Inactivation of Microorganisms

  • Stella Maris Alzamora
  • Sandra N. Guerrero
  • Marcela Schenk
  • Silvia Raffellini
  • Aurelio López-Malo
Part of the Food Engineering Series book series (FSES)


Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).


Orange Juice Pulse Electric Field Cavitation Bubble High Hydrostatic Pressure Microbial Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from Universidad de Buenos Aires, CONICET and ANPCyT of Argentina, as well as from BID and Universidad de las Américas, Puebla and CONACyT (Projects 62275 and 84859) of Mexico.


  1. Ahmed, F. I. K., and Russel, C. (1975). Synergism between ultrasonic waves and hydrogen peroxide in the killing of microorganisms. Journal of Applied Bacteriology, 39, 31–40.Google Scholar
  2. Alliger, H. (1975). Ultrasonic disruption. American Laboratory, 10, 75–85.Google Scholar
  3. Alzamora, S. M., Guerrero, S., López-Malo, A., and Palou, E. (2003). Plant antimicrobials combined with conventional preservatives for fruit products. In: Roller, S. (ed.), Natural Antimicrobials for the Minimal Processing of Foods, pp. 235–249. England, Woodhead.Google Scholar
  4. Ananta, E., Heinz, V., and Knorr, D. (2004). Assessment of high pressure induced damage on Lactobacillus rhamnosus GG by flow cytrometry. Food Microbiology, 21, 567–577.CrossRefGoogle Scholar
  5. Ananta, E., Voigt, D., Zenker, M., Heinz, V., and Knorr, D. (2005). Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound. Journal of Applied Microbiology, 99, 271–278.CrossRefGoogle Scholar
  6. Baumann, A. R., Martín, S. E., and Feng, H. (2005). Power ultrasound treatment of Listeria monocytogenes in apple cider. Journal of Food Protection, 68, 2333–2340.Google Scholar
  7. Bintsis, T., Litopoulou-Tzanetaki, E., and Robinson, R. (2000). Existing and potential applications of ultraviolet light in the food industry. A critical review. Journal of the Science of Food and Agriculture, 80, 637.CrossRefGoogle Scholar
  8. Breeuwer, P., Drocourt, J. L., Rombouts, F. M., and Abee, T. (1994). Energy-dependent, carrier-mediated extrusion of carboxyfluorescein from Saccharomyces cerevisiae allows rapid assessment of cell viability by flow cytrometry. Applied and Environmental Microbiology, 60, 1467–1472.Google Scholar
  9. Brul, S., and Coote, P. (1999). Preservative agents in foods. Mode of action and microbial resistance mechanisms. International Journal of Food Microbioligy, 50, 1–17.CrossRefGoogle Scholar
  10. Cabeza, M. C., Ordoñez, J., Cambero, I., De la Hoz, L., and García M. L. (2004). Effect of thermoultrasonication on Salmonella enterica Serovar Enteritidis in distilled water and intact shell eggs. Journal of Food Protection, 67, 1886–1891.Google Scholar
  11. Cameron, M., McMaster, L. D., and Britz, T. J. (2008). Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrasonics Sonochemistry, 15, 960–964.CrossRefGoogle Scholar
  12. Clarke, P. R., and Hill, C. R. (1969). Biological action of ultrasound in relation to the cell cycle. Experimenta .Cell Research, 58, 443–444.CrossRefGoogle Scholar
  13. Clarke, P. R., and Hill, C. R. (1970). Physical and chemical aspects of ultrasonic disruption of cells. The Journal of the Acoustical Society of America, 47, 649–653.CrossRefGoogle Scholar
  14. Conner, D., and Beuchat, L. R. (1984). Effects of essential oils from plants on growth of food spoilage yeasts. Journal of Food Science, 49, 429–434.CrossRefGoogle Scholar
  15. Doty, P., McGill, B. B., and Rice, S. A. (1958). The properties of sonic fragments of deoxyribose nucleic acid. Proceedings of the National Academy of Sciences USA, 44, 432–438.Google Scholar
  16. Earnshaw, R. G. (1998). Ultrasound: a new opportunity for food preservation. In: Povey, M. J. W., and Mason, T. J. (eds.), Ultrasound in Food Processing, pp. 183–192. London, New York, Blackie Academic and Professional.Google Scholar
  17. Earnshaw, R. G., Appleyard, J., and Hurst, R. M. (1995). Understanding physical inactivation processes: Combined preservation opportunities using heat, ultrasound and pressure. Food Microbiology, 28, 197–219.CrossRefGoogle Scholar
  18. Ferrante, S., Guerrero, S., and Alzamora S. M. (2007). Combined use of ultrasound and natural antimicrobials to inactivate Listeria monocytogenes in orange juice. Journal of Food Protection, 70, 1850–1857.Google Scholar
  19. García, M. L., Burgos, J., Sanz, B., and Ordóñez, J. (1989). Effect of heat and ultrasonic waves on the survival of two strains of Bacillus subtilis. Journal of Applied Bacteriology, 67, 619–628.Google Scholar
  20. Guerrero, S., López-Malo, A., and Alzamora, S. M. (2001a). Effect of ultrasound on the survival of Saccharomyces cerevisiae: Influence of temperature, pH and amplitude. Innovative Food Science and Emerging Technologies, 2, 31–39.CrossRefGoogle Scholar
  21. Guerrero, S., Tognon, M., and Alzamora, S. M. (2001b). Utilización de la Ecuación de Gompertz modificada para predecir el efecto combinado de ultrasonido, pH y algunos aditivos en la inactivación de Saccharomyces cerevisiae. III Congreso Iberoamericano de Ingeniería de Alimentos. I Congreso Español de Ingeniería de Alimentos. Valencia, Spain.Google Scholar
  22. Guerrero, S., Tognon, M., and Alzamora, S. M. (2001c). Ultrasound and Natural Antimicrobials: Inactivation of Saccharomyces cerevisiae by the Combined Treatment. New Orleans, LA, Institute of Food Technologists Annual Meeting.Google Scholar
  23. Guerrero, S., Tognon, M., and Alzamora, S. M. (2005). Modeling the response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan. Food Control, 16, 131–139.CrossRefGoogle Scholar
  24. Huang, E., Mittal, G. S., and Griffith, M. W. (2006). Inactivation of Salmonella enteritidis in liquid whole egg using combination treatments of pulsed electric field, high pressure and ultrasound. Biosystems Engineering, 94, 403–413.CrossRefGoogle Scholar
  25. Hughes, D. E., and Nyborg, W. L. (1962). Cell disruption by ultrasound. Science, 138, 108–114.CrossRefGoogle Scholar
  26. Ince, N. H., and Belen, R. (2001). Aqueous phase disinfection with power ultrasound: Process kinetics and effect of solid catalysts. Environmental Science Technology, 35, 1885–1888.CrossRefGoogle Scholar
  27. Knorr, D., Zenker, M., Heinz, V., and Lee, D. U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology, 15, 261–266.CrossRefGoogle Scholar
  28. Lado, B. H., and Yousef, A. E. (2002). Alternative food-preservation technologies: Efficacy and mechanisms. Microbes and Infection, 4, 433–440.CrossRefGoogle Scholar
  29. Lauterborn, W., Kurz, T., Mettin, R., and Ohl, C. D. (1999). Experimental and theoretical bubble dynamics. In: Prigogine, I., and Rice, S. A. (eds.), Advances in Chemical Physics, pp. 295–380. New York, NY, Wiley.Google Scholar
  30. Lauterborn, W., and Ohl, C. D. (1997). Cavitation bubble dynamics. Ultrasonics sonochemistry, 4, 65–75.CrossRefGoogle Scholar
  31. Lee, D.U., Heinz, V., and Knorr, D. (2003). Effects of combination treatments of nisin and high-intensity ultrasound with high pressure on the microbial inactivation in liquid whole egg. Innovative Food Science and Emerging Technologies, 4, 387–393.CrossRefGoogle Scholar
  32. Leighton, T. G. (1998). The principles of cavitation. In: Povey, M. J. W., and Mason, T. J. (eds.), Ultrasound in Food Processing, pp. 151–182. London, New York, Blackie Academic and Professional.Google Scholar
  33. Lepoint, T., and Mullie, F. (1994). What exactly is cavitation chemistry? Ultrasonics Sonochemistry, 1, S13–S22.CrossRefGoogle Scholar
  34. López-Malo, A., Guerrero, S., and Alzamora, S. M. (1999). Saccharomyces cerevisiae thermal inactivation kinetics combined with ultrasound. Journal of Food Protection, 62, 10–13.Google Scholar
  35. López-Malo, A., Guerrero, S., Santiesteban, A., and Alzamora, S. M. (2006). Inactivation kinetics of Saccharomyces cerevisiae and Listeria monocytogenes in apple juice processed by novel technologies. ENPROMER 2005. Rio das Pedras, Brasil, August 14–18.Google Scholar
  36. López-Malo, A., Palou, E., Jiménez-Fernández, M., Alzamora, S. M., and Guerrero, S. (2005). Multifactorial fungal inactivation combining thermosonication and antimicrobials. Journal of Food Engineering, 67, 87–93.CrossRefGoogle Scholar
  37. Lorimer, J. P. (1990). Ultrasound in polymer chemistry. In: Mason, T. J. (ed.), Sonochemistry: The Uses of Ultrasound in Chemistry, pp. 112–131. England, The Royal Society of Chemistry.Google Scholar
  38. Mason, T. J., Paniwnyk, J. P., and Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3, S253–S260.CrossRefGoogle Scholar
  39. Muthukumaran, S., Kentisch, S. E., Stevens, G. W., and Ashokkumar, M. (2006). Application of ultrasound in membrane separation processes: A review. Reviews in Chemical Engineering, 22, 155–194.CrossRefGoogle Scholar
  40. Ordoñez, J. A., Sann, B., Hernández, P. E., and López-Lorenzo, P. (1984). A note on the effect of combined ultrasonic and heat treatments on the survival of a strain of Staphylococcus aureus. Journal of Dairy Research, 54, 61–67.CrossRefGoogle Scholar
  41. Patist, A., and Bates, D. (2008). Ultrasonic innovation in the food industry: from the laboratory to commercial product. Innovative Food Science and Emerging Technologies, 9, 147–154.CrossRefGoogle Scholar
  42. Peleg, M., and Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical Reviews in Food Science, 38, 353–380.CrossRefGoogle Scholar
  43. Perkins, J. P. (1990). Power ultrasound. In: Mason, T. J. (ed.), Sonochemistry: The Uses of Ultrasound in Chemistry, pp. 47–59. England, The Royal Society of Chemistry.Google Scholar
  44. Piyasena, P., Mohareb, E., and McKellar, R. C. (2003). Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology, 87, 207–216.CrossRefGoogle Scholar
  45. Povey, M. J. W., and Mason, T. J. (eds.). (1998). Ultrasound in Food Processing. London, New York, Blackie Academic and Professional.Google Scholar
  46. Raso, J., and Barbosa-Cánovas, G. V. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43, 265–285.CrossRefGoogle Scholar
  47. Rediske, A. M., Rapoport, N., and Pitt, W. G. (1999). Reducing bacterial resistance to antibiotics with ultrasound. Letters in Applied Microbiology, 28, 81–84.CrossRefGoogle Scholar
  48. Ross, A. I. V., Griffiths, M. W., Mittal, G. S., and Deeth, H. C. (2003). Combining nonthermal technologies to control foodborne microorganisms. International Journal of Food Microbiology, 89, 125–138.CrossRefGoogle Scholar
  49. Russell, N. J. (2002). Bacterial membranes: the effect of chill storage and food processing. An overview. International Journal of Food Microbiology, 79, 27–34.CrossRefGoogle Scholar
  50. Sala, F. J., Burgos, J., Condon, S., López, P., and Raso, J. (1995). Manothermosonication. In: Gould, G. W. (ed.), New Methods of Food Preservation. London, Blackie.Google Scholar
  51. Scherba, G., Weigel, R. M., and O’Brien, W. D., Jr. (1991). Quantitative assessment of the germicidal efficacy of ultrasonic energy. Applied and Environmental Microbiology, 57, 2079–2084.Google Scholar
  52. Shapiro, H. M. (2000). Microbial analysis at the single-cell level: tasks and techniques. Journal of Microbiological Methods, 42, 3–16.CrossRefGoogle Scholar
  53. Ueckert, J., Breeuwer, P., Abee, T., Stephens, P., Nebe von Caron, G., and ter Steeg, P. F. (1995). Flow cytrometry applications in physiological study and detection of foodborne microorganisms. International Journal of Food Microbiology, 28, 317–326.CrossRefGoogle Scholar
  54. U.S. FDA (2000). Kinetics of Microbial Inactivation for Alternative Food Processing Technologies – Ultrasound. U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, June 2.Google Scholar
  55. Vichare, N. P., Senthikumar, P., Moholkar, V. S., Gogate, P. R., and Pandit, A. B. (2000). Energy analysis in acoustic cavitation. Industrial and Engineering Chemical Research, 39, 1480–1486.CrossRefGoogle Scholar
  56. Villamiel, M., and de Jong, P. (2000). Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in Trypticase® Soy Broth and total bacteria in milk by continuous-flow ultrasonic treatment and conventional heating. Journal of Food Engineering, 45, 171–179.CrossRefGoogle Scholar
  57. Walkling-Ribeiro, M., Noci, F., Riener, J., Cronin, D. A., Lyng, J. G., and Morgan, D. J. (2009). The impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food Bioprocess and Technology, 2, 422–430.Google Scholar
  58. Zenker, M., Heinz, V., and Knorr, D. (2003). Application of ultrasound assisted thermal processing for preservation and quality retention of liquid foods. Journal of Food Protection, 66, 1642–1649.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stella Maris Alzamora
    • 1
  • Sandra N. Guerrero
    • 1
  • Marcela Schenk
    • 1
  • Silvia Raffellini
    • 2
  • Aurelio López-Malo
    • 3
  1. 1.Departamento de IndustriasUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
  2. 2.Departamento de TecnologíasUniversidad Nacional de LujánLuján (Pcia. de Buenos Aires)Argentina
  3. 3.Departamento de Ingeniería Química y AlimentosUniversidad de las AméricasPueblaMéxico

Personalised recommendations