg, A. (1961). Rectified diffusion: Comments on a paper of Hsieh and Plesset. Journal of the Acoustical Society of America – Letters to the Editor, 33, 359.CrossRefGoogle Scholar
  158. Strasberg, M., and Benjamin, T. B. (1958). Excitation of oscillations in the shape of pulsating gas bubbles. Journal of the Acoustical Society of America (Abstract), 30, 697.CrossRefGoogle Scholar
  159. Suslick, K. S., McNamara, W. B., and Didenko, Y. (1999). Hot spot conditions during multi-bubble cavitation. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 191–204. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.Google Scholar
  160. Toegel, R., Gompf, B., Pecha, R., and Lohse, D. (2000a). Does water vapor prevent upscaling sonoluminescence? Physics Review Letters, 85(15), 3165–3168.CrossRefGoogle Scholar
  161. Toegel, R., Hilgenfeldt, S., and Lohse, D. (2000b). Squeezing alcohols into sonoluminescing bubbles: the universal role of surfactants. Physics Review Letters, 84(11), 2509–2512.CrossRefGoogle Scholar
  162. Tomita, Y., and Shima, A. (1977). On the behaviour of a spherical bubble and the impulse pressure in a viscous compressible liquid. Bulletin of the JSME, 20(149), 1453–1460.Google Scholar
  163. Vazquez, G. E., and Putterman, S. J. (2000). Tempurature and pressure dependence of sonoluminescence. Physics Review Letters, 85(14), 3037–3040.CrossRefGoogle Scholar
  164. Walton, A. J., and Reynolds, G. T. (1984). Sonoluminescence. Advances in Physics, 33(6), 595–660.CrossRefGoogle Scholar
  165. Wijngaarden, V. L. (1968). On the equations of motion for mixtures of liquid and gas bubbles. Journal of Fluid Mechanics, 33(3), 465–474.CrossRefGoogle Scholar
  166. Yasui, K. (1997). Alternative model of single-bubble sonoluminescence. Physical Review E, 56, 6750–6760.CrossRefGoogle Scholar
  167. Yasui, K. (2001). Effect of liquid temperature on sonoluminescence. Physical Review E, 64(016310), 1–10.Google Scholar
  168. Yasui, K., Tuziuti, T., and Iida, Y. (2005). Dependence of the characteristics of bubbles on types of sonochemical reactors. Ultrasonics Sonochemistry, 12, 43–51.CrossRefGoogle Scholar
  169. Yuan, L., Ho, C. Y., Chu, M. C., and Leung, P. T. (2001). Role of gas density in the stability of single-bubble sonoluminescence. Physical Review E, 64(016317), 1–6.Google Scholar
  170. Zardi, D., and Seminara, G. (1995). Chaotic mode competition in the shape oscillations of pulsating bubbles. Journal of Fluid Mechanics, 286, 257–276.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre RAPSODEE, FRE CNRS 3213, Université de Toulouse, Ecole des Mines d’AlbiAlbi Cedex 09France
  2. 2.Departamento de Química Física e Instituto Universitario de ElectroquímicaUniversidad de AlicanteAlicanteSpain

Personalised recommendations